首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
食用菌子实体通常会在生长过程中积累较高含量的糖醇及海藻糖,这些碳水化合物的积累能够促进食用菌的生长,而在灵芝中的同类研究较少,本研究通过高效阴离子-脉冲安培法对沪农灵芝一号子实体发育过程中不同部位的糖类成分的含量变化进行分析,发现灵芝子实体中主要的可溶性糖类成分是阿拉伯糖醇、甘露醇和海藻糖,甘露醇在子实体成熟时的菌盖中的含量达到最高值,阿拉伯糖醇在产孢子期的子实体中含量较高,两种糖醇的含量呈现相反的变化趋势,一种糖醇积累的同时会消耗利用另一种糖醇,而海藻糖在灵芝子实体的整个生长过程中含量处于较低水平,仅在子实体初期的菌基部位检测到较高的含量;同时通过qRT-PCR技术检测灵芝子实体不同部位中这几种糖类的主要代谢酶基因的表达变化,发现这些代谢酶在子实体的菌基部位的表达水平相对其他部位较高,且随着子实体生长这一差异更加显著,这一结果表明灵芝中的糖醇和海藻糖分布差异可能是先由菌基的菌丝体中合成产物并转运到子实体不同部位,再经过一段时间的积累和代谢之后产生。  相似文献   

3.
Three strains of Agaricus bisporus (B430, 116, and 155.8), which share the ability to form hyphal aggregates on solid media under axenic conditions, were investigated with respect to carbohydrate levels and activities of enzymes involved in their carbon metabolism. The size and macroscopic appearance of the aggregates, when grown on diluted medium, suggest that substrate limitation plays a role in the process of fruiting body development in A. bisporus. The enzymes trehalose phosphorylase (TP), mannitol dehydrogenase (MD), and glucose-6-phosphate dehydrogenase (G6PD) seem to be developmentally regulated, in contrast to hexokinase (HK). Activities of TP (measured in the direction of trehalose degradation), MD, and G6PD were higher in the hyphal aggregates compared with the mycelium, whereas HK activity varied little. In the period preceding the axenic formation of hyphal aggregates, synthesis of trehalose by TP approximately doubled in the mycelium. The carbohydrate levels, which were measured by HPLC, varied in a way similar to their corresponding enzymes. The results indicate synthesis of trehalose in the mycelium of A. bisporus before the hyphal aggregates arise. Subsequently, translocation of the trehalose takes place from the mycelium to the emerging aggregates. In these small aggregates the trehalose is rapidly broken down to yield glucose and glucose-1-phosphate, serving as carbon and energy sources for further growth of the aggregates and for the synthesis of the osmolyte mannitol. Received: 4 March 1999 / Accepted: 4 June 1999  相似文献   

4.
Carbon and nitrogen metabolism in ectomycorrhizal fungi and ectomycorrhizas   总被引:7,自引:0,他引:7  
F Martin  M Ramstedt  K S?derh?ll 《Biochimie》1987,69(6-7):569-581
The literature concerning the metabolism of carbon and nitrogen compounds in ectomycorrhizal associations of trees is reviewed. The absorption and translocation of mineral ions by the mycelia require an energy source and a reductant which are both supplied by respiratory catabolism of carbohydrates produced by the host plant. Photosynthates are also required to generate the carbon skeletons for amino acid and carbohydrate syntheses during the growth of the mycelia. Competition for photosynthates occurs between the fungal cells and the various vegetative sinks in the host tree. The nature of carbon compounds involved in these processes, their routes of metabolism, the mechanisms of control and the partitioning of metabolites between the various sites of utilization are only poorly understood. Both ascomycetous and basidiomycetous ectomycorrhizal fungi synthesize and some, if not all, accumulate mannitol, trehalose and triglycerides. The fungal strains employ the Embden--Meyerhof pathway of glucose catabolism and the key enzymes of the pentose phosphate pathway (6-phosphogluconate dehydrogenase, glucose-6-phosphate dehydrogenase, transaldolase and transketolase). Anaplerotic CO2 fixation, via pyruvate carboxylase and/or phosphoenolpyruvate carboxykinase, provides high pools of amino acids. This process could be important in the recapture and assimilation of respired CO2 in the rhizosphere. The ectomycorrhizas are thought to contain the Embden--Meyerhof pathway, the pentose phosphate pathway and the tricarboxylic acid cycle, which provide the carbon skeletons for the assimilation of ammonia into amino acids. The main route of assimilation of ammonia appears to be through the glutamine synthetase-glutamate synthase cycle in the ectomycorrhizas. Glutamate dehydrogenase plays a minor role in this process. Glutamate dehydrogenase and glutamine synthetase are present in free-living ectomycorrhizal fungi and they participate in the assimilation of ammonia and the synthesis of amino acids through the glutamate dehydrogenase/glutamine synthetase sequence. In both in vitro cultures of fungi and ectomycorrhizas, the assimilated nitrogen accumulates in glutamine. Glutamine, but also ammonia, are thought to be exported from the fungal tissues to the host cells. Studies on the metabolism of ectomycorrhizas and ectomycorrhizal fungi have focused on the metabolic pathways and compounds which accumulate in the symbiotic tissues. Studies on regulation of the overall process, and the control of enzyme activity in particular, are still fragmentary.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
为探讨巴氏蘑菇子实体不同发育阶段基因的表达情况,本研究对巴氏蘑菇子实体不同发育时期(原基、采收期和开伞期)进行转录组测序,以本实验室已获得的巴氏蘑菇JA菌株的不育单孢菌株JA-15036基因组为参考基因组研究原基与采收期及开伞期样本间差异表达基因,并对差异表达基因进行了GO功能和Pathway富集分析。GO功能分析结果显示,差异表达基因主要富集在跨膜转运、碳水化合物代谢途径和膜组分,它们协同调控为子实体生长发育提供稳定的内环境。KEGG富集分析结果表明,原基期上调的差异表达基因主要富集在核糖体蛋白和DNA复制,表明原基期细胞代谢旺盛,其中核糖体蛋白基因上调为后期蛋白质合成提供重要场所;采收期和开伞期子实体时期差异表达基因主要富集在碳水化合物代谢、脂肪酸降解和氨基酸代谢等途径,为巴氏蘑菇子实体的生长发育与成熟提供营养与能量。  相似文献   

