首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
AIM: To stimulate poly-beta-hydroxybutyrate (PHB) accumulation in Synechocystis sp. PCC 6803 by manipulating culture conditions. METHODS AND RESULTS: Stationary phase cultures of Synechocystis sp. PCC 6803 were subjected to N- and P-deficiency, chemoheterotrophy and limitations of gas-exchange. Enhanced PHB accumulation was observed under all the above conditions. However, interaction of P-deficiency with gas-exchange limitation (GEL) in the presence of exogenous carbon boosted PHB accumulation maximally. CONCLUSIONS: Combined effects of P-deficiency and GEL boosted PHB accumulation up to 38% (w/w) of dry cell weight (dcw) in Synechocystis sp. PCC 6803 in the presence of fructose and acetate. This value is about eightfold higher as compared with the accumulation under photoautotrophic growth condition. SIGNIFICANCE AND IMPORTANCE OF THE STUDY: These results showed a good potential of Synechocystis sp. PCC 6803 in accumulating poly-beta-hydroxybutyrate, an appropriate raw material for biodegradable and biocompatible plastic. Poly-beta-hydroxybutyrate could be an important material for plastic and pharmaceutical industries.  相似文献   

2.
Nostoc muscorum, a heterocystous cyanobacterium, produced poly--hydroxybutyrate ( PHB) up to 8% (w/w) dry cells when grown photoautotrophically but 35% when grown mixotrophically with 0.4% (w/v) glucose and acetate after 21 d. Gas-exchange limitations under mixotrophy and chemoheterotrophy with 0.4% (w/v) acetate enhanced the accumulation up to 40–43% (w/w) dry cells, the value almost 5-fold higher with respect to photoautotrophic condition.Revisions requested/10 September 2004; Revisions received 9 September 2004/11 November 2004  相似文献   

3.
Accumulation of poly-beta-hydroxybutyrate (PHB) by photoautotrophic microorganisms makes it possible to reduce the production cost of PHB. The Synechocystis sp. PCC6803 cells grown in BG11 medium under balanced, nitrogen-starved or phosphorus-starved conditions were observed by transmission electron microscope. Many electron-transparent granules in the nitrogen-starved cells had a diameter up to 0.8 micron. In contrast, the number of granules in the normally cultured cells decreased obviously and only zero to three much smaller granules were in each cell. These granules were similar to those in bacteria capable of synthesizing PHB. They were proved to be PHB by gas chromatography after subjecting the cells to methanolysis. Effects of glucose as carbon source and light intensity on PHB accumulation in Synechocystis sp. PCC6803 under nitrogen-starved cultivation were further studied. Glucose and illumination promoted cell growth but did not favor PHB synthesis. After 7 days of growth under nitrogen-starved photoautotrophic conditions, the intracellular level of PHB was up to 4.1% of cellular dry weight and the PHB concentration in the culture broth was 27 mg/l.  相似文献   

4.
Poly-beta-hydroxybutyrate (PHB) accumulation in Nostoc muscorum was studied in presence of various metabolic inhibitors. Supplementation of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) was found to suppress PHB accumulation in phosphate-limited N. muscorum under photoautotrophic growth condition. PHB accumulation increased up to 21% and 17% from an initial PHB content of 8.5% of dry weight, respectively, under carbonylcyanide m-chlorophenylhydrazone (CCCP) and dicyclohexylcarbodiimide (DCCD) treatment, whereas 2,4 -dinitrophenol (DNP) supplementation depicted insignificant effect on PHB pool of the test cyanobacterium. Supplementation of l-methionine-dl-sulfoximine (MSX) and azaserine was also found to increase PHB accumulation in N(2) -fixing and NH(4)(+) -grown N. muscorum, but not in NO(3)(-) -grown cells. The stimulatory action of monofluoroacetate on PHB accumulation was suppressed in presence of alpha-ketoglutarate and DCMU. Interestingly, 2,3 -butanedione supplementation was not only found inhibitory for accumulation of PHB in P-deficient, N-deficient and chemoheterotrophically grown N. muscorum but suppression of PHB synthesis was also evident in control cultures in presence of 2,3 -butanedione. The possible mechanisms are discussed.  相似文献   

