首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Bone homeostasis is maintained by the balance between bone-forming osteoblasts and bone-degrading osteoclasts. Osteoblasts have a mesenchymal origin whereas osteoclasts belong to the myeloid lineage. Osteoclast and osteoblast communication occurs through soluble factors secretion, cell-bone interaction and cell–cell contact, which modulate their activities. CD200 is an immunoglobulin superfamilly member expressed on various types of cells including mesenchymal stem cells (MSCs). CD200 receptor (CD200R) is expressed on myeloid cells such as monocytes/macrophages. We assume that CD200 could be a new molecule involved in the control of osteoclastogenesis and could play a role in MSC–osteoclast communication in humans. In this study, we demonstrated that soluble CD200 inhibited the differentiation of osteoclast precursors as well as their maturation in bone-resorbing cells in vitro. Soluble CD200 did not modify the monocyte phenotype but inhibited the receptor activator of nuclear factor kappa-B ligand (RANKL) signaling pathway as well as the gene expression of osteoclast markers such as osteoclast-associated receptor (OSCAR) and nuclear factor of activated T cells cytoplasmic 1 (NFATc1). Moreover, MSCs inhibited osteoclast formation, which depended on cell–cell contact and was associated with CD200 expression on the MSC surface. Our results clearly demonstrate that MSCs, through the expression of CD200, play a major role in the regulation of bone resorption and bone physiology and that the CD200-CD200R couple could be a new target to control bone diseases.  相似文献   

2.
The cells of bone are of two lineages, the osteoblasts arising from pluripotential mesenchymal cells and osteoclasts from hemopoietic precursors of the monocyte-macrophage series. Resorption of bone by the multinucleate osteoclast requires the generation of new osteoclastsw and their activation. Many hormones and cytokines are able to promote bone resorption by influencing these processes, but they achieve this without acting directly on osteoclastws. Most evidence indicates that their actions are mediated by cells of the osteoblast lineage. Evidence for hormone-and cytokine-induced activation of osteoclasts requiring the mediation of osteoblasts comes from studies of rsorption by isolated osteoclasts. However, consistent evidence for a spiceific “activating factor” is lacking, and the argument is presented that the isolated osteoclast resorption assays have not been shown convincingly to be assays of osteoclast activation. The view is presented that osteoblast-mediated osteoclast activation is the result of several events in the microenvironment without necessarily requiring the existence of a spicific, essential osteoclast activator. On the other hand, a specific promoter of osteoclast differentiation does seem likely to be a product of cells of the stromal/osteoblast series. Evidence in facour of this comes from studies of osteoclast generation in co-cultures of osteoblast/stromal cells with hemopoietic cells. Conflicting view, maintaining that osteoclasts can develop from hemooietic cells without stromal intervention, might be explaind by varying criteria used in identification of osteoclasts. Osteoblastic and osteoclastic renewal, and the interactions of these lineages, are central to the process of bone remodeling.  相似文献   

3.
It is well known that thyroid hormone excess causes bone loss. However, the precise mechanism of bone loss by thyroid hormone still remains unclear. When T(3) was added to unfractionated bone cells after degeneration of pre-existent osteoclasts, T(3) (1 pM-100 nM) dose-dependently stimulated osteoclast-like cell formation, irrespective of the presence of indomethacin and IL-6 Ab. T(3) increased the expression of osteoprotegerin (OPG) messenger RNA (mRNA), but not of receptor activator of nuclear factor kappaB ligand (RANKL) in unfractionated bone cells, suggesting that the stimulatory effect of T(3) on osteoclast formation was not mediated by the RANKL/OPG system. We next examined the direct effect of T(3) on osteoclast precursors in the absence of osteoblasts, using hemopoietic blast cells derived from spleen cells. T(3) (1 pM-100 nM) dose-dependently stimulated osteoclast-like cell formation from osteoclast precursors. OPG did not inhibit T(3)-induced osteoclast formation from osteoclast precursor cells. The polymerase chain reaction (PCR) product corresponding in size to the mouse T(3) receptor alpha1 cDNA was detected in osteoclast precursors from mouse hemopoietic blast cells as well as mouse heart and mouse osteoblastic cell line MC3T3-E1 cells, suggesting that T(3) directly stimulated osteoclast-like cell formation from osteoclast precursors in the absence of osteoblasts. Further, T(3) increased the expression of c-Fos mRNA at 15 min and 24 h and Fra-1 mRNA at 2 and 6 h in osteoclast precursors. Consistent with the increased expression of c-Fos mRNA observed by RT-PCR, the activation of c-Fos occurred in osteoclast precursor cells stimulated by T(3), while the activation of neither NF-kappaB nor MAPKs was observed by immunoblot analysis. Antisense oligodeoxynucleotides (as-ODN) complementary to c-Fos mRNA at 1 microM significantly inhibited T(3)-induced osteoclast-like cell formation from osteoclast precursors in the absence of stromal cells while sense-ODN did not affect T(3)-induced osteoclast-like cell formation. These results indicate that T(3) directly stimulates osteoclast differentiation at least in part by up-regulation of c-fos protein in osteoclast precursor cells.  相似文献   

