首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fetuses of 12 near-term sheep were prepared for microsphere determination of cerebral blood flow. Experiments were performed 5 days postsurgery. The regional blood flows were measured in successive high (HV), low (LV) and high voltage electrocorticographic states. Comparisons were made between the observations made in the LV and averaged flanking HV cycles. Total cerebral blood flow was 95 +/- 8, 119 +/- 11 and 100 +/- 9 ml/min/100 g in HV, LV and HV, respectively. Low voltage electrocortical activity increased average cerebral blood flow by 22% (P less than 0.01). Significant changes were seen in all regions except the occipital cortex. The maximum change was observed in the thalamus in which the flows were 152 +/- 23, 243 +/- 35 and 138 +/- 20 ml/min/per 100 g tissue, respectively. The increase was 68% (P less than 0.001). The percent changes seen in the cerebrum are as follows: Frontal grey + 18%, frontal white + 22%, parietal white + 22%, temporal + 18%. A + 17% change was seen in the cord (P less than 0.03). It is concluded that in low voltage electrocortical activity all of the brain, except the occipital region, shows an increase in cerebral blood flow. This is probably secondary to a variance in cerebral activity. This preparation may be useful in localizing function in the fetal brain.  相似文献   

2.
Leptin inhibits ingestive behavior and induces diuresis and natriuresis. To examine whether leptin influences fetal physiologic functions, we investigated the effect of central leptin on ovine fetal swallowing activity and urine flow. Six pregnant ewes with singleton fetuses (130 +/- 2 d gestation) were prepared with maternal and fetal arterial and venous catheters, fetal lateral intra-ventricle cannula, fetal bladder and amniotic fluid catheters. Electromyogram wires were placed in the fetal thyrohyoid muscle and upper and lower nuchal esophagus and electrodes were implanted on the parietal dura. Five days after surgery, recombinant human leptin was infused into the lateral ventricle and the fetus monitored for 8 h. Central leptin increased fetal swallowing activity during low-voltage electrocortical activity from basal values (0.96 +/- 0.08 swallows/min) at 2 h (1.41 +/- 0.24 swallows/min), 4 h (2.81 +/- 0.57 swallows/min), 6 h (2.53 +/- 0.59 swallows/min) and 8 h (2.08 +/- 0.39 swallows/min, p < 0.05). In comparison to basal values, low voltage electrocortical activity decreased (57 +/- 5% to 42 +/- 4%) and high voltage electrocortical increased (43 +/- 5% to 61 +/- 4%). In response to leptin, fetal urine flow initially decreased from basal values at 2 h (0.12 +/- 0.03 to 0.08 +/- 0.02 ml/kg/min, p < 0.05) then subsequently increased at 4 h and 6 h (0.20 +/- 0.04; 0.21 +/- 0.04 ml/kg/min, respectively, p < 0.05). Central leptin significantly increases near term ovine fetal swallowing activity and urine output, suggesting that leptin contributes to in utero development of ingestive behavior.  相似文献   

