首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kim D  Guengerich FP 《Biochemistry》2004,43(4):981-988
Cytochrome P450 (P450) 1A2 is the major enzyme involved in the metabolism of 2-amino-3,5-dimethylimidazo[4,5-f]quinoline (MeIQ) and other heterocyclic arylamines and their bioactivation to mutagens. Random mutant libraries of human P450 1A2, in which mutations were made throughout the entire open reading frame, were screened with Escherichia coli DJ3109pNM12, a strain designed to bioactivate MeIQ and detect mutagenicity of the products. Mutant clones with enhanced activity were confirmed using quantitative measurement of MeIQ N-hydroxylation. Three consecutive rounds of random mutagenesis and screening were performed and yielded a highly improved P450 1A2 mutant, SF513 (E225N/Q258H/G437D), with >10-fold increased MeIQ activation based on the E. coli genotoxicity assay and 12-fold enhanced catalytic efficiency (k(cat)/K(m)) in steady-state N-hydroxylation assays done with isolated membrane fractions. SF513 displayed selectively enhanced activity for MeIQ compared to other heterocyclic arylamines. The enhanced catalytic activity was not attributed to changes in any of several individual steps examined, including substrate binding, total NADPH oxidation, or H(2)O(2) formation. Homology modeling based on an X-ray structure of rabbit P450 2C5 suggested that the E225N and Q258H mutations are located in the F-helix and G-helix, respectively, and that the G437D mutation is in the "meander" region, apparently rather distant from the substrate. In summary, the approach generated a mutant enzyme with selectively elevated activity for a single substrate, even to the extent of a difference of a single methyl group, and several mutations had interacting roles in the development of the selected mutant protein.  相似文献   

2.
Human P450 2A6 displays a small active site that is well adapted for the oxidation of small planar substrates. Mutagenesis of CYP2A6 resulted in an increased catalytic efficiency for indole biotransformation to pigments and conferred a capacity to oxidize substituted indoles (Wu, Z.-L., Podust, L.M., Guengerich, F.P. J. Biol. Chem. 49 (2005) 41090-41100.). Here, we describe the structural basis that underlies the altered metabolic profile of three mutant enzymes, P450 2A6 N297Q, L240C/N297Q and N297Q/I300V. The Asn297 substitution abolishes a potential hydrogen bonding interaction with substrates in the active site, and replaces a structural water molecule between the helix B'-C region and helix I while maintaining structural hydrogen bonding interactions. The structures of the P450 2A6 N297Q/L240C and N297Q/I300V mutants provide clues as to how the protein can adapt to fit the larger substituted indoles in the active site, and enable a comparison with other P450 family 2 enzymes for which the residue at the equivalent position was seen to function in isozyme specificity, structural integrity and protein flexibility.  相似文献   

3.
Human cytochrome P450 1A2 catalyzes important reactions in xenobiotic metabolism, including the N-hydroxylation of carcinogenic aromatic amines. In 2001, Chevalier et al. reported four new P450 1A2 sequence variants in the human population. We have now expressed these variants in Escherichia coli and measured protein expression (optical spectroscopy of holoenzyme and immunoblotting) and bioactivation of IQ (2-amino-3-methylimidazo[4,5-f]quinoline) and MeIQ (2-amino-2,4-dimethylimidazo[4,5-f]quinoline) in the lacZ reversion mutagenicity test. Enzyme kinetic analyses were performed for N-hydroxylation of five heterocyclic amine substrates and for O-deethylation of phenacetin. The most drastic effect was that of the R431W substitution: no holoenzyme was detectable. This residue is located in the "meander" peptide region and earlier site-directed mutagenesis studies demonstrated that it is critical for maintenance of protein tertiary structure. The other three variants had subtly different catalytic activities compared to the wild-type enzyme.  相似文献   