4.
In vitro osteoclast differentiation is supported by stromal cells. In order to isolate a stromal cell line that can support osteoclast differentiation, 22 cell lines were cloned from mouse bone marrow. One of these clones, TMS-14, is a line of preadipocytes that supports osteoclast-like cell formation without any bone resorbing factors; and another, TMS-12, is a line of preosteoblasts that supports osteoclast-like cell formation with bone resorbing factors such as prostaglandin E(2)(PGE(2)). The difference of these two lines for osteoclast formation was not related with their abilities of PGE(2)production, but with the expression of osteoclast differentiation factor (ODF, also called OPGL, RANKL, and TRANCE), which detected with RT-PCR, in both cell lines. In TMS-14 cells, ODF mRNA was detected with or without PGE(2). In TMS-12 cells, ODF expression was detected in the PGE(2)-treated cells alone. When TMS-14 cells were induced to undergo adipogenic differentiation in response to treatment with thiazolidinedione, a ligand and activator of peroxisome proliferator-activated receptor gamma (PPARgamma), the ability of TMS-14 cells to support osteoclast-like cell formation was prevented in the presence or absence of 1,25(OH)(2)D(3). The gene expression of ODF in TMS-14 cells was also inhibited by treatment with thiazolidinedione. These results suggest that adipogenesis in bone marrow cells is related to the ability to support osteoclast differentiation. This is the first report of a cloned stromal cell line that can support osteoclastogenesis without the treatment with any osteotropic factors. Furthermore, this murine clonal preadipose cell line may be useful for studying senescence-dependent osteoporosis.  相似文献   

5.
Connexin (Cx) proteins are essential for cell differentiation, function, and survival in all tissues with Cx43 being the most studied in bone. We now report that Cx37, another member of the connexin family of proteins, is expressed in osteoclasts, osteoblasts, and osteocytes. Mice with global deletion of Cx37 (Cx37−/−) exhibit higher bone mineral density, cancellous bone volume, and mechanical strength compared with wild type littermates. Osteoclast number and surface are significantly lower in bone of Cx37−/− mice. In contrast, osteoblast number and surface and bone formation rate in bones from Cx37−/− mice are unchanged. Moreover, markers of osteoblast activity ex vivo and in vivo are similar to those of Cx37+/+ littermates. sRANKL/M-CSF treatment of nonadherent Cx37−/− bone marrow cells rendered a 5-fold lower level of osteoclast differentiation compared with Cx37+/+ cell cultures. Further, Cx37−/− osteoclasts are smaller and have fewer nuclei per cell. Expression of RANK, TRAP, cathepsin K, calcitonin receptor, matrix metalloproteinase 9, NFATc1, DC-STAMP, ATP6v0d1, and CD44, markers of osteoclast number, fusion, or activity, is lower in Cx37−/− osteoclasts compared with controls. In addition, nonadherent bone marrow cells from Cx37−/− mice exhibit higher levels of markers for osteoclast precursors, suggesting altered osteoclast differentiation. The reduction of osteoclast differentiation is associated with activation of Notch signaling. We conclude that Cx37 is required for osteoclast differentiation and fusion, and its absence leads to arrested osteoclast maturation and high bone mass in mice. These findings demonstrate a previously unrecognized role of Cx37 in bone homeostasis that is not compensated for by Cx43 in vivo.  相似文献   