3.
In eight anaesthesized fetal sheep (gestational age 112-127 days; term 147 days), embolization of the umbilical placental circulation was performed in order to evaluate the response of the umbilical artery pulsatility index to an exclusive increase in umbilical vascular resistance. Measurements were performed using a 20 MHz pulsed Doppler transducer and an electromagnetic flow meter mounted on the common umbilical artery and catheters at the aortic trifurcation and in one of the umbilical veins. Umbilical vascular resistance was calculated according the Poiseuille equation as the ratio of aortic to umbilical venous pressure gradient and umbilical blood flow. Microspheres were administered at 15-min intervals through a catheter in one of the cotyledonary arteries, until fetal heart rate had decreased beneath 100 beats/min or had become arrhythmic. The period of examination per fetus varied between 60 and 120 min, after which cardiac decompensation occurred. During this period, umbilical perfusion pressure increased from 20.3 +/- 4.9 to 28.1 +/- 4.7 mmHg (SD; P less than 0.01), umbilical blood flow (ml/min) decreased from 342 +/- 127 to 115 +/- 99 mmHg (SD; P less than 0.01), umbilical vascular resistance increased from 0.065 +/- 0.022 to 0.342 +/- 0.150 mmHg.min/ml (P less than 0.01) and common umbilical artery pulsatility index increased from 0.97 +/- 0.23 to 4.03 +/- 1.69 (P less than 0.01). Fetal heart rate did not change significantly (168 +/- 33 prior to cardiac decompensation versus 178 +/- 19 beats/min at baseline condition). The linear correlation between common umbilical artery pulsatility index and umbilical vascular resistance varied between 0.83 and 0.99 and the average correlation was 0.93 (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
To investigate the effects of the prostaglandin synthetase inhibitor, meclofenamate, on postnatal ventilation, we studied 11 unanaesthetised, spontaneously-breathing lambs at an average age of 7.9 +/- 1.1 days (SEM; range 5-14 days) and an average weight of 4.9 +/- 0.5 kg (range 3.0-7.0 kg). After a 30-min control period we infused 4.23 mg/kg meclofenamate over 10 min and then gave 0.23 mg/h per kg for the remainder of the 4 h. Ventilation increased progressively from a control value of 515 +/- 72 ml/min per kg to a maximum of 753 +/- 100 ml/min per kg after 3h of infusion (P less than 0.05) due to an increased breathing rate; the effects were similar during both high- and low-voltage electrocortical activity. There were no significant changes in tidal volume, heart rate, blood pressure, arterial pH or PaCO2, the increased ventilation resulted from either an increase in dead space ventilation or an increase in CO2 production. This study indicates that meclofenamate causes an increase in ventilation in lambs but no changes in pH of PaCO2. The mechanism and site of action remain to be defined.  相似文献   

5.
We continuously measured umbilical blood flow in fetal lambs in utero by placing an electromagnetic flow transducer around the common umbilical artery. Umbilical arteries originate from a short common segment as the terminal branches of the descending aorta. This segment was isolated by a retroperitoneal surgical approach and encircled with a specially constructed electromagnetic flow transducer. Catheters were also placed in fetal vessles to monitor pressure and derive flow values by the radionuclide-labeled microsphere technique. The fetus and ewe were allowed to recover for two days before studies were performed. Average umbilical blood flow obtained in 11 animals with the transducer was 199 ml/kg per min. In seven animals flow measurements obtained with the transducer were compared with those derived from microsphere injections. Paired measurements varied by an average of only 5.3%. This technique makes possible the accurate and instantaneous measurement of umbilical blood flow in fetal lambs in utero over a prolonged period.  相似文献   

6.
In adults, the responses to acute haemorrhage vary greatly depending on the amount of blood lost. While many studies have documented fetal responses to mild haemorrhage, fetal responses to severe haemorrhage are not known. In this study we examined the effect of acute, severe haemorrhage in fetal lambs. Despite the severity of haemorrhage, we found that mean arterial blood pressure was restored within 2 min, and heart rate was restored within 30 min. This restoration of blood pressure and heart rate was facilitated by an increase in peripheral vascular resistance mediated in part by secretion of catecholamines and plasma renin. In addition, about 40% of the shed blood volume was restored within 30 min by fluid from either the fetal interstitium or placenta. The PO2 of umbilical venous blood increased from 33 +/- 9 mmHg to 49 +/- 17 mmHg 2 min post-haemorrhage, and to 47 +/- 15 mmHg 30 min post-haemorrhage. However, this increase was not sufficient to offset the fall in both haemoglobin concentration and umbilical-placental blood flow, so that oxygen delivery decreased from 21.1 +/- 5.5 ml/min per kg to 9.1 +/- 5.2 ml/min per kg 2 min post-haemorrhage, and 14.1 +/- 9.2 ml/min per kg 30 min post-haemorrhage. Because of this decrease in oxygen delivery, oxygen consumption fell and a metabolic acidemia ensued. Nevertheless, oxygen delivery to the heart and brain was maintained because hepatic vasoconstriction diverted more of the well oxygenated umbilical venous return through the ductus venosus. Although the fetus was able to tolerate acute loss of 40% of blood volume, larger volumes of haemorrhage resulted in fetal death.  相似文献   