5.
Accumulation of poly-beta-hydroxybutyrate (PHB) in Nostoc muscorum was studied. Cells harvested at stationary phase of growth depicted maximum accumulation i.e. 8.6% (w/w) of dry cells as compared to lag (4.1%) or logarithmic (6.1%) phases of cultures. In contrast to alkaline pH, acidic pH, continuous illumination and cells grown in presence of combined nitrogen sources, such as NH(4)Cl and KNO(3), were found to affect PHB accumulation negatively. However, P-deficiency and addition of exogenous carbon sources (acetate, glucose, maltose, fructose and ethanol) were found stimulatory for PHB accumulation. In this report PHB accumulation in N. muscorum was boosted up to 35% (w/w) of dry cells when cells supplemented with 0.2% acetate were subjected to dark incubation for 7 days. Further studies are needed at metabolic engineering level or to apply genetic engineering techniques to improve the expression level of PHB photoproduction in cyanobacteria.  相似文献   

6.
Biopolymers such as polyhydroxyalkanoates (PHAs) are a class of secondary metabolites with promising importance in the field of environmental, agricultural, and biomedical sciences. To date, high-cost commercial production of PHAs is being carried out with heterotrophic bacterial species. In this study, a photoautotrophic N2-fixing cyanobacterium, Aulosira fertilissima, has been identified as a potential source for the production of poly-β-hydroxybutyrate (PHB). An accumulation up to 66% dry cell weight (dcw) was recorded when the cyanobacterium was cultured in acetate (0.3%) + citrate (0.3%)-supplemented medium against 6% control. Aulosira culture supplemented with 0.5% citrate under P deficiency followed by 5?days of dark incubation also depicted a PHB accumulation of 51% (dcw). PHB content of A. fertilissima reached up to 77% (dcw) under P deficiency with 0.5% acetate supplementation. Optimization of process parameters by response surface methodology resulted into polymer accumulation up to 85% (dcw) at 0.26% citrate, 0.28% acetate, and 5.58?mg?L?1 K2HPO4 for an incubation period of 5?days. In the A. fertilissima cultures pre-grown in fructose (1.0%)-supplemented BG 11 medium, when subjected to the optimized condition, the PHB pool boosted up to 1.59?g?L?1, a value ~50-fold higher than the control. A. fertilissima is the first cyanobacterium where PHB accumulation reached up to 85% (dcw) by manipulating the nutrient status of the culture medium. The polymer extracted from A. fertilissima exhibited comparable material properties with the commercial polymer. As compared with heterotrophic bacteria, carbon requirement in A. fertilissima for PHB production is lower by one order magnitude; thus, low-cost PHB production can be envisaged.  相似文献   

7.
Use of algae for intracellular poly-β-hydroxybutyrate (PHB) accumulation for bioplastic production offers an opportunity in economic efficiency by reduced costs. The cyanobacterium Nostoc muscorum is a PHB accumulator which presents a great potential as raw material supplier because of short generation cycles. Here, we examined a range of experimental conditions including different growth conditions of phosphate-starved cells with the addition of external carbon sources. The highest, absolute PHB accumulation was measured in a phosphate-starved medium with 1% (w/w) glucose and 1% (w/w) acetate. PHB accumulated inside algae cells. After 23 days of growth in phosphate-starved medium, 1 L of culture contained up to 145.1 mg PHB. The highest PHB accumulation based on the cell dry weight was in an experiment with aeration and CO2 addition. The intracellular level of PHB was up to 21.5% cell dry weight after 8 days.  相似文献   