4.
Yun CH  Miller GP  Guengerich FP 《Biochemistry》2000,39(37):11319-11329
Mutants with altered activities were obtained from random libraries of human cytochrome P450 (P450) 1A2 with the putative substrate recognition sequences (SRS) mutated [Parikh, A., Josephy, P. D., and Guengerich, F. P. (1999) Biochemistry 38, 5283-5289]. Six mutants from SRS 2 (E225I, E225N, F226I, and F226Y) and 4 (D320A and V322A) regions were expressed as oligohistidine-tagged proteins, purified to homogeneity, and used to analyze kinetics of individual steps in the catalytic cycle, to determine which reaction steps have been altered. When the wild-type, E225I, E225N, F226I, F226Y, D320A, and V322A proteins were reconstituted with NADPH-P450 reductase, rates of 7-ethoxyresorufin O-deethylation and phenacetin O-deethylation were in accord with those expected from membrane preparations. Within each assay, the values of k(cat)/K(m) varied by 2-3 orders of magnitude, and in the case of E225I and E225N, these parameters were 7-8-fold higher than for the wild-type enzyme. The coupling efficiency obtained from the rates of product formation and NADPH oxidation was low (<20%) in all enzymes. No correlation was found between activities and several individual steps in the catalytic cycle examined, including substrate binding, reduction kinetics, NADPH oxidation, and H(2)O(2) formation. Quench reactions did not show a burst for either phenacetin O-deethylation or formation of the acetol, a minor product, indicating that rate-determining steps occur prior to product formation. Inter- and intramolecular kinetic deuterium isotope effects for phenacetin O-deethylation were 2-3. In the case of phenacetin acetyl hydroxylation (acetol formation), large isotope effects [(D)k(cat) or (D)(k(cat)/K(m)) > 10] were observed, providing evidence for rate-limiting C-H bond cleavage. We suggest that the very high isotope effect for acetol formation reflects rate-limiting hydrogen atom abstraction; the lower isotope effect for O-deethylation may be a consequence of a 1-electron transfer pathway resulting from the low oxidation potential of the substrate phenacetin. These pre-steady-state, steady-state, and kinetic hydrogen isotope effect studies indicate that the rate-limiting steps are relatively unchanged over an 800-fold range of catalytic activity. We hypothesize that these SRS mutations alter steps leading to the formation of the activated Michaelis complex following the introduction of the first electron.  相似文献   

5.
Cytochrome P450 enzymes (P450s or CYPs) are good candidates for biocatalysis in the production of fine chemicals, including pharmaceuticals. Despite the potential use of mammalian P450s in various fields of biotechnology, these enzymes are not suitable as biocatalysts due to their low stability, low catalytic activity, and limited availability. Recently, wild-type and mutant forms of bacterial P450 BM3 (CYP102A1) from Bacillus megaterium have been found to metabolize various. It has therefore been suggested that CYP102A1 may be used to generate the metabolites of drugs and drug candidates. In this report, we show that the oxidation reactions of typical human CYP1A2 substrates (phenacetin, ethoxyresorufin, and methoxyresorufin) are catalyzed by both wild-type and mutant forms of CYP102A1. In the case of phenacetin, CYP102A1 enzymes show only O-deethylation product, even though two major products are produced as a result of O-deethylation and 3-hydroxylation reactions by human CYP1A2. Formation of the metabolites was confirmed by HPLC analysis and LC–MS to compare the metabolites with the actual biological metabolites produced by human CYP1A2. The results demonstrate that CYP102A1 mutants can be used for cost-effective and scalable production of human CYP1A2 drug metabolites. Our computational findings suggest that a conformational change in the cavity size of the active sites of the mutants is dependent on activity change. The modeling results further suggest that the activity change results from the movement of several specific residues in the active sites of the mutants.  相似文献   

6.
Human cytochrome P450 (P450) enzymes exhibit remarkable diversity in their substrate specificities, participating in oxidation reactions of a wide range of xenobiotic drugs. Previously, we reported that alpha-naphthoflavone (ANF) is bound to the recombinant P450 1A2 tightly and stabilizes an overall enzyme conformation. The present study is designed to determine the type of P450 1A2 inhibition exerted by ANF, using two different substrates of P450 1A2, 7-ethoxycoumarin (EOC) and 7-ethoxyresorufin (EOR). ANF is generally known as a competitive inhibitor of the enzyme. However, in our tight-binding enzyme kinetics study, ANF acts as noncompetitive inhibitor in 7-ethoxycoumarin O-deethylation (ECOD) (K(i)=55.0 nM), but as competitive inhibitor in 7-ethoxyresorufin O-deethylation (EROD) (K(i)=1.4 nM). Based on homology modeling studies, ANF is positioned to bind to a hydrophobic cavity next to the active site where it may cause a direct effect on substrate binding. It is agreed with the predicted binding site of ANF in P450 3A4, in which ANF is rather known as a stimulating modulator. Our results suggest that ANF binds near the active site of P450 1A2 and exhibits differential inhibition mechanisms, possibly depending on the molecular structure of the substrate.  相似文献   

