首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  1. Previous work has demonstrated that when cells of Chlorellaprotothecoides are grown mixotrophically under illuminationin a medium rich in nitrogen source (urea) and poor in glucose,normal green cells are obtained, while in a medium rich in glucoseand poor in the nitrogen source, strongly bleached cells containingapparently no discernible chloroplast structures — called"glucose-bleached" cells — are produced either in thelight or in darkness. When the green cells are incubated ina glucose-enriched mineral medium without added nitrogen source,they are fairly rapidly bleached with concomitant degenerationof chloroplast structures (" bleaching "). When, on the otherhand, the "glucose-bleached" cells are transferred in a nitrogen-enrichedmedium without added glucose under illumination, they turn greenwith regeneration of chloroplasts (" greening "). In the presentstudy changes in contents of carbohydrate and fatty acid inalgal cells were followed during these processes of "bleaching"and "greening.".
  2. During the process of "bleaching", the quantityof glucose existingin the insoluble carbohydrate fraction ofalgal cells increasedrapidly and markedly. A considerable increasewas also observedin the contents of cells in oleic, linoleicand palmitic acids.It was noted, however, that linolenic aciddecreased in quantityduring the most active phase of cell bleaching.
  3. During the process of "greening", the glucose in the insolublecarbohydrate fraction rapidly decreased, suggesting that itis utilized, as carbon and energy sources, for the chloroplastregeneration. Linolenic acid was found to be synthesized inparallel with formation of chlorophyll. A peculiar pattern ofchange in contents was observed with oleic and palmitic acids,which was interpreted as being related with the process of cellulardivision occurring incidentally during the process of greening.
(Received September 24, 1966; )  相似文献   

2.
  1. It has been demonstrated that when the cells of Chlorella protothecoidesare grown mixotrophically under illumination in a medium richin nitrogen source (urea) and poor in glucose, the normal greencells are obtained, while in a medium rich in glucose and poorin the nitrogen source, entirely chlorophyll-less cells withprofoundly degenerated plastids ("glucose-bleached" cells) areproduced, irrespective of whether in the light or in darkness.The "glucose-bleached" cells turn green with regeneration offully organized chloroplasts when incubated in a nitrogen-enrichedmedium in the light ("light-greening"), while in the dark theybecome pale green with formation of only partially organizedchloroplasts ("dark-greening"). When, on the other hand, thegreen cells are transferred into a medium enriched with glucose,they are bleached fairly rapidly with degeneration of chloro-plastsin the light as well as in darkness ("bleaching"). Using 35Sas a tracer, investigations were made on the changes of contentsof the algal cells in sulfolipid and other sulfur compoundsduring the processes of the greening and bleaching.
  2. By determiningthe radioactivities of chromatographically separatedsulfur-containingcompounds of the uniformly 35S-labeled green("G") and "glucose-bleached"("W") cells, it was found thatthe concentration of a speciesof sulfolipid (discovered byBENSON et al.) as well as thoseof glutathione, sulfotriosesand most of the other sulfur-containingcompounds were at least5 times higher in the "G" cells thanin the "W" cells, whilesulfoquinovosyl glycerol was presentin approximately equalamounts in the two types of cells.
  3. Phospholipidcontents and compositions in the two types of algalcells werefound to be practically identical.
  4. The sulfolipid contentof algal cells increased and decreasedalmost in parallel withthe processes of greening and bleaching,respectively.
  5. Studyingthe mode of incorporation of radiosulfate into varioussulfurcompounds of algal cells during the processes of "light-anddark-greening" and "bleaching" (lasting about 70 hr), itwasfound that active 35S-incorporation into sulfolipid occurredthroughout the process of "light-greening," while in the "dark-greening"and "bleaching" the active incorporation abruptly ceased afterthe initial 24 hr period of experiments. It was suggested thatthe biosynthesis of the sulfolipid is closely related to theformation of photosynthetic apparatus in chloroplast.
  6. Whenthe 35S-labeled green cells were bleached in a medium containingno radiosulfate, the 35S-sulfolipid and most of other 35S-sulfurcompounds decreased markedly but the 35S-sulfoquinovosyl glycerolincreased considerably. It was inferred that the deacylationof the sulfolipid, a surfactant lipid, with formation of watersoluble sulfoquinovosyl glycerol may be a cardinal event ofbleaching process, causing a disintegration of the intact architechtureof photosynthetic apparatus.
  7. Based on these observations itwas concluded that the sulfolipidis an integral component ofphotosynthetic structure.
1This work was partly reported at the Symposium on Biochemistryof Lipids, sponsored by the Agricultural Chemical Society ofJapan, Sapporo, July, 1964.  相似文献   