6.
The effect of temperature stress on the cytosol carbohydrate composition of fungi belonging to various systematic groups was investigated. InMucorales representatives (subkingdomEomycota, phylumArchetnycota, classZygomycetes), adaptation to hypo- and hyperthermia occurs via the regulation of trehalose synthesis, although inositol is also involved in these processes inBlakeslea trispora. InAscomycota (subkingdomNeomycota), oversynthesis of mannitol and glycerol occurs under hypothermia, whereas oversynthesis of trehalose and inositol takes place under hyperthermia.Basidiomycota (subkingdomNeomycota) use two pathways of biochemical adaptation, depending on the cytosol carbohydrate composition. In the absence of sucrose, glycerol and arabitol are involved in the adaptation to hyperthermia; trehalose accumulates under hypothermic conditions (type I of regulation). Type II regulation (revealed inPleurotus ostreatus) involves sucrose rather than glycerol or arabitol. The data obtained are discussed in terms of fungal systematics and phylogeny.  相似文献   

7.
Changes in contents of soluble low molecular weight carbohydrates and chitin in a sawdust-rice bran medium during mycelial growth ofPleurotus ostreatus in bottle cultivation were examined in relation to fruit-body yield of nine stocks. Glucose, mannitol, inositol, sucrose, and trehalose were detected in cultures after mycelial spreading. No significant correlation was observed between contents of soluble low molecular weight carbohydrate during mycelial growth and the fruit-body yield. Negative correlation was found between trehalose content in post-harvest cultures and the fruit-body yield. Chitin content in cultures decreased in the fruiting stage. Positive correlation was detected between chitin content of fruit-bodies and the decrement of chitin in post-harvest culture caused by fruit-body growth.  相似文献   

8.
(13)C-NMR analyses of Cantharellus cibarius growth media were performed. We found exudation of trehalose and mannitol, which may explain the phenomenon of reproducing Pseudomonas bacteria observed inside fruit bodies. Exudation varied with strain and environment. NMR analyses of stored (13)C was also performed. Trehalose, mannitol, and arginine were revealed. The mannitol pathway seems to play an important role for trehalose production in this species. This is the first study of the fate of the photosynthetically derived carbon in the highly appreciated edible ectomycorrhizal mushroom Cantharellus cibarius.  相似文献   

9.
10.
Ectomycorrhizae formed by the symbiotic interaction between ectomycorrhizal fungi and plant roots play a key role in maintaining and improving the health of a wide range of plants. Mycorrhizal initiation, development, and functional maintenance involve morphological changes that are mediated by activation and suppression of several fungal and plant genes. We identified a gene, Lbras, in the ectomycorrhizal fungus Laccaria bicolor that belongs to the ras family of genes, which has been shown in other systems to be associated with signaling pathways controlling cell growth and proliferation. The Lbras cDNA complemented ras2 function in Saccharomyces cerevisiae and had the ability to transform mammalian cells. Expression of Lbras, present as a single copy in the genome, was dependent upon interaction with host roots. Northern analysis showed that expression was detectable in L bicolor 48 h after interaction as well as in the established mycorrhizal tissue. Phylogenetic analysis with other Ras proteins showed that Lbras is related most closely to Aras of Aspergillus nidulans.  相似文献   