6.
7.
Cell–cell fusion is an evolutionarily conserved process that leads to the formation of multinucleated myofibers, syncytiotrophoblasts and osteoclasts, allowing their respective functions. Although cell–cell fusion requires the presence of fusogenic membrane proteins and actin-dependent cytoskeletal reorganization, the precise machinery allowing cells to fuse is still poorly understood. Using an inducible knockout mouse model to generate dynamin 1– and 2–deficient primary osteoclast precursors and myoblasts, we found that fusion of both cell types requires dynamin. Osteoclast and myoblast cell–cell fusion involves the formation of actin-rich protrusions closely associated with clathrin-mediated endocytosis in the apposed cell. Furthermore, impairing endocytosis independently of dynamin also prevented cell–cell fusion. Since dynamin is involved in both the formation of actin-rich structures and in endocytosis, our results indicate that dynamin function is central to the osteoclast precursors and myoblasts fusion process, and point to an important role of endocytosis in cell–cell fusion.  相似文献   

8.
9.
Osteoclastic bone resorption depends upon the cell''s ability to organize its cytoskeleton. Because vinculin (VCL) is an actin-binding protein, we asked whether it participates in skeletal degradation. Thus, we mated VCLfl/fl mice with those expressing cathepsin K-Cre (CtsK-VCL) to delete the gene in mature osteoclasts or lysozyme M-Cre (LysM-VCL) to target all osteoclast lineage cells. VCL-deficient osteoclasts differentiate normally but, reflecting cytoskeletal disorganization, form small actin rings and fail to effectively resorb bone. In keeping with inhibited resorptive function, CtsK-VCL and LysM-VCL mice exhibit a doubling of bone mass. Despite cytoskeletal disorganization, the capacity of VCL−/− osteoclastic cells to normally phosphorylate c-Src in response to αvβ3 integrin ligand is intact. Thus, integrin-activated signals are unrelated to the means by which VCL organizes the osteoclast cytoskeleton. WT VCL completely rescues actin ring formation and bone resorption, as does VCLP878A, which is incapable of interacting with Arp2/3. As expected, deletion of the VCL tail domain (VCL1–880), which binds actin, does not normalize VCL−/− osteoclasts. The same is true regarding VCLI997A, which also prevents VCL/actin binding, and VCLA50I and VCL811–1066, both of which arrest talin association. Thus, VCL binding talin, but not Arp2/3, is critical for osteoclast function, and its selective inhibition retards physiological bone loss.  相似文献   

10.
11.
Basic fibroblast growth factor (bFGF) inhibited osteoclast-like cell formation in co-cultures of mouse bone marrow cells either with the mouse stromal cell line, ST2, or with primary osteoblastic cells. Basic FGF significantly inhibited the osteoclast-like cell formation, induced by 1α,25-dihydroxyvitamin D3[1α, 25(OH)2D3] when the cytokine was added to the culture, at an intermediate stage, suggesting that bFGF inhibits the differentiation of the osteoclast progenitors. With regard to target cells, bFGF directly affected ST2; it increased [3H]thymidine uptake and decreased the number of alkaline phosphatase-positive cells. In contrast, bFGF had no inhibitory effect on the colony formation of bone marrow cells induced by macrophage colony stimulating factor in methylcellulose culture. In addition, ST2 cells treated with bFGF produced similar amounts of colony forming activity to those without the cytokine. These findings indicated that the bFGF is not involved in the proliferation of progenitor cells even in the presence of ST2 cells. Furthermore, bFGF inhibited osteoclast-like cell formation induced not only by 1α,25(OH)2D3, but also by prostaglandin E2 and by interleukin-11. These results suggest that bFGF inhibits the common site of osteoclast-like cell formation, as induced by different mechanisms. Our data also indicated that the target cells for bFGF in inhibiting osteoclast formation are not osteoclast progenitors but stromal cells such as ST2 and osteoblastic cells, which support osteoclast development. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Giant cell tumor of bone is a progressive, potentially malignant process which destroys skeletal tissue by virtue of its osteoclast complement. As a biological entity it provides a unique natrual model of bone resorption by osteoclasts whose recruitment and development is controlled by a neoplastic population of fibroblast-like cells. Understanding of the etiopathogenesis of this tumor could provide new insights into the mechanisms underlying osteoblast–osteoclast interactions in normal and diseased bone. Recent studies have shown that the stromal cell component in giant cell tumors is the only proliferating subpopulation of cells, and the giant cells themselves are nonproliferative and reactive. These stromal cells express several genes associated with the osteoblastic phenotype, synthesize, to a limited degree, certain matrix proteins associated with bone, and express several factors which are presumably involved in the recruitment of osteoclasts. In culture, giant cell tumor–associated stromal cells promote the fusion of monocytes and the proliferation of osteoblasts either by the secretion of factors or cell–cell contact. Hence, giant cell tumor of bone is a self-contained biosystem in which cells of both the stromal and hematopoietic lineages interact in a fashion similar to that observed in normal skeletal remodeling. The neoplastic nature of the stromal component, however, drives the hematopoietic precursors to undergo fusion, produces aggressive bone resorption, and results in extensive skeletal destruction. Examination of the various components of this system could lead to new directions for investigations aimed at a better understanding of osteoblast–osteoclast interactions. © 1994 Wiley-Liss, Inc.  相似文献   