3.
  1. As previously demonstrated, normal cells of Chlorella protothecoidesare bleached with degeneration of chloroplasts when they areincubated, under aerobic conditions—either in the lightor in darkness—, in a glucose-containing medium withoutadded nitrogen source ("glucose-bleaching"). It was found inthe present study that under the atmosphere of N2, neither bleachingnor growth of algal cells occurs in the dark, while in the lighta significant growth of cells takes place with formation ofa certain amount of chlorophyll.
  2. Studies on the effects ofvarious inhibitors (ammonium ion,DNP, CMU, -hydroxysulphonates,arsenate, cyanide, azide, andantimycin A) under different conditionsshowed that oxidativephosphorylation is a necessary processfor the occurrence ofthe glucosebleaching as well as the assimilationof glucose(cellular growth). Under light-anaerobic conditionsin the presenceof glucose, assimilation of glucose (cellulargrowth) takesplace being supported by photophosphorylation,but no bleachingoccurs.
  3. When the algal cells in the courseof bleaching were transferredto the glucose-free mineral medium,the cell growth ceased immediatelybut the cell bleaching proceededfor several hours before itscessation. The respiratory activity,which was high in the glucose-containingmedium, became loweron transferring the algal cells into theglucose-free medium.The lowered level of respiration was maintained,for more than8 hr after the transfer of cells to the glucose-freemedium.
  4. When the cells in the course of bleaching were placed underthe atmosphere of N2, the cell bleaching ceased almost instantaneously.
  5. Based on these observations and other inhibition experiments,it was inferred that a certain intermediate(s) produced by theaerobic respiration of glucose is closely associated with theoccurrence of cell bleaching, and that an O2-requiring stepmay be involved in the process of chlorophyll degradation.
(Received September 9, 1965; )  相似文献   

4.
  1. It has been demonstrated previously that when Chlorella protothecoidesis grown in a medium rich in glucose and poor in nitrogen source(urea), chlorophyll-less cells with markedly degenerated plastids—called "glucose-bleached" cells—are produced eitherin the light or in darkness. When the glucose-bleached cellsare incubated in a medium enriched with the nitrogen sourcebut without added glucose, normal green cells with fully organizedchloroplasts are obtained in the light, and pale green cellswith partially organized chloroplasts in darkness. During theseprocesses of chloroplast development in the glucose-bleachedcells, there occurs, after a certain lag period, an active DNAformation followed by a more or less synchronous cellular division.In the present study the effects of light on the DNA formationand cellular division were investigated in the presence of CMUor under aeration of CO2-free air to exclude the interveninginfluence of photosynthetic process.
  2. It was revealed thatlight severely suppresses the DNA formationand cellular divisionof the glucose-bleached cells while enhancingremarkably theirgreening. The suppression was saturated atthe light intensityof about 1,000 lux. Blue light was mosteffective, being followedby green, yellow and red light inthe order of decreasing effectiveness.
  3. Further experiments unveiled that light exerts two apparentlyopposing effects on the DNA formation depending upon the timeof application during the incubation of algal cells. When thealgal cells were illuminated only during the lag period beforethe active DNA synthesis, there occurred an enhancement of theDNA synthesis occurring during the subsequent dark incubation.When, on the other hand, the cells were transferred to the lightfrom darkness at or after the start of the DNA synthesis, itcaused an almost complete abolition of the subsequent synthesisof DNA in the algal cells. No such effects of light were observedwith RNA and protein (total)
  4. These findings were discussedin relation to the process ofchlorophyll formation occurringconcurrently in the algal cells.
(Received August 10, 1967; )  相似文献   