11.
The present studies confirm that storage carbohydrate synthesis from [1-(13)C]glucose is elevated in Manduca sexta parasitized by Cotesia congregata, despite a decrease in the rate of metabolism of the labeled substrate. Further, the results demonstrate that a similar pattern of carbohydrate synthesis and glucose metabolism was induced in normal larvae by administration of the glycolytic inhibitor, iodoacetate. (13)C enrichment of C6 of trehalose and glycogen demonstrated randomization of the C1 label at the triose phosphate step of the glycolytic/gluconeogenic pathway and suggested that gluconeogenesis, that is, de novo carbohydrate formation, contributed to the synthesis of carbohydrate in both normal and parasitized insects. Accounting for differences in the (13)C enrichment in C1 of trehalose and glycogen due to direct labeling from [1-(13)C]glucose, the mean C6/C1 labeling ratios in trehalose and glycogen of parasitized larvae and insects treated with iodoacetate were greater than the mean ratio observed in normal larvae, suggesting a greater contribution of gluconeogenesis to trehalose labeling in parasitized insects. This conclusion was confirmed by additional investigations on the metabolism of [3-(13)C]alanine by normal and parasitized insects. The pattern of (13)C enrichment in hemolymph trehalose observed in normal larvae maintained on a low carbohydrate diet indicated a large contribution of gluconeogenesis, while gluconeogenesis contributed very little to trehalose labeling in normal insects maintained on a high carbohydrate diet. Parasitized insects maintained on a high or a low carbohydrate diet displayed a significantly greater contribution of gluconeogenesis to trehalose labeling than was observed in normal larvae maintained on the same diets. In conclusion, these investigations indicate that regulation over the utilization of dietary glucose for trehalose and glycogen synthesis as well as the dietary regulation of de novo carbohydrate synthesis were altered by parasitism.  相似文献   

12.
Nuclear magnetic resonance spectroscopy was utilized to study the metabolism of [1-13C]glucose in mycelia of the ectomycorrhizal ascomycete Sphaerosporella brunnea. The main purpose was to assess the biochemical pathways for the assimilation of glucose and to identify the compounds accumulated during glucose assimilation. The majority of the 13C label was incorporated into mannitol, while glycogen, trehalose and free amino acids were labeled to a much lesser extent. The high enrichment of the C1/C6 position of mannitol indicated that the polyol was formed via a direct route from absorbed glucose. Randomization of the 13C label was observed to occur in glucose and trehalose leading to the accumulation of [1,6-13C]trehalose and [1,6-13C]glucose. This suggests that the majority of the glucose carbon used to form trehalose was cycled through the metabolically active mannitol pool. The proportion of label entering the free amino acids represented 38% of the soluble 13C after 6 hours of continuous glucose labeling. Therefore, amino acid biosynthesis is an important sink of assimilated carbon. Carbon-13 was incorporated into [3-13C]alanine and [2-13C]-, [3-13C]-, and [4-13C]glutamate and glutamine. From the analysis of the intramolecular 13C enrichment of these amino acids, it is concluded that [3-13C]pyruvate, arising from [1-13C]glucose catabolism, was used by alanine aminotransferase, pyruvate dehydrogenase, and pyruvate carboxylase (or phosphoenolpyruvate carboxykinase). Intramolecular 13C labeling patterns of glutamate and glutamine were similar and are consistent with the operation of the Krebs cycle. There is strong evidence for (a) randomization of the label on C2 and C3 positions of oxaloacetate via malate dehydrogenase and fumarase, and (b) the dual biosynthetic and respiratory role of the citrate synthase, aconitase, and isocitrate dehydrogenase reactions. The high flux of carbon through the carboxylation (presumably pyruvate carboxylase) step indicates that CO2 fixation is an important component of the carbon metabolism in S. brunnea, and it is likely that this anaplerotic role is particularly prevalent during NH4+ assimilation. The most relevant information resulting from this investigation is (a) the occurrence of the mannitol cycle, (b) a large part of the trehalose pool is synthesized after the cycling of glucose-carbon through the mannitol cycle, and (c) pyruvate (or phosphoenolpyruvate) carboxylation plays an important role in the primary metabolism of glucose-fed mycelia.  相似文献   

