首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
鸣禽的鸣唱与人类的语言产生相似,是一种复杂的习得性行为.因此,鸣禽可以作为研究人类语言学习与产生的重要模式动物.鸣禽鸣唱受到相互联系的鸣唱控制核团调控.多巴胺作为脑内重要的神经递质,参与调控哺乳动物多种活动.多巴胺及其受体在鸣禽鸣唱相关神经核团大量分布.近期研究表明,多巴胺通过调控鸣唱相关核团,促进鸣禽幼年期鸣曲学习、成年期鸣曲保持以及求偶性鸣唱的产生.本文结合本课题组的研究工作,对近年鸣禽多巴胺系统调控鸣唱相关神经核团及鸣唱行为的研究进展进行了综述,并提出了多巴胺信号调控鸣禽鸣唱学习行为的潜在机制.  相似文献   

2.
鸣禽的鸣唱是一种习得性行为,它由脑内离散的神经核团所控制,这些核团相互关联构成鸣唱控制系统.鸣禽体内的性激素可以通过调控鸣唱系统来影响鸣唱行为.研究表明性激素中的雄激素在调节鸣唱稳定性方面发挥关键作用.雄激素可以通过调控细胞增殖、神经元电生理特性、突触传递及相关受体来影响鸣唱控制核团进而导致鸣唱行为改变.本文主要集中在雄激素对鸣禽鸣唱行为调控作用的神经机制研究进展进行论述.  相似文献   

3.
李东风  王松华  孟玮 《生理学报》2020,72(2):243-248
雄激素对鸣禽鸣唱具有重要影响。国内外近年研究表明,体内雄激素水平不仅影响鸣禽外部形态,而且影响其鸣唱行为。雄激素(包括衍生物)对鸣唱行为和鸣唱系统的影响是多方面的。本文以本研究组近年在斑胸草雀上的工作为主,总结了雄激素对鸣禽鸣唱行为、鸣唱系统投射神经元兴奋性及突触传递的影响及其与脑内其它递质受体的相互作用。  相似文献   

4.
鸣禽是研究人类语言学习与产生的重要模式动物。鸣禽鸣唱需要感知和运动技能学习等神经过程的参与。鸣禽脑内的雌激素主要是雌二醇(estradiol, E2),由脑内睾酮(testosterone, T)通过芳香化酶的作用转化而来。目前已在雌激素对鸣禽中枢神经系统的调控作用方面获得了一系列重要成果,主要集中在雌激素对鸣禽听觉编码、脑损伤修复,以及空间记忆和鸣唱行为的调控作用。该文对雌激素调控鸣禽中枢神经系统进展进行论述。  相似文献   

5.
鸣禽因其独特的习得性鸣唱行为,成为了研究运动学习的理想模型。现已证实,鸣禽的鸣唱行为受前脑内的鸣唱控制系统直接调控。有证据显示,鸣唱控制系统内有胆碱能递质及其受体分布,其中发声运动核团接受来自基底前脑中枢胆碱能系统的胆碱能神经支配,其可通过胆碱能递质影响发声运动核团的神经活动,进而影响鸣唱行为。在哺乳动物中的研究证实,中枢胆碱能系统参与了对运动行为和运动学习神经过程的调控。了解中枢胆碱能系统对鸣禽鸣唱行为的调控作用,有助于更好地理解鸣禽鸣唱运动控制和鸣唱学习记忆的神经机制,并可从比较生理学的角度,为研究其它动物感觉运动和学习记忆的神经过程,乃至人类语言产生的神经过程提供重要参考。本文对迄今国内外在胆碱能递质对鸣禽发声运动核团作用受体的选择性及其对神经元活动影响的研究进展进行了综述,为揭示中枢胆碱能系统调控鸣禽鸣唱行为的神经机理提供有价值的线索。  相似文献   

6.
鸣禽的鸣啭系统已是当今研究学习和记忆的重要模型。鸣禽的鸣啭学习包括2个阶段:感觉学习期和感觉-运动学习期,以及鸣唱运动和鸣唱学习2条通路。鸣禽的鸣唱行为依赖于听觉反馈系统,现已经证明致聋会使鸣曲结构发生变化,主要对近年来在致聋与鸣唱行为的影响及一些电生理变化研究方面进行介绍。  相似文献   

7.
10种鸣禽控制鸣啭神经核团大小与鸣唱复杂性的相关性   总被引:8,自引:0,他引:8  
为进一步揭示鸣禽鸣唱行为的神经生物学机制 ,本实验先对 8个科 10种鸣禽的鸣唱行为进行了观察和录音 ,并借助声谱软件分析了每种鸣禽的鸣唱复杂性。鸣唱语句复杂性的评价指标包括 :短语总数、每个短语中所含的平均音节数及音节种类数、所有短语的总音节数及音节种类数、最长短语的音节数及音节种类数。然后 ,测定了前脑三个鸣啭学习控制核团和一个与发声无关的视觉参考核团体积 ,分析了鸣唱语句复杂性和这些核团大小间的相关关系。结果表明 :1)HVC和HVC/Rt与 7种鸣唱语句复杂性指标无关 ;RA和RA/Rt与总音节种类数相关 ;AreaX与总音节数及音节种类数相关 ;2 )HVC/RA和HVC/X比值与多个鸣唱语句复杂性指标相关。结果提示 :鸣禽鸣唱复杂性不同特征可能受不同神经控制  相似文献   