5.
When Chlorella protothecoides is grown mixotrophically in thelight in a medium rich in glucose and poor in nitrogen source(urea), one obtains the cells that are entirely devoid of chlorophylland containing only little RNA and protein. When these cells—referredto as "glucose-bleached" cells—are further grown in thelight with provision of nitrogen source, but without glucose,sequential syntheses of RNA, protein and chlorophyll take place.If the glucose-bleached cells are incubated in the dark underthe same nutritional condition, RNA, protein and chlorophyllare also successively formed in relatively small amounts. Thecells obtained under such a condition are, in many respects,similar to the cells that are obtained when the alga is grownin the dark in a medium poor in glucose and rich in the nitrogensource. These cells, which are called the "etiolated cells",are faintly green in color and contain larger amounts of RNAand protein compared with the chlorophyll-less glucose-bleachedcells. The glucose-bleached cells and the etiolated cells showapproximately the same content of DNA per cell. When the etiolatedcells are incubated in the light with provision of nitrogensource, but without glucose, they become green with active synthesisof chlorophyll and additional syntheses of RNA and protein. Based on these results and those to be reported later, it wasconcluded that the greening of the glucose-bleached cells involvesa light-independent phase followed by a light-requiring phasewhich entails the greening of cells and full organization ofchloroplasts, and that the latter process is essentially thesame as that taking place when the etiolated cells are incubatedin the light with provision of nitrogen source in the absenceof glucose. (Received September 5, 1964; )  相似文献   

6.
  1. Previous studies have shown that when Chlorella protothecoidesis grown in a medium rich in glucose and poor in nitrogen source(urea), apparently chlorophyll-less cells with profoundly degeneratedplastids—referred to as "glucose-bleached cells—areproduced either in the light or in darkness. When the glucose-bleachedcells are incubated in a medium enriched with the nitrogen sourcebut without added glucose, an active formation of chlorophylloccurs after a certain lag period under illumination, whilein darkness a very small amount of chlorophyll is formed atabout the same time as in the light. The stimulating effectof light on the chlorophyll formation is not appreciably affectedwhen the photosynthetic CO2-fixation of greening algal cellsis blocked by the addition of CMU. In the present study, itwas further found that the light-enhanced chlorophyll formationproceeds, although at a somewhat lower rate, under aerationof CO2-free air. All the experiments in this work were doneunder these non-photosynthetic conditions to exclude any influenceof photosynthates.
  2. The effect of light (from daylight fluorescentlamps) on thechlorophyll formation in the glucose-bleachedalgal cells wassaturating at about 1,000 lux. Blue light wasfound to be mosteffective; yellow, green and red light followingin the orderof decreasing effectiveness.
  3. When the bleachedalgal cells were illuminated for a short periodin the lag phaseof chlorophyll formation and subsequently incubatedin darkness,there occurred an appreciable enhancement of chlorophyllformationin the dark. When the short illumination was appliedat differenttimes of the lag phase, the enhancement was inducedto almostthe same extent. But the longer the duration of theilluminationduring the lag phase, the greater was the enhancementof chlorophyllformation in the subsequent dark incubation.In such experimentsblue light was most effective and red lightleast, as it wasthe case in the experiments of continuous illumination.An intervenientillumination of the bleached cells at lowertemperatures orunder the atmosphere of N2 produced little orno enhancementof the chlorophyll formation in the subsequentdark incubation.
  4. Based on these results, it was concluded that the light enhancementof chlorophyll formation in the glucose-bleached algal cellsis mediated by a non-chlorophyllous photoreceptor(s), absorbingmaximally blue and yellow light, and that a light-induced changeof the photoreceptor is immediately followed by a certain dark(temperaturedependent and aerobic) process(es) which is connected,directly or indirectly, to the chlorophyll synthesis.
(Received August 10, 1967; )  相似文献   

