首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marine sponges and their microbial symbionts: love and other relationships   总被引:1,自引:0,他引:1  
Many marine sponges harbour dense and diverse microbial communities of considerable ecological and biotechnological importance. While the past decade has seen tremendous advances in our understanding of the phylogenetic diversity of sponge-associated microorganisms (more than 25 bacterial phyla have now been reported from sponges), it is only in the past 3-4 years that the in situ activity and function of these microbes has become a major research focus. Already the rewards of this new emphasis are evident, with genomics and experimental approaches yielding novel insights into symbiont function. Key steps in the nitrogen cycle [denitrification, anaerobic ammonium oxidation (Anammox)] have recently been demonstrated in sponges for the first time, with diverse bacteria - including the sponge-associated candidate phylum 'Poribacteria'- being implicated in these processes. In this minireview we examine recent major developments in the microbiology of sponges, and identify several research areas (e.g. biology of viruses in sponges, effects of environmental stress) that we believe are deserving of increased attention.  相似文献   

2.
Sponges are well known to harbor diverse microbes and represent a significant source of bioactive natural compounds derived from the marine environment. Recent studies of the microbial communities of marine sponges have uncovered previously undescribed species and an array of new chemical compounds. In contrast to natural compounds, studies on enzymes with biotechnological potential from microbes associated with sponges are rare although enzymes with novel activities that have potential medical and biotechnological applications have been identified from sponges and microbes associated with sponges. Both bacteria and fungi have been isolated from a wide range of marine sponge, but the diversity and symbiotic relationship of bacteria has been studied to a greater extent than that of fungi isolated from sponges. Molecular methods (e.g., rDNA, DGGE, and FISH) have revealed a great diversity of the unculturable bacteria and archaea. Metagenomic approaches have identified interesting metabolic pathways responsible for the production of natural compounds and may provide a new avenue to explore the microbial diversity and biotechnological potential of marine sponges. In addition, other eukaryotic organisms such as diatoms and unicellular algae from marine sponges are also being described using these molecular techniques. Many natural compounds derived from sponges are suspected to be of bacterial origin, but only a few studies have provided convincing evidence for symbiotic producers in sponges. Microbes in sponges exist in different associations with sponges including the true symbiosis. Fungi derived from marine sponges represent the single most prolific source of diverse bioactive marine fungal compounds found to date. There is a developing interest in determining the true diversity of fungi present in marine sponges and the nature of the association. Molecular methods will allow scientists to more accurately identify fungal species and determine actual diversity of sponge-associated fungi. This is especially important as greater cooperation between bacteriologists, mycologists, natural product chemists, and bioengineers is needed to provide a well-coordinated effort in studying the diversity, ecology, physiology, and association between bacteria, fungi, and other organisms present in marine sponges.  相似文献   

3.
Sponge-associated microbial communities include members from the three domains of life. In the case of bacteria, they are diverse, host specific and different from the surrounding seawater. However, little is known about the diversity and specificity of Eukarya and Archaea living in association with marine sponges. This knowledge gap is even greater regarding sponges from regions other than temperate and tropical environments. In Antarctica, marine sponges are abundant and important members of the benthos, structuring the Antarctic marine ecosystem. In this study, we used high throughput ribosomal gene sequencing to investigate the three-domain diversity and community composition from eight different Antarctic sponges. Taxonomic identification reveals that they belong to families Acarnidae, Chalinidae, Hymedesmiidae, Hymeniacidonidae, Leucettidae, Microcionidae, and Myxillidae. Our study indicates that there are different diversity and similarity patterns between bacterial/archaeal and eukaryote microbial symbionts from these Antarctic marine sponges, indicating inherent differences in how organisms from different domains establish symbiotic relationships. In general, when considering diversity indices and number of phyla detected, sponge-associated communities are more diverse than the planktonic communities. We conclude that three-domain microbial communities from Antarctic sponges are different from surrounding planktonic communities, expanding previous observations for Bacteria and including the Antarctic environment. Furthermore, we reveal differences in the composition of the sponge associated bacterial assemblages between Antarctic and tropical-temperate environments and the presence of a highly complex microbial eukaryote community, suggesting a particular signature for Antarctic sponges, different to that reported from other ecosystems.  相似文献   