8.
钙结合蛋白(Calcium-binding proteins,CBPs,)能与第二信使Ca2+紧密结合,精细调节Ca2+在细胞内的生物活性.它可以作为HVC(higher vocal center)神经元分类的依据,也时鸣禽鸣唱的性别二态性及突触可塑性产生重要影响.因此.CBPs是鸣禽学习与记忆过程中的重要物质.主要对近年来钙结合蛋白在鸟鸣学习记忆中的研究进展进行了综述.  相似文献   

9.
Pan X  Li DF 《生理科学进展》2011,42(1):72-74
多巴胺(DA)与鸣禽的鸣唱行为密切相关.多巴胺能神经元主要分布于中脑VTA和SNc以及PAG,它们投射到前端脑鸣唱控制核团,调节鸣唱的学习和产生.研究表明,环境的改变会影响成鸟的鸣唱产生和幼鸟的鸣唱学习,而这种环境依赖性的鸣唱行为变化是由中脑内多巴胺能神经元的活动来介导的.本文重点介绍了近年来有关中脑多巴胺能神经元活动与鸣唱行为关系的研究进展.  相似文献   

10.
鸣禽鸣唱与人类说话一样,都是在教习和听觉反馈下形成的感知运动学习过程。鸣禽鸣唱的发育和成熟巩固依赖于发声通路和前端脑通路组成的鸣唱系统的完整。前端脑通路中的X区在鸣唱学习记忆中扮演着重要角色。本文就X区的形态组织结构、在鸣唱发育与成熟巩固中的作用、突触可塑性的研究进展进行了综述,并且将X区与哺乳动物基底神经节的学习记忆功能做了比较。  相似文献   

11.
Liao CS  Li J  Li DF 《生理科学进展》2009,40(4):369-371
叉头框P2(FoxP2)基因是与人类语言相关的基因,在鸣禽脑中也存在,不仅参与胚胎时期的关键性发育,对鸣禽鸣曲学习也有影响.实验表明,FoxP2基因对神经回路发育和出生后的鸣唱学习,以及成鸟的鸣曲稳定都有重要作用.FoxP2基因主要在与人类同源的基底神经节--X区表达.本文介绍了FoxP2基因与鸟鸣的新近研究进展.  相似文献   

12.
鸣禽在成年之后表现出广泛的鸣唱行为可塑性变化,其中与季节相关的可塑性变化最为突出.季节可塑性变化与呜禽体内的睾酮水平相关,并伴随鸣唱控制核团的生长或萎缩.研究显示,睾酮的代谢产物与其靶受体结合后,能诱导激素敏感基因表达,其表达产物能促进新生神经元的存活和突触形成,改变鸣唱控制核团的细胞兴奋性和突触传递,从而引起鸣唱行为变化.主要综述性激素对成年鸣禽鸣唱行为以及鸣唱系统可塑性变化的影响以及有关分子细胞机制的研究进展.  相似文献   

13.
鸣禽鸣唱控制系统的前端脑通路(anterior forebrain pathway,AFP)在呜唱学习中发挥着重要作用.新纹状体巨细胞核外侧部(lateral magnocellular nucleus of the anterior neostriatum,LMAN)是AFP的最后一级输出核团,AFP中的信号通过LMAN传导到弓状皮质栎核(robust nucleus of the arcopallium,RA),与高级发声中枢(high vocal centre,HVC)共同调节RA的活动,从而影响鸣禽的发声行为.LMAN可能通过其与RA的单突触连接来影响鸣唱可塑性.文章对近年来LMAN在呜唱学习可塑性方面的研究进行综述.  相似文献   

14.
对近年来听觉反馈在鸣禽鸣唱学习可塑性方面的研究进行综述.鸣禽的鸣曲学习与人类的语言学习都是一种依赖于听觉反馈的模仿学习.在鸣曲学习过程中,幼鸟根据听觉反馈的信息对鸣曲进行比较和修正,使其不断完善;在鸣曲维持过程中,成鸟通过听觉反馈实时监测自己鸣曲的完整性与准确性,使鸣曲保持稳定.鸣曲的输出与听觉反馈信息在鸟脑中得到整合,并指导下一次鸣唱做出适当的调整.近年来,这种感觉与运动信息在鸣禽发声核团中的整合机制逐渐引起了国内外研究者的兴趣.其中,新纹状体巨细胞核外侧部(LMAN)神经元对自鸣曲(BOS)高度选择性的听觉应答在鸣曲去稳定化过程中的作用,以及高级发声中枢(HVC)中镜像神经元的发现,为今后的研究提供了重要的线索.  相似文献   