7.
The vitality of the bovine fetus during parturition depends on an intact umbilical circulation to supply adequate amounts of oxygen and nutrients to the fetus. The goal of the present study was to measure the blood flow in the umbilical vessels during stage II of labor and to determine when blood flow ceases in the umbilical cord. In 20 cows, ultrasonographic transducers were placed on one umbilical vein and one umbilical artery after rupture of the allantochorionic sac, and the blood flow volume per unit time was measured. At the same time, a pressure transducer was placed into the uterus to measure uterine pressure. Parturition was spontaneous in all 20 cows. In 20 live calves born, pH, base excess and lactate concentration were measured in the blood immediately after birth. During the last 90 min before birth the mean total umbilical blood flow (artery and vein combined) was 1.186+/-0.028 L/min. Calves with a blood pH> or =7.2 (n=13) had a higher mean total blood flow than calves with a pH<7.2 (n=7; 1.243+/-0.038 versus 1.095+/-0.038 L/min). In calves with a blood pH<7.2, the mean total blood flow decreased from 1.178+/-0.134 at 20 min before birth to 0.959+/-0.126 L/min at the end of stage II of labor. During this time period, the arterial blood flow did not differ between calves with a blood pH> or =7.2 and<7.2, but venous blood flow decreased significantly in calves with a blood pH<7.2. During uterine contractions, the total umbilical blood flow decreased significantly by 0.22 L/min. The blood flow in the umbilical artery and vein ceased before the calves were completely born.  相似文献   

8.
Role of plasma adenosine in breathing responses to hypoxia in fetal sheep.   总被引:2,自引:0,他引:2  
The importance of plasma adenosine in hypoxic inhibition of breathing movements was determined in chronically catheterized fetal sheep (greater than 0.8 term). Preductal arterial blood for adenosine measurements was withdrawn using a double lumen catheter to mix blood entering the catheter with a solution to stop adenosine metabolism. In 6 fetuses, isocapnic hypoxia (delta PaO2 congruent to -10 Torr) increased the average plasma adenosine concentration from 1.1 +/- 0.2 (SEM) to 2.0 to +/- 0.4 microM. During hypoxia, plasma levels of adenosine were inversely related to preductal arterial O2 content (CaO2) with values ranging between 1.6 and 4.0 microM when CaO2 was less than 3 ml/dl. Hypoxia also significantly reduced the incidence of fetal breathing and rapid eye movements. In other experiments, adenosine (0.36 +/- 0.03 mg/min/kg) was infused for one hour into the inferior vena cava of 5 fetuses. During this infusion, mean plasma concentration of adenosine was 2.8 +/- 0.3 microM, a value about 2.5 times the control average. Adenosine also significantly reduced the incidence of low voltage electrocortical activity, rapid eye movements and breathing activity. We conclude that hypoxic inhibition of fetal breathing most likely arises from an increase in central adenosine production, although during severe O2 deprivation (CaO2 less than 3 ml/dl) blood-borne adenosine could also contribute.  相似文献   