7.
1. Measuring the chlorophyll contents and growth of the algalcells grown in media containing different amounts of glucose(G) and urea fas a nitrogen source, N), it was found that theratio N/G determines pigmentation of the cells (colourless,yellow, yellowish green and green) under the experimental conditionsused, and thus a sort of colour map of the differently pigmentedcells was obtained. 2. The bleached cells produced at lower N/G ratios and the greencells obtained at higher ratios could he cultured successivelyunder heterotrophic and photoautotrophic conditions, respectively,and both forms were interconvertible on transferring each celltype into a new medium having appropriate N/G ratio. 3. Studies on these bleaching and greening processes under differentexperimental conditions revealed that the greening requiresessentially the supply of N-sources—no strict specificitywas observed with different N-sources tested—as well aslight, but can take place independently of growth, while thebleaching is caused most strongly by glucose (and fructose)among the carbon sources examined and proceeds essentially independentof light. 4. The bleaching effect of glucose at its higher concentrationsis primarily due to its degradation effect on chloroplast structuresincluding lamellae. This effect of glucose is markedly diminishedat its decreasing concentrations and is also counteracted bythe supply of N-source (urea) of higher concentrations. 1 This work was partly reported at the Symposium on Cell Differentiationsponsored by the Society of Agricultural Chemistry, Japan, inApril, 1963 and at the Symposium on Nitrogen and Plant by theJapanese Society of Plant Physiologists in October, 1963.  相似文献   

8.
  1. Solubilization of chioroplasts with a mixture of 1 per centDuponol C and 1 per cent Span 80 (3: 1) caused a destructionof activity in the HILL reaction, but the treatment broughtabout an increase by about 60 per cent in the rate of ascorbatephotooxidation in the presence of DPIP. Heating the broken chloroplastscaused a marked decrease in the photooxidation activity. Byadding surface- active agents to the boiled preparation, theactivity was restored up to almost 80 per cent of the originallevel.
  2. With colloidal suspensions of isolated chiorophylls,ascorbatewas only slightly photooxidized in the presence ofDPIP. Byaddi tion of the surface-active agents, the activitywas greatlyenhanced.
  3. Dependency of the photooxidation bywhole and solubilized chloroplastsand isolated chlorophylla on the presence of DPIP was examined.DPIP can serve as anintermediate electron carrier in solubilizedchloroplasts aswell as in whole chloroplasts.
  4. Effect of o-phenanthrolineon ascorbate photooxidation by thesethree preparations wastested. With solubilized chloroplastsand isolated chlorophylls,the addition of the inhibitor hadno influence on their ascorbatephotooxidation either in thepresence or absence of DPIP.
  5. Treatmentof whole chloroplasts with the surface-active agentsinducedan activity of photooxidation of cytochrome c. The electron-flowpattern for the photooxidation of ascorbate by whole and solubilizedchloroplasts was briefly discussed.
1 Contribution No. 130 from the Department of Biology, Facultyof Science, Kyushu University. Aided in part by Grant-in-Aidfor Fundamental Scientific Research from the Ministry of Education. (Received August 23, 1962; )  相似文献   

9.
  1. Menadione (vitamin K3) was found to be completely reduced byilluminated spinach chloroplasts under highly anaerobic conditionand in the presence of ethylenediamine tetraacetate (EDTA) inthe reaction mixture. This photoreductive reaction is sensitivetoward heat-treatment and inhibited by 2?10-3M hydroxylamine.
  2. In the presence of oxygen, the reduced form of menadione israpidly photooxidized by chloroplasts. This photooxidative activityalso is suppressed by heat-treatment but not inhibited by hydroxylamine.
  3. Dyes which are inefficient as HILL oxidants such as thionineand methylene blue were found to be readily reduced by illuminatedchloroplasts, if the experimental conditions were appropriateto prevent the reoxidation of the photoreduced dyes; i.e., exhaustiveremoval of oxygen and the addition of EDTA in the reaction mixture.Menadione was found to accelerate the HILL reaction with thesedyes as oxidant under such experimental conditions.
  4. In thepresence of molecular oxygen in the reaction mixture,menadionewas found to inhibit the HILL reaction with 2,6–dichlorophenolindophenol as oxidant, while the reaction rate was little influencedin high anaerobiosis.
  5. These findings are explained by theintermediary oxidation and(photo-) reduction of menadione asan intermediary hydrogencarrier, and by the trends toward rapidphotooxidation of reducedmenadione.
(Received July 2, 1960; )  相似文献   