4.
Zhu P  Li Q  Wang G 《Microbial ecology》2008,55(3):406-414
Invasive species poses a threat to the world’s oceans. Alien sponges account for the majority of introduced marine species in the isolated Hawaiian reef ecosystems. In this study, cultivation-dependent and cultivation-independent techniques were applied to investigate microbial consortia associated with the alien Hawaiian marine sponge Suberites zeteki. Its microbial communities were diverse with representatives of Actinobacteria, Firmicutes, α- and γ-Proteobacteria, Bacteroidetes, Chlamydiae, Planctomycetes, and Cyanobacteria. Specifically, the genus Chlamydia was identified for the first time from marine sponges, and two genera (Streptomyces and Rhodococcus) were added to the short list of culturable actinobacteria from sponges. Culturable microbial communities were dominated by Bacillus species (63%) and contained actinobacterial species closely affiliated with those from habitats other than marine sponges. Cyanobacterial clones were clustered with free-living cyanobacteria from water column and other environmental samples; they show no affiliation with other sponge-derived cyanobacteria. The low sequence similarity of Planctomycetes, Chlamydiae, and α-Proteobacteria clones to other previously described sequences suggested that S. zeteki may contain new lineages of these bacterial groups. The microbial diversity of S. zeteki was different from that of other studied marine sponges. This is the first report on microbial communities of alien marine invertebrate species. For the first time, it provides an insight into microbial structure within alien marine sponges in the Hawaiian marine ecosystems.  相似文献   

5.
Recent studies on bioactive metabolites from marine macro- and microorganisms are reviewed with 83 refs. Structures of new sulphated and glycosylated secondary metabolites, which have been reported to have antifungal, immunomodulatory, and cytotoxic properties, are given. Some peculiarities of biosynthesis of natural compounds in marine organisms are revealed. It was shown that some natural products, isolated earlier from sponges, are produced by microbial symbionts. Different physiological activities associated with 8000 marine microbial (mainly symbiotic) strains are discussed as well as some prospects of marine biochemistry and biotechnology development.  相似文献   

6.
Sponges are ancient metazoans that host diverse and complex microbial communities. Sponge-associated microbial diversity has been studied from wide oceans across the globe, particularly in subtidal regions, but the microbial communities from intertidal sponges have remained mostly unexplored. Here we used pyrosequencing to characterize the microbial communities in 12 different co-occurring intertidal marine sponge species sampled from the Atlantic coast, revealing a total of 686 operational taxonomic units (OTUs) at 97% sequence similarity. Taxonomic assignment of 16S ribosomal RNA tag sequences estimated altogether 26 microbial groups, represented by bacterial (75.5%) and archaeal (22%) domains. Proteobacteria (43.4%) and Crenarchaeota (20.6%) were the most dominant microbial groups detected in all the 12 marine sponge species and ambient seawater. The Crenarchaeota microbes detected in three Atlantic Ocean sponges had a close similarity with Crenarchaeota from geographically separated subtidal Red Sea sponges. Our study showed that most of the microbial communities observed in sponges (73%) were also found in the surrounding ambient seawater suggesting possible environmental acquisition and/or horizontal transfer of microbes. Beyond the microbial diversity and community structure assessments (NMDS, ADONIS, ANOSIM), we explored the interactions between the microbial communities coexisting in sponges using the checkerboard score (C-score). Analyses of the microbial association pattern (co-occurrence) among intertidal sympatric sponges revealed the random association of microbes, favoring the hypothesis that the sponge-inhabiting microbes are recruited from the habitat mostly by chance or influenced by environmental factors to benefit the hosts.  相似文献   

7.
Sponges (class Porifera) are evolutionarily ancient metazoans that populate the tropical oceans in great abundances but also occur in temperate regions and even in freshwater. Sponges contain large numbers of bacteria that are embedded within the animal matrix. The phylogeny of these bacteria and the evolutionary age of the interaction are virtually unknown. In order to provide insights into the species richness of the microbial community of sponges, we performed a comprehensive diversity survey based on 190 sponge-derived 16S ribosomal DNA (rDNA) sequences. The sponges Aplysina aerophoba and Theonella swinhoei were chosen for construction of the bacterial 16S rDNA library because they are taxonomically distantly related and they populate nonoverlapping geographic regions. In both sponges, a uniform microbial community was discovered whose phylogenetic signature is distinctly different from that of marine plankton or marine sediments. Altogether 14 monophyletic, sponge-specific sequence clusters were identified that belong to at least seven different bacterial divisions. By definition, the sequences of each cluster are more closely related to each other than to a sequence from nonsponge sources. These monophyletic clusters comprise 70% of all publicly available sponge-derived 16S rDNA sequences, reflecting the generality of the observed phenomenon. This shared microbial fraction represents the smallest common denominator of the sponges investigated in this study. Bacteria that are exclusively found in certain host species or that occur only transiently would have been missed. A picture emerges where sponges can be viewed as highly concentrated reservoirs of so far uncultured and elusive marine microorganisms.  相似文献   