13.
The genome of the ectomycorrhizal ascomycete Tubermelanosporum has recently been published and this has given researchers unique opportunities to learn more about the biology of this precious edible fungus. The epigeous ascomycete lives in Mediterranean countries in symbiotic interaction with roots of broad-leaf trees such as oaks and hazel. A most important new finding was the single mating type locus in the genome that occurs with two alleles in natural populations. The life cycle is now confirmed to be heterothallic and the species is outcrossing. Unlike sexual development in the soil, mycorrhization of the roots by homokaryotic haploid mycelia is mating-type-independent. Gene regulation during mycorrhization and fruiting and environmental influences on it is now genome-wide addressed. Genome profiling for functions in specific metabolic pathways is undertaken. Insights in most enthralling features of tubers such as on odor formation are thus gained.  相似文献   

14.
The large-scale inoculation of selected beneficial ectomycorrhizal fungi in forest nurseries has generated renewed interest in the ecology of these symbiotic fungi. However, information on the dissemination and persistence of introduced symbionts is scarce due to the limitation of the current identification methods. To identify ectomycorrhizal fungi on single root tips, we investigated the polymorphism of the PCR-amplified ribosomal DNA intergenic spacer (IGS) from a wide range of ectomycorrhizal fungi. To investigate the reliability of this molecular approach in large-scale surveys, the dissemination and persistence on Douglas fir seedlings of the introduced Laccaria bicolor S238N were assessed in a forest nursery in the Massif Central (France). Several hundred ectomycorrhizas and fruiting bodies were sampled from plots where control and L. bicolor inoculated-Douglas fir seedlings were grown for 1.5 years. PCR typing of mycorrhizas indicated that trees inoculated with L. bicolor S238N remained exclusively colonized by that isolate (or sexually derived isolates) for the entire test period. In contrast, control seedlings were infected by indigenous isolates of Laccaria laccata and Thelephora terrestris. The molecular evidence for the persistence of the introduced mycobiont despite the competition from indigenous isolates of the same species provides further illustration of the potential of exotic species for large-scale microbial application.  相似文献   

15.
16.
13C nuclear magnetic resonance spectroscopy has been used to follow the utilization of glucose for the synthesis of carbohydrates in the ectomycorrhizal ascomycete Cenococcum graniforme. The fate of 13C label was analyzed in vivo and in mycelial extracts. The major carbohydrates produced from [1-13C]glucose and [6-13C]glucose were mannitol and trehalose. Mannitol was mainly synthesized via a direct route from glucose. Scrambling of the 13C label was observed to occur in trehalose during glycolysis. From the analysis of the scrambling patterns, it is concluded that the mannitol cycle was operative and that a large part of the carbon of glucose was used to form trehalose after cycling through the mannitol pool. The activities of NAD-mannitol-l-P dehydrogenase (EC 1.1.1.17) and NADP-mannitol dehydrogenase (EC 1.1.1.138), which participate in the mannitol cycle relative to the activity of glycolytic enzymes, provide evidence that the cycle is important for NADPH production.  相似文献   

17.
18.
19.
In the present study ectomycorrhizal development of Laccaria bicolor, Rhizopogon luteolus and Suillus bovinus associated with Scots pine (Pinus sylvestris) seedings was studied as affected by primary stand humus, secondary stand humus, podsolic sandy soil or peat in perspex growth chambers. After 9 weeks, ectomycorrhizal development with S. bovinus was significantly greater in peat and primary stand humus than in secondary stand humus or podsolic sandy soil. Ectomycorrhizal development with R. luteolus in secondary stand humus was higher than in primary stand humus. Degree of ectomycorrhizal development of L. bicolor, R. lutuelus and S. bovinus on Scots pine was related to potassium concentration, organic matter content and pH of the soils suggesting that chemical composition of the soils affects ectomycorrhizal development.  相似文献   

20.
The effect of temperature stress on the cytosol carbohydrate composition of fungi belonging to various systematic groups was investigated. In Mucorales representatives (subkingdom Eomycota, phylum Archemycota, class Zygomycetes), adaptation to hypo- and hyperthermia occurs via the regulation of trehalose synthesis, although inositol is also involved in these processes in Blakeslea trispora. Basidiomycota (subkingdom Neomycota) use two pathways of biochemical adaptation, depending on the cytosol carbohydrate composition. In the absence of sucrose, glycerol and arabitol are involved in the adaptation to hyperthermia; trehalose accumulates under hypothermic conditions (type I of regulation). Type II regulation (revealed in Pleurotus ostreatus) involves sucrose rather than glycerol or arabitol. The data obtained are discussed in terms of fungal systematics and phylogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号