10.
  1. The "glucose-bleached" cells of Chlorella protothecoides, whichwere obtained by the method described previously, were transferredto a glucose-free medium containing basal mineral nutrientsalone in the dark, and after a certain period of time, the cellsuspension was supplied with urea and light to induce the greeningof cells. At different times before and after the provisionof urea and light, the inhibitors were applied to the cultureto test their effects upon the process of greening.
  2. Markedgreening of the glucose-bleached cells occurred aftera lagperiod in the control culture. 5-Fluorouracil inhibitedthecell greening strongly when it was applied at differenttimesbefore the provision of urea and light. When applied aftertheprovision of urea and light, the suppressive effect of 5-fluorouracilgradually decreased with the delay of its application. No inhibitiveeffect was observed when the uracil analogue was added laterthan the 12th hr after the provision of urea and light, thetime around which the chlorophyll formation started in the controlculture. On the other hand, the cell division was much morestrongly affected by 5-fluorouracil. Even when it was appliedat the 18th hr after the provision of urea and light, the celldivision was completely halted, indicating that the greeningand division of the glucose-bleached cells are separate processes.Different mechanisms of action of the uracil analogue towardsthese two processes were suggested.
  3. Dihydrostreptomycin showedits strongest suppressive effectwhen added at the beginningof the dark incubation of algalcells in the glucose-free medium,and with the delay of application,its effect was progressivelyreduced, even during the periodof the dark incubation. Thesuppression, however, was stillmarked when it was applied atthe 15th hr.
  4. Chloramphenicol was found to inhibit stronglythe chlorophyllformation and protein synthesis, but, to a muchlesser extent,RNA synthesis. Acridine orange suppressed thecell greeningand division at such a low concentration as 1.5µg/ml.
  5. Based on these observations it was concludedthat synthesesof nucleic acid and protein are essential processesfor thegreening of the glucose-bleached algal cells. Successiveeventsoccurring in the greening process were discussed.
(Received March 9, 1965; )  相似文献   

11.
  1. By growing Chlorella protothecoides in a medium rich in glucoseand poor in nitrogen source (urea), entirely chlorophyll-lesscells, called "glucose-bleached’ cells, were obtained.These cells were found to have neither discernible plastid structuresnor photosynthetic activities. When these cells were incubatedin a nitrogenenriched mineral medium without added glucose,a remarkable formation of fully organized chloroplasts occurredin the light and only partially organized chloroplasts weredeveloped in darkness.
  2. In the dark-incubated algal cells asmall but appreciable amountof chlorophyll was formed, beingaccompanied by developmentof significant activities for thePMS- and FMN-catalyzed photophosphorylationsand the HILL reaction.The development of the capacity for performingphotosyntheticCO2-fixation, however, was negligible.
  3. During the processof "re-generation" of chloroplasts in thelight, there occurredactive formation of chlorophyll followedby development of allthe photic activities mentioned above.Chlorophyll formationas well as development of the photic activitiesproceeded firstin a manner of autocatalytic reaction and laterin the formof the first-order reaction. It was inferred thatthe light-absorbingagent which mediates the chlorophyll synthesisis chlorophyllitself.
  4. The activities for the PMS- and FMN-photophosphorylations,theHILL reaction and photosynthetic CO2-fixation were recognizedalready in the algal cells at an early stage of greening inthe light, in which the "discs" were developed but no completelamellar structure was observed. Further processes of increaseof these photosynthetic and related activities—as measuredat a high and a lower light intensities—were studied inrelation to the chlorophyll formation under continuous illuminationand under light-dark conditions. It was found that the PMS-photophosphorylationactivity was developed always in parallel with the chlorophyllformation under these different light conditions. Developmentof the activities for the other photic reactions, however, lagged,to different extents, behind the formation of chlorophyll inthe later phase of greening of algal cells under these conditions.
  5. Based on these results the modes of formation of the componentsinvolved in these photic reactions were surmised.
(Received September 15, 1965; )  相似文献   