8.
Methanotrophs have promising applications in the bioremediation of chlorinated hydrocarbons and in the production of a biopolymer, poly-beta-hydroxybutyrate (PHB). Batch bioreactor culture conditions were studied for the accumulation of PHB by methane-grown Methylosinus trichosporium OB3b, and to evaluate the effect of PHB on the bacterial capacity to degrade trichloroethylene (TCE), a common groundwater contaminant. The PHB content of the washed and lyophilized cells was measured by gas chromatography (GC), after hydrochloric acid (HCl) propanolysis. A differential GC-based assay was developed for the monomer and the polymer of beta-hydroxybutyrate utilizing 1% and 10% HCl (v/v) reaction mixtures, respectively. During bioreactor growth in a Cu-deficient modified Higgins' medium, the cells accumulated PHB upon depletion of nitrate. A biomass yield of 3.2 g dry wt/L and a PHB accumulation of approximately 10% (w/w) were reached after 140 to 160 h, without adversely affecting the propene or TCE epoxidation specific rate given by whole cells containing soluble methane monooxygenase (sMMO). The TCE biotransformation capacity ( approximately 0.25 mg TCE oxidized/mg dry cell wt) of resting cells containing approximately 10% PHB was consistently approximately 1.6-fold greater than that of cells containing only approximately 2% PHB. Higher levels (>10%) of accumulated PHB did not enhance this biotransformation capacity further. By replacing the bioreactor inlet air + CO(2) mixture with pure O(2) at approximately 85 h of batch operation, a PHB accumulation of approximately 45% was achieved after 160 h, but the whole-cell sMMO activity was markedly decreased. In contrast, cells grown in a 10 muM Cu-supplemented Higgins' nitrate minimal salts medium (particulate MMO formation) accumulated up to 50% PHB in only 120 h, coupled with a very high biomass yield of 18 g dry cell wt/L. High PHB accumulations above approximately 20% by both the -Cu and the +Cu grown cells resulted in a decreased ratio of the electronic cell count to the absorbance at 660 nm, which is commonly used to monitor bacterial growth. (c) 1996 John Wiley & Sons, Inc.  相似文献   

9.
The moderate halophile Halomonas boliviensis, isolated from a Bolivian saline soil sample, was able to accumulate poly(β-hydroxybutyrate) (PHB) when grown under conditions of nutrient limitation and excess carbon source. The concentration of sodium chloride in the medium influenced the cell-growth, -size, and rate of PHB accumulation. Cultivation in shake flasks led to a PHB accumulation of about 54 wt.% with respect to cell dry weight at 4.5% (w/v) NaCl in a medium with butyric acid and sodium acetate as carbon sources. The production of PHB was substantially improved to a maximum value of 88 wt.% during cultivation under controlled conditions of pH and oxygen concentration in a fermentor. The use of glucose and sucrose, respectively, as carbon source could also lead to the production of PHB at an average level of 55 wt.%.  相似文献   

10.

Poly-β-hydroxybutyrate (PHB) is a biodegradable and biocompatible polymer that has potential in the fields of environmental, agricultural, and biomedical sciences. Cyanobacteria are considered an excellent source of PHB by bioconversion of CO2. This study aimed to prolong PHB production under nitrogen-sufficient condition in the model cyanobacterium Synechocystis sp. PCC 6803. Interestingly, the lack of phosphate regulator (SphU) enabled the mutant strain (ΔSphU) to have the ability to accumulate phosphate with higher expression of Pho regulon. When strain ΔSphU was cultured in nitrogen complete medium for 14 days, the PHB granules were more extensively accumulated in the ΔSphU strain than in the wild type. Photosynthesis activity slightly increased in ΔSphU strain, with no significant difference in chlorophyll a content between wild-type and ΔSphU strain in nitrogen-containing medium, indicating that the higher PHB content (14.57% (w/w) cell dry weight) was not influent of chlorosis. The RT-qPCR analysis revealed that genes involved in PHB biosynthesis and acetyl phosphate pathway were more upregulated in ΔSphU strain. Moreover, the level of acetate production in ΔSphU cells was higher than that in the wild type, suggesting that the deletion of the phosphate regulator could directly induce PHB metabolism by activation of the acetyl phosphate pathway. This research provides better understanding of PHB production regulation in cyanobacteria which are a promising hosts for industrial production of biodegradable plastics.

  相似文献   

11.
This study compares the PHB synthase activity of Nostoc muscorum, a N(2)-fixing cyanobacterium under control (grown in usual BG-11 medium), nitrogen (N) and phosphorus (P) deprivation and chemoheterotrophic conditions. Specific activity of PHB synthase did not depict significant variations in the latter three types of cultures, except for the control one, where a significantly lower activity was recorded. PHB synthase activity was detected only in the soluble fractions of both the control as well as cells incubated under chemoheterotrophic conditions. A K(m) of 80.2 microM DL-beta-hydroxybutyryl-CoA and V(max) of 197.5 nmol thiobenzoate (TNB) mg protein(-1)min(-1) were observed for the enzyme. PHB synthase remained insensitive to acetyl-CoA, ATP, NADP, NADPH supplementation under in vitro condition. Addition of acetyl phosphate was found to activate the enzyme and the level of activation was dependent on the concentration of acetyl phosphate supplementation. Inhibition of PHB synthase in 2,3-butanedione supplemented cultures and reactivation following acetyl phosphate addition proved the post-translational control of acetyl phosphate over PHB synthase.  相似文献   

