首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method using high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC–MS/MS) was developed to screen and confirm residues of multi-class veterinary drugs in animal tissues (porcine kidney, liver, muscle; bovine muscle). Thirty target drugs (19 β-blockers, 11 sedatives) were determined simultaneously in a single run. Homogenized tissue samples were extracted with acetonitrile and purified using a NH2 solid-phase extraction cartridge. An Acquity UPLC? BEH C18 column was used to separate the analytes, followed by tandem mass spectrometry using an electrospray ionization source in positive mode. Recovery studies were done at three fortification levels. Overall average recoveries in pig muscle, kidney, and liver fortified at three levels from 76.4% to 118.6% based on matrix-fortified calibration with coefficients of variation from 2.2% to 19.9% (n = 6). The limit of quantification of these compounds in different matrices was 0.5–2.0 μg/kg. This method was successfully applied in screening and confirming target drugs in >200 samples.  相似文献   

2.
A method based on ultra-high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UHPLC–MS/MS) for the simultaneous determination of benzimidazole residues in bovine milk has been optimized and validated. Rapid chromatographic separation of 13 analytes in 8 min was obtained by means of UHPLC. The samples were subject to Oasis MCX solid-phase extraction cartridges for extraction and clean-up. Matrix-matched calibration curves were performed to compensate for the matrix effect and loss in sample preparation. Mean recoveries ranged from 80% to 101% and inter-day precision was lower than 14%. Limit of detection and limit of quantification of the method ranged from 0.01 to 0.5 μg L−1 and from 0.1 to 1.0 μg L−1, respectively.  相似文献   

3.
A rapid and sensitive method using liquid chromatography–tandem mass spectrometry (LC–MS/MS) for simultaneous determination of doxazosin and verapamil in human serum has been developed. Trimipramine-d3 as an isotopic labelled internal standard was used for quantification. Serum samples were prepared by simple liquid–liquid extraction with mixture of tert butyl methyl ether and ethyl acetate (1:1, v:v). The analytes and internal standard were separated on C18 column using an isocratic elution with 5 mM ammonium formate with 0.02% formic acid and 0.02% formic acid in acetonitrile (55:45, v:v) at a flow rate of 1.1 mL/min. Positive TurboIonSpray mass spectrometry was used with multiple reaction monitoring of the transitions at: m/z 455.3 → 165.2 and 150.2 for verapamil, m/z 452.2 → 344.4 and 247.4 for doxazosin, m/z 298.2 → 103.1 for trimipramine-d3. Linearity was achieved between 1 and 500 ng/mL (R2 ≥ 0.997) for both analytes. An extensive pre-study method validation was carried out in accordance with FDA guidelines. This assay was successfully applied to determine the serum concentrations of doxazosin and verapamil in suspect non-compliance patients.  相似文献   

4.
A new method has been developed for determination and confirmation of amitraz and its main metabolite, 2,4-dimethylaniline, in food animal tissues using gas chromatography-electron capture detector (GC-ECD) and gas chromatography–mass spectrometry detector (GC–MS). This method is based on a new extraction procedure using accelerated solvent extraction (ASE). It consists of an n-hexane/methanol extraction step, a cleaning-up step by BakerBond octadecyl C18 silica bonded cartridge, hydrolysis and derivatization to 2,4-dimethyl-7-F-butyramide for GC-ECD analysis. For confirmation using GC–MS, hydrolysis and derivatization were not needed. Parameters for extraction pressure, temperature and cycle of ASE, clean-up, derivatization and analysis procedure have been optimized. Spike recoveries from 50 to 300 μg/kg levels were found to be between 72.4 and 101.3% with relative standard deviation less than 11.5% in GC-ECD, from 5 to 20 μg/kg levels were found to be between 77.4 and 107.1% with relative standard deviation less than 11.6% in GC–MS. The LOD and LOQ are 5 and 10 μg/kg, respectively, for these two analytes using GC-ECD. For GC–MS, LOD and LOQ were 2 and 5 μg/kg, respectively. The rapid and reliable method can be used for characterization and quantification of residues of amitraz and its main metabolite, 2,4-dimethylaniline, in liver and kidney samples of swine, sheep and bovine.  相似文献   