12.
  1. A linear relation was found between the relative light intensityat 5 in depth and the mean chlorophyll a content of the euphoticzone, when they were plotted on logarithmic scales. The intensitiesof underwater lights of different wave lengths were measuredby a photocell with various colored filters. It was recognizedthat with the increase in chlorophyll a content the proportionof blue light fraction became reduced and that of red lightincreased. A similar relation was also found in the sea.
  2. Thephotosynthetic rate.light relation was investigated withthesuspension of cultured Chlorella and Tabellaria. At lowlightintensities, the photosynthetic rate for red light waslargerthan those for blue and green lights. The photosyntheticrateunder the mixed light of red and blue was equal to thesum ofthe rates in the individual lights, so far as the intensityof each light was low. But when the intensity of red light wassufficiently high, the addition of blue light brought no furtherincrease in photosynthesis.
  3. The photosynthetic rate-depthrelations were investigated bythe surface and underwater exposuremethods. Good agreementswere found between the results obtainedby these two differentmethods. However, there are some discrepanciesbetween the resultsof in situ exposure experiments and thoseobtained by the twomethods.
(Received January 11, 1963; )  相似文献   

13.
  1. Effect of light on ion absorption and resting potential of theinternodal cell of Nitella flexilis was investigated under variousconditions.
  2. On illumination, the resting potential increasedby about 30mVin 10–4 M KCl and by about 60 mV in 10–4M NaClsolution. A similar photoelectric response was also observedin 10–3 M KCl, 10–2 M CaCl2 and 5 x 10–2 MCaCl2 solutions, but not at all in 10–2 M KCl solution.
  3. Absorption of ions by the cell took place in parallel withthelight-induced change in resting potential.
  4. Red and bluelights were very effective in increasing the restingpotential,while green light was almost ineffective. These differenteffectsof color lights were in good agreement with their effectsinincreasing the osmotic value of the cell.
  5. The photoelectricresponse was not affected by phenylurethane,which, on the otherhand, strongly inhibited the light-inducedion absorption.
  6. Theuptake of ions by the cell from the external medium intothevacuole is assumed to proceed in two different steps: thefirstis the process involving the ion movements across theoutermostplasmalemma, and the second is that involved in thetransportof ions through the cytoplasmic layer and tonoplast.The formerprocess is considered to be influenced by the increasein restingpotential probably caused by the light absorbed bychlorophyll.The process was, however, suggested to be independentof photosynthesis.On the other hand, the latter process issupposed to be relatedto photosynthesis. A discussion was madealong this line.
(Received July 26, 1962; )  相似文献   

14.
  1. Several factors affecting sporulation of a wild yeast, Hansenulasaturnus, especially carbon sources and the carbon-nitrogenratio of sporulation medium were studied.
  2. The sporulationis stimulated at a certain definite C/N ratioof glucose medium.
  3. Several carbon sources such as ethanol, acetate, lactate,glycerol,succinate, glucose, gluconate and citrate are utilizedby theorganism both for growth and sporulation.
  4. The numberof spores in an ascus depends on the C/N ratio ofthe medium.An increase in the ratio stimulates the yield of2-and 3-sporedasci, especially of the former. One-spored ascibecome abundantas this ratio decreases.
  5. Lysine promotes sporulation in anacetate medium, and its presencein a large amount in glucosemedium also stimulates sporulation,while a small amount isinhibitory. When lysine was employedas the sole nitrogen source,most of the asci were 1-spored.
  6. It is discussed that sporulationof yeast is induced by a balanceof metabolism, rather thanby one definite "sporulation substrate".
1 Present address: Laboratory of Microbiology, Department ofAgriculture, T{circumflex}hoku University, Sendai. (Received May 23, 1961; )  相似文献   