8.
Drugs from the seas - current status and microbiological implications   总被引:28,自引:0,他引:28  
The oceans are the source of a large group of structurally unique natural products that are mainly accumulated in invertebrates such as sponges, tunicates, bryozoans, and molluscs. Several of these compounds (especially the tunicate metabolite ET-743) show pronounced pharmacological activities and are interesting candidates for new drugs primarily in the area of cancer treatment. Other compounds are currently being developed as an analgesic (ziconotide from the mollusc Conus magus) or to treat inflammation. Numerous natural products from marine invertebrates show striking structural similarities to known metabolites of microbial origin, suggesting that microorganisms (bacteria, microalgae) are at least involved in their biosynthesis or are in fact the true sources of these respective metabolites. This assumption is corroborated by several studies on natural products from sponges that proved these compounds to be localized in symbiotic bacteria or cyanobacteria. Recently, molecular methods have successfully been applied to study the microbial diversity in marine sponges and to gain evidence for an involvement of bacteria in the biosynthesis of the bryostatins in the bryozoan Bugula neritina.  相似文献   

9.
Some marine sponges harbor dense and phylogenetically complex microbial communities [high microbial abundance (HMA) sponges] whereas others contain only few and less diverse microorganisms [low microbial abundance (LMA) sponges]. We focused on the phylum Chloroflexi that frequently occurs in sponges to investigate the different associations with three HMA and three LMA sponges from New Zealand. By applying a range of microscopical and molecular techniques a clear dichotomy between HMA and LMA sponges was observed: Chloroflexi bacteria were more abundant and diverse in HMA than in LMA sponges. Moreover, different HMA sponges contain similar Chloroflexi communities whereas LMA sponges harbor different and more variable communities which partly resemble Chloroflexi seawater communities. A comprehensive phylogenetic analysis of our own and publicly available sponge-derived Chloroflexi 16S rRNA gene sequences (>?780 sequences) revealed the enormous diversity of this phylum within sponges including 29 sponge-specific and sponge-coral clusters (SSC/SCC) as well as a 'supercluster' consisting of >?250 sponge-derived and a single nonsponge-derived 16S rRNA gene sequence. Interestingly, the majority of sequences obtained from HMA sponges, but only a few from LMA sponges, fell into SSC/SCC clusters. This indicates a much more specific association of Chloroflexi bacteria with HMA sponges and suggests an ecologically important role for these prominent bacteria.  相似文献   

10.
Planctomycetes are ubiquitous in marine environment and were reported to occur in association with multicellular eukaryotic organisms such as marine macroalgae and invertebrates. Here, we investigate planctomycetes associated with the marine sponge Niphates sp. from the sub-tropical Australian coast by assessing their diversity using culture-dependent and -independent approaches based on the 16S rRNA gene. The culture-dependent approach resulted in the isolation of a large collection of diverse planctomycetes including some novel lineages of Planctomycetes from the sponge as well as sediment and seawater of Moreton Bay where this sponge occurs. The characterization of these novel planctomycetes revealed that cells of one unique strain do not possess condensed nucleoids, a phenotype distinct from other planctomycetes. In addition, a culture-independent clone library approach identified unique planctomycete 16S rRNA gene sequences closely related to other sponge-derived sequences. The analysis of tissue of the sponge Niphates sp. showed that the mesohyl of the sponge is almost devoid of microbial cells, indicating this species is in the group of ‘low microbial abundant’ (LMA) sponges. The unique planctomycete 16S rRNA gene sequences identified in this study were phylogenetically closely related to sequences from LMA sponges in other published studies. This study has revealed new insights into the diversity of planctomycetes in the marine environment and the association of planctomycetes with marine sponges.  相似文献   

11.
The marine environment represents one of the most underexplored environments in the world. Marine sponges have a higher taxonomic diversity according to definite environmental conditions. They have been considered interesting sources for bioactive compounds. Dictyoceratida sponges are divided into five families which are widely distributed and habituating different types of micro-organisms. However, some secondary metabolites are probably not produced by the sponges themselves, but rather by their associated micro-organisms. These secondary metabolites are characterized by different chemical structures and consequently different biological activities. This review outlines the reported secondary metabolites from micro-organisms associated with Dictyoceratida sponges and their investigated biological activities from 1991 to 2019. The increasing research studies in this field can play a major role in marine microbial natural products drug discovery in the future.  相似文献   