7.
A cDNA encoding a novel cytochrome P450 1A2 (CYP1A2) was cloned from the liver of an adult female Japanese monkey. The CYP1A2 protein was expressed in yeast cells and its enzymatic properties were compared with those of marmoset CYP1A2 using ethoxyresorufin (ER) and phenacetin (PN) as substrates. The nucleotide sequence of Japanese monkey CYP1A2 revealed 94.7, 99.5 and 93.5% identities to those of human, cynomolgus monkey and marmoset monkey CYP1A2, respectively. Multiple amino acid sequence alignment of Japanese monkey CYP1A2 with CYP1A2 of humans, cynomolgus monkeys and marmosets showed that Japanese monkey CYP1A2 had 92.4, 99.0 and 91.9% identities to the human, cynomolgus monkey and marmoset enzymes, respectively. Kinetic studies demonstrated that the enzymatic properties as ER and PN O-deethylases were considerably different between the Japanese monkey and the marmoset CYP1A2. Furthermore, both of these reactions in liver microsomal fractions from the Japanese monkey and marmoset showed biphasic kinetics. On the basis of the kinetic parameters, it is suggested that Japanese monkey CYP1A2 is a high-K(m) enzyme in both ER and PN O-deethylations, whereas marmoset CYP1A2 is a high-K(m) and low-K(m) enzyme in ER and PN O-deethylations, respectively. alpha-Naphthoflavone, an inhibitor of human CYP1A1 and CYP1A2, did not completely inhibit the liver microsomal oxidations of ER and PN even at the highest concentration (50muM), supporting the notion that CYP1A2 enzymes are not the sole ER or PN O-deethylase in Japanese monkey and marmoset liver microsomes. Inhibitory effects of furafylline, an inhibitor of human CYP1A2, on ER O-deethylation by recombinant CYP1A2 enzymes were much lower than those of alpha-naphthoflavone, but marmoset CYP1A2 was more sensitive to furafylline than Japanese monkey CYP1A2. These results indicate that the properties of Japanese monkey CYP1A2 are considerably different from those of marmoset CYP1A2.  相似文献   

8.
The flavonolignan silybin and its derivative dehydrosilybin have been proposed as candidate UV-protective agents in skin care products. This study addressed the effect of silybin and dehydrosilybin on the activity of cytochrome P450 isoform CYP1A1 in human keratinocytes (HaCaT) and human hepatoma cells (HepG2). CYP1A1 catalytic activity was assessed as O-deethylation of 7-ethoxyresorufin using fluorescence detection. Silybin and dehydrosylibin inhibited basal and dioxin-inducible CYP1A1 catalytic activity in both cell lines used. The inhibitory effect of tested compounds was more pronounced in HaCaT cells than in HepG2 cells, and dehydrosilybin was a much stronger inhibitor than silybin. Analyses on CYP1A1 human recombinant protein yielded IC50 values of 22.9 ± 4.7 μmol/L and 0.43 ± 0.04 μmol/L for silybin and dehydrosilybin, respectively. Since CYP1A enzymes are some of the most prominent actors in the process of chemically induced carcinogenesis, the inhibitory activity of the flavonolignans tested against CYP1A1 favors their use as cytoprotective agents in terms of skin and hepatic metabolism. In addition, the capability of dehydrosilybin to inhibit CYP1A1 in submicromolar concentrations makes this compound a potential biological probe in CYP1A1 analyses.  相似文献   

9.
Wang X  Yeung JH 《Phytomedicine》2012,19(3-4):348-354
Danshen (Salvia miltiorrhiza Bunge) as a famous Traditional Chinese medicine is widely used in the treatment of cardiovascular and cerebrovascular diseases in the world. Danshen tincture (DT), extracted from Danshen root with a mixture of water and alcohol, is a commonly used preparation method for human consumption. The aim of this study was to investigate the effects of DT on the cytochrome P450 (CYP) 1A2 and 3A activities by human and rat liver microsomes. Effects of DT were assessed with use of Danshen ethanolic extract (DEE) and selective substrates, markers of CYP activities. DEE (0.5-10 μg/ml) competitively inhibited human and rat liver microsomal CYP1A2 activity with inhibition constant (K(i)) values at 3.40 and 5.16 μg/ml, respectively. At the same time, DEE (2.5-20 μg/ml) not only noncompetitively inhibited human liver microsomal CYP3A4/5 activity with a K(i) of 11.9 μg/ml, but also competitively inhibited rat liver microsomal CYP3A1/2 activity with a K(i) of 52.1 μg/ml. The data indicate that DEE inhibited the metabolism of CYP1A2 and 3A substrates in human and rat liver in vitro with different mode of inhibition. This study may be helpful for clinical application of Danshen tincture.  相似文献   