15.
  1. Formyltetrahydrofolate synthetase (E. C. 6. 3. 4. 3) was foundto be widely distributed in higher plants and the high enzymeactivity was observed in green leaves of Brassica and Alliumspecies, spinach, and in pea seedlings. In pea seedlings, theenzyme activity changed during the course of germination, andmost of the enzyme activity was located in a soluble fractionof the cytoplasm.
  2. The enzyme was labile and lost the activityrapidly, even whenstored at 5 in the presence of 0.1 M mercaptoethanol.It was,however, found that ammonium sulfate was very effectivein stabilizingthe enzyme activity.
  3. The enzyme has been purifiedapproximately 500-fold from extractsof pea seedlings by treatmentswith ammonium sulfate, protaminesulfate, hydroxylapatite, calciumphosphate gel, and DEAE-cellulosecolumn chromatography.
  4. Thepurified enzyme was specific for formate, ATP and FAH4,andthe Michaelis constants for these reactants were 2.1 10–2M, 5.1 10–4 M, and 5.6 10–3 M, respectively.
  5. The optimum pH was found to be 8.0, and the optimal temperaturewas observed at 37. Both NH4$ and a divalent cation (MgSS orMnSS) were required for the optimal activity.
1 Studies on the Enzymatic Synthesis and Metabolism of FolateCoenzymes in Plants. II. (For the previous paper see reference(8)) A part of this paper was presented at the Meeting of theKansai Division of the Agricultural Chemical Society of Japan,Kyoto, January 29, 1966.  相似文献   

16.
  1. Investigations were made on the influence of inorganic nitrogenouscompounds upon the the germination of tobacco seeds (Nicotianatabacum L. var. virginica (AGDH.) COM. "Bright Yellow") inducedby GA3, kinetin and ammonium salts of organic acids. Potassiumnitrate, ammonium chloride, ammonium sulfate and ammonium nitrategreatly increase the germination of the seeds induced by theabove reagents, while these inorganic salts, given alone, arealmost ineffective in causing germination.
  2. Kinetin was shownto induce germination of tobacco seeds inthe dark. The discrepancywith the results of previous investigationsin this respectwas discussed.
  3. It was inferred that nitrogenous metabolismis involved in theprocess of dark-germination of tobacco seedsas induced by theabove-stated stimulating factors and promotedby inorganic nitrogenoussubstances.
(Received July 17, 1961; )  相似文献   

17.
  1. The sugars which induced gigantism of Chlorella cells wereglucose,fructose, galactose, mannose, xylose and arabinose.These sugarswere utilized as respiratory substrates by thealgal cells.
  2. The cellular division of Chlorella was stimulatedby glucoseand galactose, but suppressed by fructose, mannose,xylose andarabinose, while all these sugars evoked gigantism.No correlationwas found between cellular division and gigantism,
  3. The photosynthetic activity of giant Chlorella varied withthesorts of sugars added. It was decreased by glucose, fructoseand mannose, but was unaffected by other sugars such as galactose,xylose and arabinose.
  4. The respiratory activity of giant Chlorellacells as much higherthan that of control cells.
  5. The amountsof protein-N and dry weight per unit volume of giantChlorellawere much less than those of control cells.
1 Present address: Department of Chemistry, College of GeneralEducation, Osaka University, Toyonaka, Osaka.  相似文献   

18.
  1. Several kinds of a-hydroxysulfonates, the bisulfite additioncompounds of aldehydes and ketones, were found to inhibit thephotosynthetic carbon dioxide fixation of the barley and wheatseedlings, tobacco leaf and Chlorella cells. Bisulfite additioncompounds of glyoxal, glyoxylate and benzaldehyde were moreeffective in this respect than those of formaldehyde and acetaldehyde.
  2. The presence of -hydroxysulfonate causes an increase in ratiosof :14CO2 incorporated in glycolate and alanine, and a decreasein incorporation in serine, malate, isocitrate and citrate.It was inferred that these changes are caused by the blockingof the formation of glyoxylate through inhibition of glycolicacid oxidase by the poison.
  3. A reaction scheme was proposedto account for the above-statedresults, and the bearing ofthese findings on the possible roleof glycolic acid oxidasein the photosynthetic carbon dioxidefixation and in the formationof amino and organic acids wasdiscussed.
(Received December 8, 1961; )  相似文献   