12.
Marine sponges (phylum Porifera) often contain dense and diverse microbial communities, which can constitute up to 35% of the sponge biomass. The genome of one sponge, Amphimedon queenslandica, was recently sequenced, and this has provided new insights into the origins of animal evolution. Complementary efforts to sequence the genomes of uncultivated sponge symbionts have yielded the first glimpse of how these intimate partnerships are formed. The remarkable microbial and chemical diversity of the sponge-microorganism association, coupled with its postulated antiquity, makes sponges important model systems for the study of metazoan host-microorganism interactions, and their evolution, as well as for enabling access to biotechnologically important symbiont-derived natural products. In this Review, we discuss our current understanding of the interactions between marine sponges and their microbial symbiotic consortia, and highlight recent insights into these relationships from genomic studies.  相似文献   

13.
Flow cytometry (FCM) is emerging as an important tool in environmental microbiology. Although flow cytometry applications have to date largely been restricted to certain specialized fields of microbiology, such as the bacterial cell cycle and marine phytoplankton communities, technical advances in instrumentation and methodology are leading to its increased popularity and extending its range of applications. Here we will focus on a number of recent flow cytometry developments important for addressing questions in environmental microbiology. These include (i) the study of microbial physiology under environmentally relevant conditions, (ii) new methods to identify active microbial populations and to isolate previously uncultured microorganisms, and (iii) the development of high-throughput autofluorescence bioreporter assays.  相似文献   

14.
15.
海绵中可培养与原位微生物组成的DGGE指纹分析   总被引:3,自引:1,他引:2  
采用不依赖于分离培养的PCR-DGGE基因指纹技术对我国南海4种海绵体内的原位微生物种群组成以及混合培养的海绵微生物组成进行分析,通过比较不同指纹图间的差异与相似性,揭示可培养微生物与海绵原位存在的微生物的关系。由实验可以看出,来自同一海域的不同海绵体内的微生物存在宿主特异性,不同的培养条件是影响微生物可培养的重要因素,目前所能培养的海绵微生物还仅占自然环境下海绵微生物总量的很少一部分。  相似文献   

16.
Microbes associated with marine sponges play significant roles in host physiology. Remarkable levels of microbial diversity have been observed in sponges worldwide through both culture-dependent and culture-independent studies. Most studies have focused on the structure of the bacterial communities in sponges and have involved sponges sampled from shallow waters. Here, we used pyrosequencing of 16S rRNA genes to compare the bacterial and archaeal communities associated with two individuals of the marine sponge Inflatella pellicula from the deep-sea, sampled from a depth of 2,900 m, a depth which far exceeds any previous sequence-based report of sponge-associated microbial communities. Sponge-microbial communities were also compared to the microbial community in the surrounding seawater. Sponge-associated microbial communities were dominated by archaeal sequencing reads with a single archaeal OTU, comprising ∼60% and ∼72% of sequences, being observed from Inflatella pellicula. Archaeal sequencing reads were less abundant in seawater (∼11% of sequences). Sponge-associated microbial communities were less diverse and less even than any other sponge-microbial community investigated to date with just 210 and 273 OTUs (97% sequence identity) identified in sponges, with 4 and 6 dominant OTUs comprising ∼88% and ∼89% of sequences, respectively. Members of the candidate phyla, SAR406, NC10 and ZB3 are reported here from sponges for the first time, increasing the number of bacterial phyla or candidate divisions associated with sponges to 43. A minor cohort from both sponge samples (∼0.2% and ∼0.3% of sequences) were not classified to phylum level. A single OTU, common to both sponge individuals, dominates these unclassified reads and shares sequence homology with a sponge associated clone which itself has no known close relative and may represent a novel taxon.  相似文献   