10.
The atomic structure of human P450 1B1 was determined by x-ray crystallography to 2.7 Å resolution with α-naphthoflavone (ANF) bound in the active site cavity. Although the amino acid sequences of human P450s 1B1 and 1A2 have diverged significantly, both enzymes exhibit narrow active site cavities, which underlie similarities in their substrate profiles. Helix I residues adopt a relatively flat conformation in both enzymes, and a characteristic distortion of helix F places Phe231 in 1B1 and Phe226 in 1A2 in similar positions for π-π stacking with ANF. ANF binds in a distinctly different orientation in P450 1B1 from that observed for 1A2. This reflects, in part, divergent conformations of the helix B′-C loop that are stabilized by different hydrogen-bonding interactions in the two enzymes. Additionally, differences between the two enzymes for other amino acids that line the edges of the cavity contribute to distinct orientations of ANF in the two active sites. Thus, the narrow cavity is conserved in both P450 subfamily 1A and P450 subfamily 1B with sequence divergence around the edges of the cavity that modify substrate and inhibitor binding. The conservation of these P450 1B1 active site amino acid residues across vertebrate species suggests that these structural features are conserved.  相似文献   

11.
The structural basis for the regioselective hydroxylation of Delta-4-3-ketosteroids by human CYP3A4 was investigated. Prior studies had suggested that the chemical reactivity of the allylic 6beta-position might have a greater influence than steric constraints by the enzyme. Six highly conserved CYP3A residues from substrate recognition site 1 were examined by site-directed mutagenesis. F102A and A117L showed no spectrally detectable P450. V101G and T103A exhibited a wild-type progesterone metabolite profile. Of five mutants at residue N104, only N104D yielded holoenzyme and exhibited the same steroid metabolite profile as wild-type. Of four mutants at position S119 (A, L, T, V), the three hydrophobic ones produced 2beta-OH rather than 6beta-OH progesterone or testosterone as the major metabolite. Kinetic analysis showed S(50) values similar to wild-type for S119A (progesterone) and S119V (testosterone), whereas the V(max) values for 2beta-hydroxysteroid formation were increased in both cases. All four mutants exhibited an altered product profile for 7-hexoxycoumarin side-chain hydroxylation, whereas the stimulation of steroid hydroxylation by alpha-naphthoflavone was similar to the wild-type. The results indicate that the highly conserved residue S119 is a key determinant of CYP3A4 specificity and reveal an important role of the active site topology in steroid 6beta-hydroxylation.  相似文献   

12.
Human liver P450 NF25 (CYP3A4) had been previously expressed in Saccharomyces cerevisiae using the inducible GAL10-CYC1 promoter and the phosphoglycerate kinase gene terminator [Renaud, J. P., Cullin, C., Pompon, D., Beaune, P. and Mansuy, D. (1990) Eur. J. Biochem. 194, 889-896]. The use of an improved expression vector [Urban, P., Cullin, C. and Pompon, D. (1990) Biochimie 72, 463-472] increased the amounts of P450 NF25 produced/culture medium by a factor of five, yielding up to 10 nmol/l. The availability of recently developed host cells that simultaneously overexpress yeast NADPH-P450 reductase and/or express human liver cytochrome b5, obtained through stable integration of the corresponding coding sequences into the yeast genome, led to biotechnological systems with much higher activities of yeast-expressed P450 NF25 and with much better ability to form P450 NF25-iron-metabolite complexes. 9-fold, 8-fold, and 30-fold rate increases were found respectively for nifedipine 1,4-oxidation, lidocaine N-deethylation and testosterone 6 beta-hydroxylation between P450 NF25-containing yeast microsomes from the basic strain and from the strain that both overexpresses yeast NADPH-P450 reductase and expresses human cytochrome b5. Even higher turnovers (15-fold, 20-fold and 50-fold rate increases) were obtained using P450 NF25-containing microsomes from the yeast just overexpressing yeast NADPH-P450 reductase in the presence of externally added, purified rabbit liver cytochrome b5. This is explained by the fact that the latter strain contained the highest level of NADPH-P450 reductase activity. It is noteworthy that for the three tested substrates, the presence of human or rabbit cytochrome b5 always showed a stimulating effect on the catalytic activities and this effect was saturable. Indeed, addition of rabbit cytochrome b5 to microsomes from a strain expressing human cytochrome b5 did not further enhance the catalytic rates. The yeast expression system was also used to study the formation of a P450-NF25-iron-metabolite complex. A P450 Fe(II)-(RNO) complex was obtained upon oxidation of N-hydroxyamphetamine, catalyzed by P450-NF25-containing yeast microsomes. In microsomes from the basic strain expressing P450 NF25, 10% of the starting P450 NF25 was transformed into this metabolite complex, whereas more than 80% of the starting P450 NF25 led to complex formation in microsomes from the strain overexpressing yeast NADPH-P450 reductase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
K K Lo  L L Wong  H A Hill 《FEBS letters》1999,451(3):342-346
We report the electrochemistry of genetic variants of the haem monooxygenase cytochrome P450cam. A surface cysteine-free mutant (abbreviated as SCF) was prepared in which the five surface cysteine residues Cys-58, Cys-85, Cys-136, Cys-148 and Cys-334 were changed to alanines. Four single surface cysteine mutants with an additional mutation, R72C, R112C, K344C or R364C, were also prepared. The haem spin-state equilibria, NADH turnover rates and camphor-hydroxylation properties, as well as the electrochemistry of these mutants are reported. The coupling of a redox-active label, N-ferrocenylmaleimide, to the single surface cysteine mutant SCF-K344C, and the electrochemistry of this modified mutant are also described.  相似文献   