5.
To reliably identify the residual tetracycline antibiotics (TCs), oxytetracycline (OTC), tetracycline, chlortetracycline (CTC) and doxycycline (DC), in bovine tissues, we have established a confirmation method using electrospray ionization liquid chromatography–tandem mass spectrometry (ESI LC–MS–MS) with daughter ion scan. All TCs gave [M+H−NH3]+ and [M+H−NH3−H2O]+ as the product ions, except for DC when [M+H]+ was selected as the precursor ion. The combination of C18 cartridge clean-up and the present ESI LC–MS–MS method can reliably identify TCs fortified at a concentration of 0.1 ppm in bovine tissues, including liver, kidney and muscle, and has been successfully applied to the identification of residual OTC in bovine liver and residual CTC in bovine muscle samples previously found at concentrations of 0.58 ppm and 0.38 ppm by LC, respectively.  相似文献   

6.
A rapid, sensitive, and environmental-friendly method has been developed for the simultaneous determination of seven neonicotinoid insecticides residues in bovine muscle and liver. The sample preparation procedure was based on a high automated pressurized solvent extraction (PSE) combined with solid-phase extraction (SPE) clean-up. The target compounds were identified and quantitatively determined by liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) operated in multiple reaction monitoring mode. Average recoveries of the seven analytes from fortified samples ranged between 83.2% and 101.9%, with relative standard deviations (RSDs) lower than 10.8%. The limits of detection (LODs) and quantification (LOQs) for neonicotinoids were in the ranges of 0.8-1.5 μgkg?1 and 2.5-5.0 μgkg?1, respectively. This validated method was successively applied to the determination of neonicotinoid insecticides in real samples from markets.  相似文献   

7.
The determination of residues of benzimidazole using liquid chromatography and tandem mass spectrometry (LC–MS–MS) with ion spray ionization is described. Swine muscle tissue was spiked with a mixture of fifteen benzimidazoles, including metabolites of fenbendazole and albendazole. As clean-up procedure, an ethyl acetate extraction followed by solid-phase extraction on styrol-divinyl-benzene cartridge was used. The evaluation was performed by selecting the characteristic product ions for the benzimidazoles and using multiple reaction mode. 2-n-Butylmercaptobenzimidazole was used as internal standard. Blank muscle samples were fortified in the concentration range of 1–22 μg/kg. The limits of detection were below 6 μg/kg and the limits of quantification for most benzimidazoles were below 10 μg/kg. The matrix effect was checked using spiked muscle tissues of cattle and sheep as well as liver of cattle. Practical application will be shown by incurred egg material from laying hens treated with flubendazole. The recovery of the clean-up was mostly above 50% in muscle tissue and 70% in egg yolk.  相似文献   

8.
To reliably identify the residual tetracycline antibiotics (TCs), oxytetracycline (OTC), tetracycline, chlortetracycline (CTC) and doxycycline (DC), in bovine tissues, we have established a confirmation method using electrospray ionization liquid chromatography–tandem mass spectrometry (ESI LC–MS–MS) with daughter ion scan. All TCs gave [M+H−NH3]+ and [M+H−NH3−H2O]+ as the product ions, except for DC when [M+H]+ was selected as the precursor ion. The combination of C18 cartridge clean-up and the present ESI LC–MS–MS method can reliably identify TCs fortified at a concentration of 0.1 ppm in bovine tissues, including liver, kidney and muscle, and has been successfully applied to the identification of residual OTC in bovine liver and residual CTC in bovine muscle samples previously found at concentrations of 0.58 ppm and 0.38 ppm by LC, respectively.  相似文献   

9.
A specific and sensitive method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed for the determination of nitrovin and sodium nifurstyrenate residues in muscle and liver of swine and chicken and in muscle of fish. Sample preparation procedure includes ultrasound-assisted extraction with acetonitrile, defatting with n-hexane and final clean-up with solid phase extraction (SPE) on Oasis HLB cartridges. The analytes were detected in multiple reaction monitoring (MRM) under negative scan mode acquiring two diagnostic product ions for sodium nifurstyrenate and under positive mode for nitrovin. The averaged decision limits (CCα; α 1%) ranged 0.09-0.26 μg/kg while the detection capability (CCβ; β 5%) was 0.33-0.97 μg/kg in the tissues. Reasonable recoveries (71-110%) spiked in muscle and liver showed excellent relative standard deviation (RSD). The validated method was simple, rapid, sensitive, and complied with the regulations for the determination of nitrovin and sodium nifurstyrenate residues in food matrices.  相似文献   