13.
14.
Cancer chemotherapy has been shown to induce long-term skeletal side effects such as osteoporosis and fractures; however, there are no preventative treatments. This study investigated the damaging effects of anti-metabolite methotrexate (MTX) subcutaneous injections (0.75 mg/kg BW) for five days and the potential protective benefits of daily oral gavage of fish oil at 0.5 mL/100 g BW (containing 375 mg of n-3 PUFA/100 g BW), genistein (2 mg/100 g BW), or their combination in young adult rats. MTX treatment alone significantly reduced primary spongiosa height and secondary spongiosa trabecular bone volume. Bone marrow stromal cells from the treated rats showed a significant reduction in osteogenic differentiation but an increase in adipogenesis ex vivo. Consistently, stromal cells had significantly higher mRNA levels of adipogenesis-related proliferator activator activated receptor-γ (PPAR-γ) and fatty acid binding protein (FABP4). MTX significantly increased the numbers of bone-resorbing osteoclasts and marrow osteoclast precursor cell pool while significantly enhancing the mRNA expression of receptor activator for nuclear factor kappa B ligand (RANKL), the RANKL/osteoprotegerin (OPG) ratio, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the bone. Supplementary treatment with fish oil and/or genistein significantly preserved trabecular bone volume and osteogenesis but suppressed MTX-induced adipogenesis and increases in osteoclast numbers and pro-osteoclastogenic cytokine expression. Thus, Fish oil and/or genistein supplementation during MTX treatment enabled not only preservation of osteogenic differentiation, osteoblast number and bone volume, but also prevention of MTX treatment-induced increases in bone marrow adiposity, osteoclastogenic cytokine expression and osteoclast formation, and thus bone loss.  相似文献   

15.
Normal bone remodeling is maintained by a balance between osteoclast and osteoblast activity, whereas defects in osteoclast activity affecting such balance result in metabolic bone disease. Macrophage-macrophage fusion leading to multinucleated osteoclasts being formed is still not well understood. Here we present PEG-induced fusion of macrophages from both U937/A and J774 cell lines and the induced differentiation and activation of osteoclast-like cells according to the expression of osteoclast markers such as tartrate resistant acid phosphatase (TRAP) and bone resorptive activity. PEG-induced macrophage fusion, during the non-confluent stage, significantly increased the osteoclastogenic activity of macrophages from cell lines compared to that of spontaneous cell fusion in the absence of PEG (polyethylene glycol). The results shown in this work provide evidence that cell fusion per se induces osteoclast-like activity. PEG-fused macrophage differential response to pretreatment with osteoclastogenic factors was also examined in terms of its ability to form TRAP positive multinucleated cells (TPMNC) and its resorptive activity on bovine cortical bone slices. Our work has also led to a relatively simple method regarding those previously reported involving cell co-cultures. Multinucleated osteoclast-like cells obtained by PEG-induced fusion of macrophages from cell lines could represent a suitable system for conducting biochemical studies related to basic macrophage fusion mechanisms, bone-resorption activity and the experimental search for bone disease therapeutic alternatives.  相似文献   

16.
Bone has an enormous capacity for growth, regeneration, and remodeling. This capacity is largely due to induction of osteoblasts that are recruited to the site of bone formation. The recruitment of osteoblasts has not been fully elucidated, though the immediate environment of the cells is likely to play a role via cell– matrix interactions. We show here that heparin-binding growth-associated molecule (HB-GAM), an extracellular matrix–associated protein that enhances migratory responses in neurons, is prominently expressed in the cell matrices that act as target substrates for bone formation. Intriguingly, N-syndecan, which acts as a receptor for HB-GAM, is expressed by osteoblasts/osteoblast precursors, whose ultrastructural phenotypes suggest active cell motility. The hypothesis that HB-GAM/N-syndecan interaction mediates osteoblast recruitment, as inferred from developmental studies, was tested using osteoblast-type cells that express N-syndecan abundantly. These cells migrate rapidly to HB-GAM in a haptotactic transfilter assay and in a migration assay where HB-GAM patterns were created on culture wells. The mechanism of migration is similar to that previously described for the HB-GAM–induced migratory response of neurons. Our hypothesis that HB-GAM/N-syndecan interaction participates in regulation of osteoblast recruitment was tested using two different in vivo models: an adjuvant-induced arthritic model and a transgenic model. In the adjuvant-induced injury model, the expression of HB-GAM and of N-syndecan is strongly upregulated in the periosteum accompanying the regenerative response of bone. In the transgenic model, the HB-GAM expression is maintained in mesenchymal tissues with the highest expression in the periosteum. The HB-GAM transgenic mice develop a phenotype characterized by an increased bone thickness. HB-GAM may thus play an important role in bone formation, probably by mediating recruitment and attachment of osteoblasts/osteoblast precursors to the appropriate substrates for deposition of new bone.  相似文献   