17.
Many marine sponges, hereafter termed high-microbial-abundance (HMA) sponges, harbor large and complex microbial consortia, including bacteria and archaea, within their mesohyl matrices. To investigate vertical microbial transmission as a strategy to maintain these complex associations, an extensive phylogenetic analysis was carried out with the 16S rRNA gene sequences of reproductive (n = 136) and adult (n = 88) material from five different Caribbean species, as well as all published 16S rRNA gene sequences from sponge offspring (n = 116). The overall microbial diversity, including members of at least 13 bacterial phyla and one archaeal phylum, in sponge reproductive stages is high. In total, 28 vertical-transmission clusters, defined as clusters of phylotypes that are found both in adult sponges and their offspring, were identified. They are distributed among at least 10 bacterial phyla and one archaeal phylum, demonstrating that the complex adult microbial community is collectively transmitted through reproductive stages. Indications of host-species specificity and cospeciation were not observed. Mechanistic insights were provided using a combined electron microscopy and fluorescence in situ hybridization analysis, and an indirect mechanism of vertical transmission via nurse cells is proposed for the oviparous sponge Ectyoplasia ferox. Based on these phylogenetic and mechanistic results, we suggest the following symbiont transmission model: entire microbial consortia are vertically transmitted in sponges. While vertical transmission is clearly present, additional environmental transfer between adult individuals of the same and even different species might obscure possible signals of cospeciation. We propose that associations of HMA sponges with highly sponge-specific microbial communities are maintained by this combination of vertical and horizontal symbiont transmission.  相似文献   

18.
Many marine sponges (Porifera) are known to contain large amounts of phylogenetically diverse microorganisms. Sponges are also known for their large arsenal of natural products, many of which are halogenated. In this study, 36 different FADH2-dependent halogenase gene fragments were amplified from various Caribbean and Mediterranean sponges using newly designed degenerate PCR primers. Four unique halogenase-positive fosmid clones, all containing the highly conserved amino acid motif “GxGxxG”, were identified in the microbial metagenome of Aplysina aerophoba. Sequence analysis of one halogenase-bearing fosmid revealed notably two open reading frames with high homologies to efflux and multidrug resistance proteins. Single cell genomic analysis allowed for a taxonomic assignment of the halogenase genes to specific symbiotic lineages. Specifically, the halogenase cluster S1 is predicted to be produced by a deltaproteobacterial symbiont and halogenase cluster S2 by a poribacterial sponge symbiont. An additional halogenase gene is possibly produced by an actinobacterial symbiont of marine sponges. The identification of three novel, phylogenetically, and possibly also functionally distinct halogenase gene clusters indicates that the microbial consortia of sponges are a valuable resource for novel enzymes involved in halogenation reactions.  相似文献   

19.
The potential for nitrification in the Mediterranean sponge Aplysina aerophoba was assessed using a combined physiological and molecular approach. Nitrate excretion rates in whole sponges reached values of up to 344 nmol g(-1) dry weight (wt) h(-1) (unstimulated) and 1325 nmol g(-1) dry wt h(-1) (stimulated). Addition of nitrapyrin, a nitrification-specific inhibitor, effectively inhibited nitrate excretion. Ammonium was taken up by sponges in spring and excreted in fall, the sponges thus serving as either an ammonium sink or ammonium source. Nitrosospira cluster 1 and Crenarchaeota group I.1A 16S rRNA and amoA genes were recovered from A. aerophoba and other sponges from different world's oceans. The archaeal 16S rRNA genes formed a sponge-specific subcluster, indicating that their representatives are members of the stable microbial community of sponges. On the other hand, clustering was not evident for Nitrosospira rRNA genes which is consistent with their presence in sediment and seawater samples. The presence of both Nitrosospira cluster 1 and crenarchaeal group 1 phylotypes in sponge tissue was confirmed using fluorescently labelled 16S rRNA gene probes. This study contributes to an ongoing effort to link microbial diversity with metabolic functions in the phylogenetically diverse, elusive and so far uncultivated microbial communities of marine sponges.  相似文献   

20.
Sponges (Porifera) are aquatic, sessile filter feeders. As such they are permanently exposed to bacteria in the seawater. Molecular data recovered from sponges by PCR shows a high diversity in bacterial DNA. Hence, sponges are considered to live in close association with a diverse and abundant bacterial community. To recover the spatial distribution of bacteria in sponges we retrieved histological sections of Aplysina aerophoba fixed in situ. By combining signals from fluorescence in situ hybridization (FISH), light microscopy and scanning electron microscopy we revealed a detailed histological picture of the spatial organization of the sponge microbial association within the sponges. Our histological results confirm a high abundance of cyanobacteria inside A. aerophoba while other living bacteria are almost absent. This detailed insight into sponge microbiology could only be achieved by the combination of careful sample preparation and different microscopical and histological methods. It also shows the need to confirm molecular datasets in situ and with a high spatial resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号