10.
11.
A high throughput analytical method using a column switching high-performance liquid chromatography combined with isotope dilution tandem mass spectrometry (column switching-HPLC–MS/MS) was developed to simultaneously quantitate the concentrations of 7 perfluoroalkyl acids (PFAAs) in serum and 3 PFAAs in breast milk samples. The sample preparation includes addition of the isotope-labelled internal standard solution to breast milk and serum, enzymatic hydrolysis and filtration of milk samples, precipitation of proteins and analysis by column switching-HPLC–MS/MS. The limits of quantitation ranged from 0.1 to 0.4 μg/l for serum and 0.02 to 0.15 μg/l for breast milk samples. The method accuracies ranged between 73.2% and 100.2% for the different analytes at two concentrations in PFAAs spiked samples. The validity of the method was confirmed by analysing 20 serum and 20 breast milk samples.  相似文献   

12.
13.
A new method for the rapid extraction and unequivocal confirmation of two highly potent fluorinated synthetic corticosteroids, dexamethasone and its β-epimer betamethasone, in bovine liver was developed. Flumethasone was used as internal standard. An extraction procedure using an accelerated solvent extraction system was employed for the isolation of the analytes in liver samples. The procedure was highly automated, including defatting and extraction steps, sequentially carried out under 1.0·104 kPa in about 35 min. The extracts were then directly analysed by tandem mass spectrometry with on-line liquid chromatography. The analytes were ionised in a heated nebulizer interface operating in the negative ion mode where the molecular related ions [M-H-CH2O] were generated for each analyte, at m/z 361 for betamethasone and dexamethasone and at m/z 379 for flumethasone. They served as precursor ions for collision-induced dissociation and three diagnostic product ions for the drugs were identified to carry out analyte confirmation by selected reaction monitoring. Assessment of recovery, specificity and precision for betamethasone, dexamethasone and flumethasone proved the method suitable for confirmatory purposes. The limit of quantification of betamethasone and dexamethasone in liver tissue was 1.0 μg/kg.  相似文献   

14.
A sensitive and reliable method using gas chromatography-negative chemical ionization mass spectrometry (GC-NCI/MS) was developed for the simultaneous determination of chloramphenicol (CAP), thiamphenicol (TAP), florfenicol (FF), and florfenicol amine (FFA) at trace levels in muscle and liver. Before extraction with ethyl acetate, CAP-d5 was added to tissue samples as internal standard. The organic extracts were frozen to remove lipid and further purified by liquid–liquid extraction (LLE) with hexane and solid-phase extraction (SPE) using Oasis HLB cartridges. The target compounds were derivatized with BSTFA + 1% TMCS prior to GC-NCI/MS determination in selected ion monitoring mode (SIM). The recovery values ranged from 78.5 to 105.5%, with relative standard deviations (RSD) <17%. The limits of detections (LODs) of 0.1 μg/kg for CAP and 0.5 μg/kg for TAP, FF, and FFA were obtain. Incurred sample and samples from local market were successfully analyzed using this method.  相似文献   

15.
A precise and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for simultaneous determination of vinpocetine (VP) and its primary metabolite, apovincaminic acid (AVA), in rat plasma was developed and validated. The analytes and the internal standard-dimenhydrinate were extracted from 50 μL aliquots of rat plasma via solid–liquid extraction. Chromatographic separation was achieved in a run time of 3.5 min on a C18 column under isocratic conditions. Detection of analytes and IS was done by tandem mass spectrometry, operating in positive ion and multiple reaction monitoring (MRM) acquisition mode. The protonated precursor to product ion transitions monitored for VP, AVA and IS were m/z 351.4 → 280.2, 323.2 → 280.2 and 256.2 → 167.3 respectively. The method was fully validated for its sensitivity, selectivity, accuracy and precision, matrix effect, stability study and dilution integrity. A linear dynamic range of 0.5–500 ng/mL for both VP and AVA was evaluated with mean correlation coefficient (r) of 0.9970 and 0.9984 respectively. The precision of the assay (RSD%) was less than 8.55% at all concentrations levels for both VP and AVA. This method was successfully applied to a pharmacokinetic study of VP in rats after intravenous (1 mg/kg) and oral (1 mg/kg) administration.  相似文献   

16.
A sensitive and selective liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous quantitative determination of microcystin-LR (MC-LR) and its glutathione conjugate (MC-LR-GSH) in fish tissues. The analytes were extracted from fish liver and kidney using 0.01M EDTA-Na(2)-5% acetic acid, followed by a solid-phase extraction (SPE) on Oasis HLB and silica cartridges. High-performance liquid chromatography (HPLC) with electrospray ionization mass spectrometry, operating in selected reaction monitoring (SRM) mode, was used to quantify MC-LR and its glutathione conjugate in fish liver and kidney. Recoveries of analytes were assessed at three concentrations (0.2, 1.0, and 5microg g(-1) dry weight [DW]) and ranged from 91 to 103% for MC-LR, and from 65.0 to 75.7% for MC-LR-GSH. The assay was linear within the range from 0.02 to 5.0microg g(-1) DW, with a limit of quantification (LOQ) of 0.02microg g(-1) DW. The limit of detection (LOD) of the method was 0.007microg g(-1) DW in both fish liver and kidney. The overall precision was determined on three different days. The values for within- and between-day precision in liver and kidney were within 15%. This method was applied to the identification and quantification of MC-LR and its glutathione conjugate in liver and kidney of fish with acute exposure of MC-LR.  相似文献   