12.
Ultrastructural and immunocytochemical investigations gave evidence that cyanophycin (multi-L-arginyl-poly-L-aspartate) granules accumulate in the cyanobacterium Synechocystis sp. strain PCC 6803 under nutrient deficient growth conditions, especially under phosphate limitation. Besides nutrient deficiency, growth of Synechocystis PCC 6803 on L-arginine or L-asparagine as sole N-source also led to high increase of cyanophycin synthesis, while growth on the combination of L-arginine or L-asparagine with nitrate only caused minor cyanophycin accumulation. Growth of Synechocystis PCC 6803 on L-arginine as sole N-source caused substantial morphological and physiological changes, such as severe thylakoid membrane degradation with partial loss of pigments and photosynthetic activity leading to a phenotype almost like that seen under nutrient deficiency. In contrast to the wild type, the PsbO-free Synechocystis PCC 6803 mutant could grow on L-arginine as sole N-source with only minor morphological and physiological changes. Due to its fairly balanced growth, the mutant accumulated only few cyanophycin granules. L-arginine degrading activity (measured as ornithine and ammonium formation) was high in the PsbO-free mutant but not in the wild type when cells were grown on L-arginine as sole N-source. In both cells types the L-arginine degrading activity was high (although in the PsbO-free mutant about twice as high as in wild type), when cells were grown on L-arginine in combination with nitrate, and as expected very low when cells were grown on nitrate as sole N-source. Thus, net cyanophycin accumulation in Synechocystis PCC 6803 is regulated by the relative concentration of L-arginine to the total nitrogen pool, and the intracellular L-arginine concentration is greatly influenced by the activity of the L-arginine degrading enzyme system which in part is regulated by the activity status of photosystem II. These results suggest a complex interrelation between cyanophycin synthesis, L-arginine catabolism, and in addition photosynthesis in Synechocystis PCC 6803.  相似文献   

13.
The Polyhydroxybutyrate (PHB) producer, Bacillus licheniformis MSBN12 was isolated from the marine sponge Callyspongia diffusa. The PHB production of B. licheniformis MSBN12 was optimized using a four-factor Box-Behnken design to find the interactive effects of variables such as palm jaggery, wheat bran, seawater, and incubation temperature. The maximum yield of PHB (6.38 g/L) was achieved through response surface methodology-based optimization and the optimized conditions were further used for the batch and fed-batch fermentation. Maximum biomass was reached at 48 and 36 h of incubation with PHB accumulation of 62.91 and 67.16 % (w/w of dry cells) for batch and fed-batch process. The production of PHB under fed-batch process with B. licheniformis MSBN12 was increased threefold over shake flask culture when palm jaggery as sole carbon source. The ¹H NMR data was extrapolated with peaks of the PHB reference standard and confirmed as PHB analog.  相似文献   

14.
A novel, quantitative method for detecting poly-3-hydroxybutyrate (PHB) amounts in viable cells was developed to allow for high-throughput screening of mutant libraries. The staining technique was demonstrated and optimized for the cyanobacterium Synechocystis sp. strain PCC6803 and the eubacterium Escherichia coli to maximize the fluorescence difference between PHB-accumulating and control cells by flow cytometry. In Synechocystis, the level of nonspecific dye binding was reduced by using nonionic stain buffer that allowed quantitation of fluorescence levels. In E. coli, the use of a mild sucrose shock facilitated uptake of Nile red without significant loss of viability. The optimized staining protocols yielded a linear response for the mean fluorescence against (chemically measured) PHB. The staining protocols are novel methods useful in the high-throughput evaluation of combinatorial libraries of Synechocystis and E. coli using fluorescence-activated cell sorting to identify mutants with increased PHB-accumulating properties.  相似文献   