9.
The time related hemodynamic responses to forskolin-elicited increases in cAMP were studied in the near-term fetus. Catheters and electrodes were inserted into 6 fetal sheep to measure arterial, venous and thoracic pressures, electrocorticogram, and electrocardiogram. At gestational day 134, experiments were performed to determine the effect of forskolin infusion (400 micrograms/ml at 1.03 ml/min for 5 min) on fetal blood pressure, coronary and cerebral blood flow and resistance. Blood flow measurements were made using 15 microns microspheres labelled with radioactive isotopes during the control period and at 0, 5, 10, 15, and 45 min after forskolin infusion. Forskolin infusion was always initiated during a high-voltage electrocortical epoch and was given twice in each animal. In each case, forskolin caused electrocortical activity to change from high-voltage state to an intermediate voltage state. Blood pressure fell significantly by the end of the infusion period and returned to control levels 10 min later. Fetal heart rate and coronary blood flow were immediately elevated by forskolin (P less than 0.01) whereas cerebral blood flow did not increase until 5 min later (P less than 0.01). Cerebral blood flow was still elevated (P less than 0.05) 45 min after the end of forskolin infusion, whereas coronary blood flow had returned to control levels. Both cerebral and coronary vascular resistance fell significantly in response to forskolin infusion (P less than 0.01). This effect lasted at least 15 min and had returned to control levels 45 min after forskolin had been terminated.  相似文献   

10.
The fetal respiratory and electrocortical effects of 0.6 microgram to 600 micrograms of morphine, administered into the lateral cerebral ventricle, have been studied in chronically catheterised, unanaesthetized fetal sheep at 115-135 days gestation. Morphine at 0.6 microgram had no effect on breathing movements or electrocorticographic activity, and at 6 micrograms induced a period of apnoea (43-122 min) but had no effect on electrocortical activity. Intravenous naloxone (2 mg bolus and infusion of 2 mg/kg/h for 2 h) to the fetus had no effect on this apnoea. Morphine at 60 micrograms induced an initial period of apnoea (30-65 min) followed by episodic but significantly deep breathing movements with no effect on electrocortical activity and at 600 micrograms induced an initial period of apnoea (22-95 min) which was followed by deep, irregular and continuous (126-302 min) breathing movements. During the apnoea electrocortical activity initially remained cyclic, but as apnoea progressed there was a gradual reduction in the voltage of the electrocorticogram to a low voltage state. Intravenous naloxone (2 mg bolus and infusion of 2 mg/kg/h for 2 h) reversed both the respiratory and electrocortical effects. The hyperventilation was also inhibited by hypoxia. Naloxone alone had no effect on fetal breathing activity.  相似文献   

11.
In early ovine fetal development, the placenta grows more rapidly than the fetus so that at mid-gestation the aggregate weight of placental cotyledons exceeds fetal weight. The purpose of this study was to compare two separate methods of measuring uterine blood flow and glucose and oxygen uptakes in seven mid-gestation ewes, each carrying a single fetus. Uterine blood flow to both uterine horns was measured by microsphere and by tritiated water steady-state diffusion methodology. Calculations of tritiated water blood flows and oxygen and glucose uptakes were based on measurements of arteriovenous concentration differences across each uterine horn. The distribution of blood flow and oxygen uptake between the two uterine horns was strongly correlated with placental mass distribution. The two methods gave comparable results for uterine blood flow (457 +/- 35 vs 476 +/- 35 ml/min), oxygen uptake (457 +/- 35 vs 476 +/- 35 mumol/min), and glucose uptake (63 +/- 8 vs 64 +/- 6 mumol/min). Uterine blood flow was approximately 38% of the late gestation value and 56.1 +/- 1 times higher than umbilical blood flow. Uteroplacental oxygen consumption was about 58% of late gestation measurements and 3.9 +/- 0.5 times higher than fetal oxygen uptake. We confirm that the large placental mass of mid-gestation is associated with high levels of maternal placental blood flow and placental oxidative metabolism.  相似文献   