19.
  1. Based on the microscopic observations, two stages, "giant cellstage" and the subsequent "palmelloid body stage", were distinguishedin the process of formation of giant Chlorella induced by theaddition of sugars. The "giant cell" is much larger in sizethan the control cell, but the other morphological featuresare the same as those of the latter. The "palmelloid body" isa form composed of many conjoined autospores.
  2. When a highconcentration of glucose was maintained in the medium,gigantismwas also maintained. Under this condition, the algashows acyclic transformation between "giant cell" and "palmelloidbody"without returning to the small single cells.
  3. Large amountsof carbohydrate composed of hexose were foundto be accumulatedin the giant algal cells, and it was inferredthat this carbohydrateaccumulation causes greater enlargementof cell volume as comparedwith control cells.
  4. Uronic acids, which were found to be absentin the control cells,were formed and lost in the cells culturedin the glucose mediumin parallel with the appearance and disappearanceof gigantism.
  5. Pectic substances, from which uronic acids areconsidered tobe derived during the extraction procedure, werefound to bepresent only in giant Chlorella.
  6. The conjoinedautospores in giant Chlorella (at the palmelloidbody stage)were separated to some extent by the addition ofEDTA, and theresulting cells were similar to control Chlorellacells.
  7. Basedon these results it was inferred that inductive formationofthe pectic substances is causally related with the appearanceof "palmelloid body".
1 Present address: Department of Chemistry, College of GeneralEducation, Osaka University, Toyonaka, Osaka.  相似文献   

20.
  1. Using the technique of synchronous culture, investigationsweremade of the effects of temperature and light-intensityon cellularlife cycle of Chlorella ellipsoidea. Some improvementsin theculture technique for obtaining a good synchrony of algalgrowthwere described.
  2. By following the changes of averagecell volume and cell numberoccurring during culturing, therates of the following processesof life cycle were determined:(i) "growth" (or the increasein cell mass) occurring from thestage of smaller cells (Da)to the stage of ripened cell (L3),(ii) "ripening" (or processofformation of "nuclear substances"as estimated from the averagenumber of daughter cells formedfrom single mother cell), and(iii) " maturing and division" which leads to the full maturationof mother cells (L-cells)and their division into separate daughtercells (D-cells).
  3. "Growth"and "ripening" were found to be dependent in light,"maturingand division" light-independent. The time requiredfor "growth"and "ripening" (C) is dependent on temperaturebut independentof light intensity, the onset of "maturing anddivision" occurringat the same time (D) of culturing undervaried light intensities.The average cell volume at this stage(L3),however, was foundto be markedly modified by light intensity;larger with highertemperatures (see Fig. 4).
  4. Changes in incubation temperature(under the condition of saturatinglight intensities) were foundto affect the life cycle in thefollowing way: (i) The timeof onset of "maturing and division"(D), varies markedly withculturing temperature; earlier athigher temperatures, (ii)The average cell volume at this stagealso depends on temperature; smaller at higher temperatures.
  5. The average number of daughtercells (n) emerging from singlemother cells, was found to beuninfluenced by culturing temperature;(4.0–4.1 underthe conditions of the present study). Itwas found that thedivision number n is remarkably varied bychanging the lightintensity in the "growth" and "ripening"phases; 2.0 at 1 kilolux,3.7 at 5 kilolux, 4.2 at saturatinglight intensities (10 and25 kilolux). This finding was explainedby assuming a light-dependentformation of "nuclear substances"during the "growth" and "ripening"phases, the quantity of thesubstances in the cell at L3 stagedeterminig the division number.
  6. The experimental data wereanalyzed reaction kinetically, therate constants and othercharacteristics of the reactions constitutingthe processesof life cycle were determined, and values forthe apparent activationenergy for each reaction were computed.The reactions were discussedwith special reference to theirrelationship with photosyntheticprocess was discussed.
(Received November 7, 1959; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号