15.
鸣禽鸣唱与人类语言相似,是一种复杂的发声学习行为,并受脑中一组相互联系的神经核团调控。该组核团与人类发声控制相关脑区具有一定程度的结构同源性,并可能共享某些发声学习调控机制。因此,鸣禽成为研究发声学习神经机理的重要模式动物,不仅对鸟类语言学习,也可为揭示人类语言学习的神经过程和语言障碍的治疗提供重要参考借鉴。本文基于本课题组长期坚持的研究方向,较系统地概述了国内外鸣禽鸣唱行为研究的历史、重要发现和进展,及其为相关中枢神经系统疾病治疗带来的启示。  相似文献   

16.
鸣禽脑部的一些鸣唱核团与听觉核团接受来自中脑儿茶酚胺(catecholamine,CA)能神经元发出的纤维投射,并且存在多种儿茶酚胺类受体的表达。研究发现在不同的鸣唱环境下,中脑儿茶酚胺能神经元活性及其支配靶区即早基因的表达水平均存在显著差异。表明中脑儿茶酚胺能神经元在调节鸣唱行为和听觉信息处理等方面发挥重要作用。介绍了近年来有关儿茶酚胺能神经元活动与鸣唱行为和听觉信息处理的研究进展。  相似文献   

17.
10种鸣禽鸣唱复杂性与发声核团体积的聚类分析   总被引:1,自引:0,他引:1  
选用捕自野外和人工繁殖的10种雄性成鸟(一年龄以上)作为实验材料。当鸟适应环境后录音,用VS-99语音工作站软件进行声谱分析。鸣唱的复杂性采用语句短语总数、短语的音节数之和、短语的音节种类数之和、每个短语中所含的平均音节数、每个短语中所含的平均音节种类数、每种鸣禽最长短语的音节数和最长短语的音节种类数7项指标表示。然后测定前脑的上纹状体腹侧尾端(HVC)、古纹状体粗核(RA)以及嗅叶的X核(Areax)3个主要鸣唱控制核团的体积。最后分别对10种鸣禽3个发声控制核团体积和鸣唱复杂性的7项指标进行聚类分析。10种鸣禽的7项指标值相差较大,即使同一科也如此。蒙古百灵的3种核团体积比值均最大,其次是金丝雀和黄喉鹉。10种鸣禽鸣唱语句复杂性的7个指标和3种核团体积聚类分析树形图显示的结果各不相同;仅RA和Areax核团体积的树形图显示蒙古百灵远离其他9种鸣禽,与现代分类学和DNA分析得到的进化树一致。  相似文献   

18.
鸣禽是除了人类以外极少数具有发声信号学习能力的动物,其已成为研究运动序列控制和学习记忆神经过程的理想模型。鸣禽端脑中的高级发声中枢(high vocal center)、弓状皮质栎核(robust nucleus of the arcopallium)和脑干中的运动核团构成了控制发声的运动通路。该文对鸣禽端脑发声运动通路的电生理学特性及其在发声控制和鸣唱学习中的作用进行了全面的分析综述。  相似文献   

19.
与人类语言学习或形成一样,鸣禽鸣唱也是一种发声学习行为,二者具有一定的相似性,例如发声学习过程均需听觉反馈的参与,幼年期具有更强的发声学习能力,可对复杂的声学结构和音节序列进行控制等。尽管鸣禽和人类的发声器官在结构上有很大差异,但二者发声的物理机制仍表现出很强的相似性。虽然相比于其他哺乳动物,鸣禽和人类的亲缘关系很远,但通过对比发声行为产生的基础通路——脑干先天发声控制通路,以及与发声学习相关的更高神经水平的发声运动和学习通路脑区位置、相互联系、功能及基因表达谱,提示鸣禽鸣唱和人类语言的神经控制具有一定的进化相似性。这些共同特征使得鸣禽成为了研究发声学习的理想模型。本文对鸣禽与人类的发声器官及发声行为的神经控制通路进行了比较,并对鸣禽模型在人类失语症治疗研究中潜在的应用前景进行了展望,以期为研究人类语言学习的神经机制及语言障碍的治疗带来理论参考和借鉴。  相似文献   

20.
刘少艺  冯理  张萌  李东风 《生命科学研究》2012,16(6):551-556,564
鸣曲和鸣唱行为可以诱导鸣禽前脑不同区域的zenk基因表达.鸣禽听到同类鸣曲时在听觉系统会出现zenk表达,并在致聋后这种诱导消失.而鸣禽鸣唱时,在鸣唱系统同样有zenk基因的表达,且不依赖于听觉反馈,因为致聋鸟只要发声就可以诱导表达.大量的研究表明,zenk基因在听区的诱导表达不仅可对同类鸣曲进行识别,而且在教习曲模板的记忆方面发挥重要作用.鸣唱系统zenk基因诱导表达则主要与鸣曲的产生与维持有关.zenk基因在两个系统中的诱导表达将听觉感知与鸣唱运动紧密联系起来.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号