17.
Connection between B lymphocyte and osteoclast differentiation pathways   总被引:8,自引:0,他引:8  
Osteoclasts differentiate from the hemopoietic monocyte/macrophage cell lineage in bone marrow through cell-cell interactions between osteoclast progenitors and stromal/osteoblastic cells. Here we show another osteoclast differentiation pathway closely connected with B lymphocyte differentiation. Recently the TNF family molecule osteoclast differentiation factor/receptor activator of NF-kappaB ligand (ODF/RANKL) was identified as a key membrane-associated factor regulating osteoclast differentiation. We demonstrate that B-lymphoid lineage cells are a major source of endogenous ODF/RANKL in bone marrow and support osteoclast differentiation in vitro. In addition, B-lymphoid lineage cells in earlier developmental stages may hold a potential to differentiate into osteoclasts when stimulated with M-CSF and soluble ODF/RANKL in vitro. B-lymphoid lineage cells may participate in osteoclastogenesis in two ways: they 1) express ODF/RANKL to support osteoclast differentiation, and 2) serve themselves as osteoclast progenitors. Consistent with these observations in vitro, a decrease in osteoclasts is associated with a decrease in B-lymphoid cells in klotho mutant mice (KL(-/-)), a mouse model for human aging that exhibits reduced turnover during bone metabolism, rather than a decrease in the differentiation potential of osteoclast progenitors. Taken together, B-lymphoid lineage cells may affect the pathophysiology of bone disorders through regulating osteoclastogenesis.  相似文献   

18.
Cell adhesion molecules such as cadherins alternate their expression throughout cranial neural crest (CNC) development, yet our understanding of the role of these molecules during CNC migration remains incomplete. The “mesenchymal” cadherin-11 is expressed in the CNC during migration yet prevents migration when overexpressed in the embryo, suggesting that a defined level of cadherin-11–mediated cell adhesion is required for migration. Here we show that members of the meltrin subfamily of ADAM metalloproteases cleave the extracellular domain of cadherin-11 during CNC migration. We show that a fragment corresponding to the putative shed form of cadherin-11 retains biological activity by promoting CNC migration in vivo, in a non-cell–autonomous manner. Additionally, cleavage of cadherin-11 does not affect binding to β-catenin and downstream signaling events. We propose that ADAM cleavage of cadherin-11 promotes migration by modifying its ability to support cell–cell adhesion while maintaining the membrane-bound pool of β-catenin associated with the cadherin-11 cytoplasmic domain.  相似文献   

19.
20.
Mouse marrow, which contains osteoblast and osteoclast precursors, was grown in the presence of calcitriol and/or basic fibroblast growth factor (FGF-2). RAW 264.7 cells were differentiated into osteoclast-like cells in the presence of receptor activator of NF-kappaB-Ligand (RANK-L) and/or FGF-2. FGF-2 alone supported osteoclastogenesis in mouse marrow cultures, but not by RAW 264.7 cells alone. Although FGF-2 supported low levels of osteoclastogenesis in mouse marrow cultures, it strongly inhibited the high levels of osteoclastogenesis triggered by calcitriol. Adding excess recombinant-RANK-L to the cultures did not relieve this inhibition. After mouse marrow osteoclasts were differentiated, FGF-2 dose-dependently inhibited bone resorptive activity. FGF-2 increased the tendency of RAW 264.7 osteoclast-like cells to fuse into very large giant cells and induced reorganizations of the actin cytoskeleton in mature, RANK-L-induced RAW 264.7 osteoclast-like cells. These results suggest that FGF-2 has both direct and indirect effects on osteoclast formation and bone resorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号