15.
Aims: To search for new bacteria for efficient production of polyhydroxyalkanoates (PHAs) from glycerol. Methods and Results: Samples were taken from different environments in Germany and Egypt, and bacteria capable of growing in mineral salts medium with glycerol as sole carbon source were enriched. From a wastewater sediment sample in Egypt, a Gram‐negative bacterium (strain MW1) was isolated that exhibited good growth and that accumulated considerable amounts of polyhydroxybutyrate (PHB) from glycerol and also from other carbon sources. The 16S rRNA gene sequence of this isolate exhibited 98·5% and 96·2% similarity to Zobellella denitrificans strain ZD1 and to Zobellella taiwanensis strain ZT1 respectively. The isolate was therefore affiliated as strain MW1 of Z. denitrificans. Strain MW1 grows optimally on glycerol at 41°C and pH 7·3 and accumulated PHB up to 80·4% (w/w) of cell dry weight. PHB accumulation was growth‐associated. Although it was not an absolute requirement, 20 g l?1 sodium chloride enhanced both growth (5 g cell dry weight per litre) and PHB content (87%, w/w). Zobellella denitrificans strain MW1 is also capable to accumulate the poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) copolymer if sodium propionate was used as cosubstrate in addition to glycerol. Conclusions: A new PHB‐accumulating strain was isolated and identified. This strain is able to utilize glycerol for growth and PHB accumulation to high content especially in the presence of NaCl that will enable the utilization of waste glycerol from biodiesel industry. Significance and Impact of the Study: This study is the first report on accumulation of PHA in a member of the new genus Zobellella. Furthermore, utilization of glycerol as the sole carbon source for fast growth and PHB biosynthesis, growth in the presence of NaCl and high PHB contents of the cells will make this newly isolated bacterium a potent candidate for industrial production of PHB from crude glycerol occurring as byproduct during biodiesel production.  相似文献   

16.
Halomonas boliviensis LC1 is able to accumulate poly(β-hydroxybutyrate) (PHB) under conditions of excess carbon source and depletion of essential nutrients. This study was aimed at an efficient production of PHB by growing H. boliviensis to high cell concentrations in batch cultures. The effect of ammonium, phosphate, and yeast extract concentrations on cell concentration [cell dry weight (CDW)] and PHB content of H. boliviensis cultured in shake flasks was assayed using a factorial design. High concentrations of these nutrients led to increments in cell growth but reduced the PHB content to some extent. Cultivations of H. boliviensis under controlled conditions in a fermentor using 1.5% (w/v) yeast extract as N source, and intermittent addition of sucrose to provide excess C source, resulted in a polymer accumulation of 44 wt.% and 12 g l−1 CDW after 24 h of cultivation. Batch cultures in a fermentor with initial concentrations of 2.5% (w/v) sucrose and 1.5% (w/v) yeast extract, and with induced oxygen limitation, resulted in an optimum PHB accumulation, PHB concentration and CDW of 54 wt.%, 7.7 g l−1 and 14 g l−1, respectively, after 19 h of cultivation. The addition of casaminoacids in the medium increased the CDW to 14.4 g l−1 in 17 h but reduced the PHB content in the cells to 52 wt.%.  相似文献   

17.
A strain of Bacillus sp. coded JMa5 was isolated from molasses contaminated soil. The strain was able to grow at a temperature as high as 45°C and in 250 g/l molasses although the optimal growth temperature was 35–37°C. Cell density reached 30 g/l 8 h after inoculation in a batch culture with an initial concentration of 210 g/l molasses. Under fed-batch conditions, the cells grew to a dry weight of 70 g/l after 30 h of fermentation. The strain accumulated 25–35%, (w/w) polyhydroxybutyrate (PHB) during fermentation. PHB accumulation was a growth-associated process. Factors that normally promote PHB production include high ratios of carbon to nitrogen, and carbon to phosphorus in growth media. Low dissolved oxygen supply resulted in sporulation, which reduced PHB contents and dry weights of the cells. It seems that sporulation induced by reduced supply of nutrients is the reason that PHB content is generally low in the Bacillus strain.  相似文献   