14.
Expression of human cytochrome P450 (P450) 2B6 in Escherichia coli was achieved following supplementation of the expression medium with chloramphenicol. The recombinant protein was purified using Ni(2+)-nitrilotriacetate chromatography and was characterized with regard to its spectral properties and catalytic activities toward typical P450 substrates. The purified recombinant protein was also used to raise polyclonal antibodies in rabbits. Examination of a panel of human liver microsomal preparations revealed expression of P450 2B6 in most samples, with levels of <1 to 30 pmol 2B6/mg microsomal protein. Examination of purified P450 2B6 preparations revealed the presence of a protease-sensitive site located 126 residues away from the N-terminus. The identity of the cleavage boundary was verified by protein sequence analysis. Cleavage of P450 2B6 at that site results in the presence of a lower molecular weight fragment of approximately 35 kDa in purified preparations. An immunoreactive peptide of a similar molecular weight was consistently observed in some but not all human liver microsomal preparations suggesting cleavage at the same site. Examination of catalytic activities of the purified reconstituted protein indicated the potential utility of (S)-mephenytoin N-demethylation and testosterone 16beta-hydroxylation as markers for P450 2B6.  相似文献   

15.
The human lung cytochrome P450 2A13 (CYP2A13) activates the nicotine-derived procarcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) into DNA-altering compounds that cause lung cancer. Another cytochrome P450, CYP2A6, is also present in human lung, but at much lower levels. Although these two enzymes are 93.5% identical, CYP2A13 metabolizes NNK with much lower K(m) values than does CYP2A6. To investigate the structural differences between these two enzymes the structure of CYP2A13 was determined to 2.35A by x-ray crystallography and compared with structures of CYP2A6. As expected, the overall CYP2A13 and CYP2A6 structures are very similar with an average root mean square deviation of 0.5A for the Calpha atoms. Like CYP2A6, the CYP2A13 active site cavity is small and highly hydrophobic with a cluster of Phe residues composing the active site roof. Active site residue Asn(297) is positioned to hydrogen bond with an adventitious ligand, identified as indole. Amino acid differences between CYP2A6 and CYP2A13 at positions 117, 300, 301, and 208 relate to different orientations of the ligand plane in the two protein structures and may underlie the significant variations observed in binding and catalysis of many CYP2A ligands. In addition, docking studies suggest that residues 365 and 366 may also contribute to differences in NNK metabolism.  相似文献   