12.
Extra-dural or cerebroventricular intracranial pressure was measured in 7 unanaesthetized fetal sheep (123-137 days gestation). Basal intracranial pressure was 6.7 +/- 1.7 mmHg, but there were many transient increases of pressure in association with spontaneous changes of amniotic pressure, fetal intrathoracic pressure, and particularly when the fetal nuchal muscles were active. These spontaneous increases of intracranial pressure were often associated with cessation of breathing movements and change of the electrocorticogram from low to high voltage activity. To test whether increased intracranial pressure influenced breathing movements and electrocortical activity, intracranial pressure was raised either by occluding the superior vena cava for 1 min with an implanted extravascular cuff, or by extra-dural injection of 0.3-1.0 ml of 0.9% NaCl. Increasing the intracranial pressure 5-15 mmHg by either method during low voltage electrocortical activity caused cessation of breathing movements, electro-ocular activity, and change of the electrocorticogram from low to high voltage in a significant proportion of trials. We propose that natural fluctuations of intracranial pressure caused by compression of the fetal body or skull, by body movements or by uterine activity, may cause changes in electrocortical activity and breathing movements.  相似文献   

13.
To investigate whether the changes in circulation at birth are due to lung ventilation, changes in PaO2 or both we mechanically ventilated in utero the lungs of 10 fetal sheep (120-127 days of gestational age) five days after instrumentation under general anaesthesia. Electrocortical activity (ECoG), eye movements (EOG), electromyographic activity from diaphragm and posterior neck activity (EMG) and electrocardiogram (ECG) were recorded. Fetal catheters (artery and vein of the hindlimb, arteries of both forelimbs which in three occasions were advanced into the left ventricle, fetal trachea and amniotic cavity), and an endotracheal tube were placed. After recovery radioactive 15 mu microspheres (I125, Ce141, Sr85 and Sc46) were injected into the inferior vena cava or left ventricle during high voltage electrocortical activity before and after lung expansion with N2 and after expansion with O2 for two levels of PaO2. PaCO2 did not change. The percentage of spheres trapped in the lungs increased from 9.6% to 44% after expanding the lungs with N2 and to 90% when fetal PaO2 increased (P less than 0.001). Blood flow to different organs did not change during normoxic expansion but it decreased significantly to the brain (91 +/- 25 to 27 +/- 8 ml/min per 100g, [mean +/- SD]) placenta (160 +/- 57 to 54 +/- 33 ml/min/100g) and coronaries (239 +/- 91 to 117 +/- 60 ml/min per 100g) when PaO2 was increased. In conclusion fetal circulation responds to raised levels of PaO2 well before birth probably by a direct action of oxygen on the vessels.  相似文献   

14.
Effects of endogenous angiotensin II on the fetal circulation   总被引:4,自引:0,他引:4  
The role of endogenous angiotensin II in the regulation of the circulation was investigated by infusion of [sar1],[ala8]-angiotensin II, a competitive antagonist of angiotensin II, into fetal sheep with chronically-maintained intravascular catheters. The thesis considered was that angiotensin II may have a greater role in the fetus than in the adult since the autonomic nervous system does not develop fully until late in gestation. Fetal cardiac output and its distribution to various organs and actual blood flows to fetal tissues were determined by the radionuclide-labelled microsphere technique. Intravenous infusion of [sar1], [ala8]-angiotensin II at a rate of 13.95-42.15 microgram/min per kg fetal body weight increased plasma renin activity from a control value of 8.9 +/- 1.6 to 18.9 +/- 3.9 ng/ml per h (SEM). Mean arterial blood pressure fell significantly from a control level of 47 +/- 1.6 to 41 +/- 1.1 mmHg. Blood flow to the unbilical-placental circulation decreased from 239 +/- 27.0 to 198 +/- 20.2 ml/min per kg, but the calculated vascular resistance in the umbilical-placental circulation did not change. Although cardiac output did not change, blood flow to the peripheral circulation, which includes the fetal skin, muscle and and bone and constitutes 75 +/- 0.9% of the total fetal body weight, increased as did flow to the thyroid and adrenal circulations. Endogenous angiotensin II appears to be important in maintaining blood flow to the umbilical-placental circulation by maintaining fetal arterial blood pressure. Angiotensin II exerts this effect by mediating a tonic vasoconstriction primarily in the peripheral circulation.  相似文献   