18.
AIMS: To optimize the nutritional and environmental conditions for growth of and poly-beta-hydroxybutyrate (PHB) accumulation in Bacillus mycoides RLJ B-017. METHODS AND RESULTS: An isolate, identified as B. mycoides, was grown on different sources of carbon and nitrogen. Among these, sucrose, beef extract and di-ammonium sulphate were found to be the most suitable for growth and PHB accumulation. The overall maximum value of PHB (%) in cells, PHB yield (Yp/s) and productivities (Qp and qp) were 69.4 +/- 0.4% dry cell weight (DCW), 0.21 gp gS(-1), 0.104 +/- 0.012 gp l(-1) h(-1) and 0.03 gp gx(-1) h(-1), respectively when grown in a medium containing 20 gs l(-1) sucrose, supplemented with di-ammonium sulphate. The addition of beef extract increased the value of PHB (%) in cells, PHB yield and productivities by 17.58 +/- 0,3, 23.8, 19.23 +/- 0.3 and 13.8 +/- 0.2% , respectively. The overall maximum values of PHB (% DCW), PHB yield and productivities were obtained at pH 7.0 +/- 0 .1, temperature 30 +/- 0.5 degrees C, agitation 650 rev min(-1) and oxygen transfer rate 3.8 mmol O(2) l(-1) h(-1). CONCLUSIONS: Sucrose, glucose and fructose were found to be more suitable for cell growth and PHB accumulation, but sucrose was less expensive than glucose. Among the nitrogen sources, beef extract and di-ammonium sulphate promoted PHB synthesis. The accumulation of PHB was observed to be growth associated. SIGNIFICANCE AND IMPACT OF THE STUDY: Gram-positive bacteria have not been reported to accumulate large amounts of polyhydroxyalkanoate and hence have not been considered as potent candidates for industrial production. A number of Bacillus spp. have been reported to accumulate 9-44.5% DCW PHB. By comparison, Bacillus RLJ B-017 contained 69.4 +/- 0.4% DCW PHB. Therefore, this strain has been considered as a potent organism for industrial interest. A relatively high yield of PHB was obtained in this wild strain and PHB synthesis was independent of nutrient limitation. The conditions for the higher PHB yield and productivity will be optimized in the next phase using fed-batch culture.  相似文献   

19.
Abstract Spirulina maxima and Rhodopseudomonas palustris , which are known to be capable of synthesizing poly-β-hydroxybutyrate (PHB), were grown under different conditions in order to investigate the metabolic significance of PHB synthesis in phototrophic microorganisms. The intracellular concentration of PHB in S. maxima , growing photoautotrophically in batch cultures under either balanced or unbalanced (depletion of nitrogen or phosphorus in the mineral medium) conditions, was below 0.005% of cell dry weight. PHB was synthesized (up to 0.7% of dry weight) only after a prolonged period of N-starvation (although no PHB synthesis occurred when N-starvation was induced by azaserine addition) or when cells, after the exhaustion of intracellular phosphorus reserves, became P-starved. Under the latter condition, the PHB concentration reached a value of 1.2% of cell dry weight, the same figure reached in the presence of the uncoupler carbonylcyanide- m -chlorophenylhydrazone (CCCP). When photosynthetic activity was enhanced by a sudden shift of the culture to higher light intensity or when S. maxima was grown at 18°C, no PHB synthesis was detectable. Under all the photoautotrophic growth conditions tested, glycogen was much more heavily accumulated than PHB. Batch cultures of R. palustris , growing photoheterotrophically on acetate with varying nitrogen sources and regimens of nitrogen supplementation, demonstrated that some competition for reducing equivalents exists between nitrogenase activity and PHB biosynthetic pathway. The results seem to suggest that, in phototrophic bacteria able to synthesize both PHB and glycogen, the polyester acts mainly as a regulator of the intracellular reduction charge.  相似文献   

20.
The production of poly-beta-hydroxybutyrate (PHB) by Alcaligenes eutrophus DSM 545 in a cyclone bioreactor was compared using various culture methods: batch, fed-batch, and self-cycling fermentation (SCF) with and without extended periods of nutrient deprivation. SCF is a semi-continuous method that results in a nutrient limitation for every successive generation of cells and, therefore, may have advantages for products whose formation follow secondary metabolite kinetics. Use of the SCF technique without extended nutrient deprivation produced a PHB concentration of 1.2 g L(-1) as 40% of the biomass dry weight. With nitrogen deprivation for 4 or 6 h, the concentration of PHB decreased when compared to the standard SCF technique. However, nitrogen deprivation periods of 8 h resulted in an increase in PHB concentration to 2.7 g L(-1) or 59% of the biomass dry weight. The nutrient cycling may act to repress PHB accumulation during periods of nitrogen deprivation, unless a time threshold has been reached, after which PHB accumulation occurs as in normal batch culture. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 815-820, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号