16.
In this study, wild-type human CYP1A2 without the conventional N-terminal modification (second codon GCT) or the truncation of the N-terminal hydrophobic region was functionally expressed in Escherichia coli. Its enzymatic properties were compared with N-terminally modified CYP1A2. Although modified CYP1A2 is almost all high-spin, some wild-type CYP1A2 shifted to low-spin. Spectral binding titrations with several ligands could be performed with wild-type enzyme, but not with modified enzyme. Kinetic parameters for several substrates were similar for the two CYP1A2 enzymes. However, the oxidation rates of phenacetin by modified enzyme were approximately 2-fold higher than those by wild-type enzyme. The intermolecular isotope effects were approximately 2 for phenacetin O-deethylation catalyzed by both enzymes. However, the wild-type enzyme, but not the modified enzyme, increased C-hydroxylation when O-deethylation rates were lowered by deuterium substitution. Molecular switching indicates that phenacetin rotates within the active site of wild-type enzyme and suggests a looser conformation in the active site of the wild-type enzyme than of the modified enzyme. These results reveal that the overall enzymatic properties of wild-type CYP1A2 enzyme are quite similar to those of modified CYP1A2, although its active site environment seems to differ from that of the modified enzyme.  相似文献   

17.
We describe initial results on a Western blotting method, using a ployclonal antibody and chemiluminescence detection, for the measurement of cytochrome P450 2E1 in human lymphocytes. The method has been used to study the levels of 2E1 in lymphocytes isolated from 5 ml blood samples collected from a small group of well-controlled type 1 diabetics and healthy individuals. The described method offers increased sensitivity compared with a previously published method and does not need in vitro culturing of the lymphocytes prior to 2E1 measurement. The apparent molecular weight of the lymphocyte P450 2E1 was 55 kDa. There was approximately a six-fold difference in expression levels of 2E1 detected by this immunochemical technique across the study population.  相似文献   

18.
The present study was performed to determine if trans-resveratrol (3,5,4'-trihydroxy-trans-stilbene) modulates the catalytic activity and gene expression of cytochrome P450 1B1 (CYP1B1). In vitro, trans-resveratrol decreased human recombinant CYP1B1-catalyzed 7-ethoxyresorufin O-dealkylation activity, with an IC50 value of 1.4 +/- 0.2 microM (mean +/- SEM). Enzyme kinetic analysis indicated that trans-resveratrol inhibited CYP1B1 enzyme activity by a mixed-type inhibition and the apparent Ki was 0.75 +/- 0.06 microM. To determine if trans-resveratrol modulates constitutive CYP1B1 gene expression, cultured MCF-7 human breast carcinoma cells were treated with trans-resveratrol. As indicated by RT-PCR analysis, treatment of MCF-7 cells with 10 microM trans-resveratrol decreased relative CYP1B1 mRNA levels after 5 h, but not after 1.5 or 3 h, of exposure. trans-Resveratrol treatment at 5, 7.5, 10, or 20 microM for 5 h produced a concentration-dependent decrease in CYP1B1 mRNA levels. The extent of suppression was approximately 50% at 20 microM concentration. The suppressive effect was not a consequence of a toxic response to the compound as assessed by a cell proliferation assay. Overall, our novel finding that trans-resveratrol inhibits the catalytic activity and suppresses the constitutive gene expression of CYP1B1 leads to the possibility that this nutraceutical confers protection against toxicity and carcinogenicity induced by compounds that undergo CYP1B1-catalyzed bioactivation.  相似文献   

19.
We describe initial results on a Western blotting method, using a ployclonal antibody and chemiluminescence detection, for the measurement of cytochrome P450 2E1 in human lymphocytes. The method has been used to study the levels of 2E1 in lymphocytes isolated from 5 ml blood samples collected from a small group of well-controlled type 1 diabetics and healthy individuals. The described method offers increased sensitivity compared with a previously published method and does not need in vitro culturing of the lymphocytes prior to 2E1 measurement. The apparent molecular weight of the lymphocyte P450 2E1 was 55 kDa. There was approximately a six-fold difference in expression levels of 2E1 detected by this immunochemical technique across the study population.  相似文献   

20.
The effect of protocatechuic acid, tannic acid and trans-resveratrol on the activity of p-nitrophenol hydroxylase (PNPH), an enzymatic marker of CYP2E1, was examined in liver microsomes from acetone induced mice. trans-Resveratrol was found to be the most potent inhibitor (IC(50) = 18.5 +/- 0.4 microM) of PNPH, while protocatechuic acid had no effect on the enzyme activity. Tannic acid with IC(50) = 29.6 +/- 3.3 microM showed mixed- and trans-resveratrol competitive inhibition kinetics (K(i) = 1 microM and 2.1 microM, respectively). Moreover, trans-resveratrol produced a NADPH-dependent loss of PNPH activity, suggesting mechanism-based CYP2E1 inactivation. These results indicate that trans-resveratrol and tannic acid may modulate cytochrome P450 2E1 and influence the metabolic activation of xenobiotics mediated by this P450 isoform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号