15.
In an attempt to explore the acute maternal responses to exercise we measured oxygen consumption, uterine blood flow, and blood volume in 13 chronically catheterized pregnant sheep at rest and while exercising on a treadmill. With maximal exercise O2 consumption increased 5.6 times, from a resting value of 5.8 +/- 0.3 (SE) to 32.1 +/- 2.8 ml X min -1 X kg -1, cardiac output increased 2.7 times, from 149 +/- 8 to 404 +/- 32 ml X min -1 X kg -1, and arteriovenous oxygen content difference increased 2.1 times, from 3.9 +/- 0.2 to 8.0 +/- 0.4 ml X dl -1. Total uterine blood flow decreased from a mean resting value of 292 +/- 6 to 222 +/- 19 ml X min -1 X kg fetus -1 near exhaustion during prolonged (40 min) exercise at 70% maximal oxygen consumption. Maternal blood volume decreased 14% (P less than 0.01) from 67.5 +/- 3.7 to 57.8 +/- 3.6 ml X kg -1 during this exercise period, with a 20% decrease in plasma volume without a change in red cell volume. We conclude that uterine blood flow decreases during maternal exercise. However, hemoconcentration helps to maintain a relatively constant oxygen delivery to the uterus.  相似文献   

16.
To determine whether renal blood flow is reduced or redistributed during exercise, we measured total renal flow (TRF) and intrarenal flow distribution (IRFD) in nine dogs. They ran on a motor-driven treadmill at 3-8 mph at grades of 8-15% for an average of 35 min. We measured aortic pressure, heart rate, stroke volume, and cardiac output (CO) via chronically implanted catheters and an electromagnetic flow probe. We injected 15-mum radiolabeled microspheres (85Sr, 141Ce, and 51Cr) via a left atrial catheter during resting control, steady state (SS) and exhaustive (EE) exercise; measured their distribution by gamma spectrometry; and determined TRF as % CO and as ml/100 g per min. We determined IRFD for the outer and inner cortex and the outer medulla. TRF as %CO dropped (P less than 0.05) during both levels of exercise: from 10.2 +/- 0.7% to 3.9 +/- 0.4% (SS) and 3.4 +/- 0.6% (EE). TRF in ml/100 g per min did not change significantly from control (228 +/- 30 ml/100 g per min). IRFD was unchanged with exercise, remaining at about 80, 20, and 3% of TRF for the outer and inner cortex and outer medulla, respectively. We conclude that blood flow is not diverted from the kidneys during severe exercise in the dog.  相似文献   

17.
To define the dose response of apnea and breathing to morphine we studied 12 fetuses at 116-141 days of gestation using our window technique. We instrumented the fetus to record electrocortical activity (ECoG), eye movements (EOG), diaphragmatic activity (integral of EMGdi), heart rate, carotid blood pressure, and amniotic pressure. Saline and morphine in doses of 0.03, 0.1, 0.5, 1, and 3 mg/kg were injected in random order in the jugular vein of the fetus during low-voltage ECoG. Fetuses were videotaped for evaluation of fetal behavior. We found 1) that saline did not elicit a response; 2) apnea, associated with a change from low- to high-voltage ECoG, increased from 2.2 +/- 1.5 (SE) min in two fetuses at a dose of 0.03 mg to 20 +/- 6.3 min in seven fetuses at 3 mg/kg (P less than 0.005); 3) the length of the breathing responses, associated with a change from high- to low-voltage ECoG, were 15 +/- 1.8 and 135.9 +/- 18.1 min (P less than 0.0005); 4) integral of EMGdi X frequency, an index equivalent to minute ventilation, increased from 1,763 +/- 317 arbitrary units to 10,658 +/- 1,843 at 1.0 mg/kg and then decreased to 7,997 +/- 1,335 at 3.0 mg/kg. These changes were related to a steady increase in integral of EMGdi, whereas frequency decreased at 3 mg/kg. There was an increase in breathing response to morphine plasma concentrations or morphine doses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The effects of the GABA antagonist picrotoxin, and the GABA agonist muscimol, have been studied in chronically instrumented unanaesthetized fetal sheep of 115-132 days gestation. Picrotoxin (300-400 micrograms/kg intravenous bolus injection) induced a period of stimulated breathing (40-112 min) which was associated with high voltage electrocortical activity, but inhibited by hypoxia. Muscimol (4 mg infused) had the opposite effect and caused a prolonged period of apnoea (85-418 mins) which was followed by a rebound period of increased breathing. These observations suggest that the GABA-ergic system may be involved in the apnoea of high voltage sleep states in the late gestation fetal sheep, but not in the apnoea associated with hypoxaemia in the fetus.  相似文献   