17.
A sensitive, rapid and selective liquid chromatography-positive electrospray ionization tandem mass spectrometry (LC-(ESI+)-MS-MS) method has been developed and validated for the simultaneous quantification of beclomethasone dipropionate (BDP) and its active metabolite, beclomethasone 17-monopropionate (17-BMP) in rat plasma and different tissues using fluticasone propionate (FP) as the internal standard. The method was validated over a linear range from 0.05 to 5 ng/ml for both analytes. A solid-phase extraction procedure was used for plasma samples and a liquid-liquid extraction procedure for tissues samples (lung, liver and kidney). The between-day and within-day coefficients of variation for all compounds were 相似文献   

18.
A simple, rapid, sensitive and specific ultra performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) method was developed and validated for the quantification of ethosuximide in human plasma is described. Analyte was chromatographed on a Hypersil Gold C18 column (100 mm × 2.1 mm, i.d., 1.9 μm) with isocratic elution at a flow rate of 0.250 mL/min and pravastatin was used as the internal standard. The assay involves a simple solid-phase extraction procedure of 0.25 mL human plasma and the analysis was performed on a triple-quadrupole tandem mass spectrometer by MRM mode via electrospray ionization (ESI). The method was linear in the concentration range of 0.25–60.0 μg/mL. The lower limit of quantification (LLOQ) was 0.25 μg/mL. The within- and between-day precision and accuracy of the quality control samples were within 10.0%. The recovery was 95.1% and 94.4% for ethosuximide and pravastatin, respectively. The analysis time for each sample was 1.8 min. The method was highly reproducible and gave peaks with excellent chromatography properties.  相似文献   

19.
A straightforward analytical method was developed and validated to determine the mycotoxin moniliformin in cereal-based foods. Moniliformin is extracted with water and quantified with liquid chromatography tandem mass spectrometry, and its presence confirmed with liquid chromatography-Orbitrap-high-resolution mass spectrometry. The method was validated for flour, bread, pasta and maize samples in terms of linearity, matrix effect, recovery, repeatability and limit of quantification. Quantification was conducted by matrix-matched calibration. Positive samples were confirmed by standard addition. Recovery ranged from 77 to 114% and repeatability from 1 to 14%. The limit of quantification, defined as the lowest concentration tested at which the validation criteria of recovery and repeatability were fulfilled, was 10 μg/kg. The method was applied to 102 cereal-based food samples collected in the Netherlands and Germany. Moniliformin was not detected in bread samples. One of 22 flour samples contained moniliformin at 10.6 μg/kg. Moniliformin occurred in seven out of 25 pasta samples at levels around 10 μg/kg. Moniliformin (MON) was present in eight out of 23 maize products at levels ranging from 12 to 207 μg/kg.  相似文献   

20.
We present an optimized and validated liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) method for the simultaneous measurement of concentrations of different ceramide species in biological samples. The method of analysis of tissue samples is based on Bligh and Dyer extraction, reverse-phase high-performance liquid chromatography separation, and multiple reaction monitoring of ceramides. Preparation of plasma samples also requires isolation of sphingolipids by silica gel column chromatography prior to LC-ESI-MS/MS analysis. The limits of quantification were in a range of 0.01-0.50 ng/ml for distinct ceramides. The method was reliable for inter- and intraassay precision, accuracy, and linearity. Recoveries of ceramide subspecies from human plasma, rat liver, and muscle tissue were 78 to 91%, 70 to 99%, and 71 to 95%, respectively. The separation and quantification of several endogenous long-chain and very-long-chain ceramides using two nonphysiological odd chain ceramide (C17 and C25) internal standards was achieved within a single 21-min chromatographic run. The technique was applied to quantify distinct ceramide species in different rat tissues (muscle, liver, and heart) and in human plasma. Using this analytical technique, we demonstrated that a clinical exercise training intervention reduces the levels of ceramides in plasma of obese adults. This technique could be extended for quantification of other ceramides and sphingolipids with no significant modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号