19.
D W Busija 《Prostaglandins》1985,30(2):229-239
The role of prostanoids in regulation of the renal circulation during hypercapnia was examined in unanesthetized rabbits. Renal blood flow (RBF) was determined with 15 micron radioactive microspheres during normocapnia (PaCO2 congruent to 30 mmHg) and hypercapnia (PaCO2 congruent to 60 mmHg), before and after intravenous administration of indomethacin (10 mg/kg) or vehicle (n = 6 for each group). Arterial blood pressure was not different among the 4 conditions in each group. RBF was 438 +/- 61 and 326 +/- 69 (P less than 0.05) ml/min per 100 g during normocapnia and hypercapnia, respectively, before indomethacin, and following administration of indomethacin, RBF was 426 +/- 59 ml/min per 100 g during normocapnia and 295 +/- 60 ml/min per 100 g during hypercapnia (P less than 0.05). In the vehicle group, RBF was 409 +/- 74 and 226 +/- 45 (P less than 0.05) ml/min per 100 g during normocapnia and hypercapnia, respectively, before vehicle; and following administration of vehicle, RBF was 371 +/- 46 ml/min per 100 g during normocapnia and 219 +/- 50 (P less than 0.05) ml/min per 100 g during hypercapnia. RBF during normocapnia was not affected by administration of indomethacin or vehicle. The successive responses to hypercapnia were not different within the indomethacin and vehicle groups, and the second responses to hypercapnia were not different between the two groups. These findings suggest that prostanoids do not contribute significantly to regulation of the renal circulation during normocapnia and hypercapnia in unanesthetized rabbits.  相似文献   

20.
Experiments were conducted in 12 chronically-catheterized pregnant sheep to examine the effect of prolonged hypoxaemia secondary to the restriction of uterine blood flow on fetal oxygen consumption. Surgery was performed at 115 days gestation to place a teflon vascular occluder around the maternal common internal iliac artery and for insertion of vascular catheters. Following a 5-day recovery period, uterine blood flow was reduced in 6 animals for 24 hours and in 6 animals, the occluder was not adjusted. Fetal arterial PO2 decreased from 19.9 +/- 2.0 mmHg to 12.8 +/- 2.0 mmHg and 11.0 +/- 2.0 mmHg at 1 and 24 hours respectively in the experimental group and did not change the control group. Fetal pH decreased from 7.34 +/- 0.01 to 7.25 +/- 0.03 and 7.29 +/- 0.02 at 1 and 24 hours of hypoxaemia respectively. Fetal arterial lactate concentrations remained elevated throughout the experimental period with maximum concentrations of 6.6 +/- 2.1 mmol/l being present at 4 hours compared to 1.3 +/- 0.2 mmol/l during the control period. Umbilical blood flow increased from 186 +/- 19 ml/min/kg to 251 +/- 39 ml/min/kg at 1 h of hypoxaemia and returned to 191 +/- 21 ml/min/kg at 24 h. In association with the progressive fall in oxygen delivery to the fetus, oxygen extraction increased from 0.33 +/- 0.04 to 0.43 +/- 0.04 and 0.54 +/- 0.05 at 1 and 24 hours, respectively. Overall oxygen consumption by the fetus remained unchanged from control values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号