首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria expresses a type III secretion system that is necessary for both pathogenicity in susceptible hosts and the induction of the hypersensitive response in resistant plants. This specialized protein transport system is encoded by a 23-kb hrp (hypersensitive response and pathogenicity) gene cluster. Here we show that X. campestris pv. vesicatoria produces filamentous structures, the Hrp pili, at the cell surface under hrp-inducing conditions. Analysis of purified Hrp pili and immunoelectron microscopy revealed that the major component of the Hrp pilus is the HrpE protein which is encoded in the hrp gene cluster. Sequence homologues of hrpE are only found in other xanthomonads. However, hrpE is syntenic to the hrpY gene from another plant pathogen, Ralstonia solanacearum. Bioinformatic analyses suggest that all major Hrp pilus subunits from gram-negative plant pathogens may share the same structural organization, i.e., a predominant alpha-helical structure. Analysis of nonpolar mutants in hrpE demonstrated that the Hrp pilus is essential for the productive interaction of X. campestris pv. vesicatoria with pepper host plants. Furthermore, a functional Hrp pilus is required for type III-dependent protein secretion. Immunoelectron microscopy revealed that type III-secreted proteins, such as HrpF and AvrBs3, are in close contact with the Hrp pilus during and/or after their secretion. By systematic analysis of nonpolar hrp/hrc (hrp conserved) and hpa (hrp associated) mutants, we found that Hpa proteins as well as the translocon protein HrpF are dispensable for pilus assembly, while all other Hrp and Hrc proteins are required. Hence, there are no other conserved Hrp or Hrc proteins that act downstream of HrpE during type III-dependent protein translocation.  相似文献   

4.
5.
6.
7.
The majority of bacterial plant diseases are caused by members of three bacterial genera, Pseudomonas, Xanthomonas, and Erwinia. The identification and characterization of mutants that have lost the abilities to provoke disease symptoms on a compatible host and to induce a defensive hypersensitive reaction (HR) on an incompatible host have led to the discovery of clusters of hrp genes (hypersensitive reaction and pathogenicity) in phytopathogenic bacteria from each of these genera. Here, we report that predicted protein sequences of three hrp genes from Pseudomonas solanacearum show remarkable sequence similarity to key virulence determinants of animal pathogenic bacteria of the genus Yersinia. We also demonstrate DNA homologies between P. solanacearum hrp genes and hrp gene clusters of P. syringae pv. phaseolicola, Xanthomonas campestris pv. campestris, and Erwinia amylovora. By comparing the role of the Yersinia determinants in the control of the extracellular production of proteins required for pathogenicity, we propose that hrp genes code for an export system that might be conserved among many diverse bacterial pathogens of plants and animals but that is distinct from the general export pathway.  相似文献   

8.
HrpI, a 78-kDa protein, functions in the secretion of harpin, a proteinaceous elicitor of the hypersensitive response from Erwinia amylovora. The predicted amino acid sequence of HrpI is remarkably similar to that of LcrD of Yersinia species, the first member of a recently described protein family. Other proteins of the family are MixA from Shigella flexneri, InvA from Salmonella typhimurium, FlhA from Caulobacter crescentus, HrpI from Pseudomonas syringae pv. syringae, HrpO from Pseudomonas solanacearum, and HrpC2 from Xanthomonas campestris pv. vesicatoria. Cells of E. amylovora containing mutated hrpI genes or cells of Escherichia coli containing the cloned hrp gene cluster with mutated hrpI produce but do not export harpin. When similar cells with functional hrpI genes were grown at 25 degrees C, but not at 37 degrees C, harpin was exported to the culture supernatant. Direct evidence that HrpI is involved in the secretion of a virulence protein has been offered. Two other loci of the hrp gene cluster are involved in the regulation of harpin, and four other loci also are involved in the secretion of harpin. Since harpin and other proteins likely to be secreted by the LcrD family of proteins lack typical signal peptides, their secretion mechanism is distinct from the general protein export pathway.  相似文献   

9.
Xanthomonas campestris pv. vesicatoria is the causal agent of bacterial spot disease on pepper (Capsicum spp.) and tomato (Lycopersicon spp.). Analysis of 17 different Lycopersicon accessions with avrBs4-expressing X. campestris pv. vesicatoria strains identified 15 resistant and two susceptible tomato genotypes. Genetic analysis revealed that AvrBs4 recognition in tomato is governed by a single locus, designated Bs4 (bacterial spot resistance locus no. 4). Amplified fragment length polymorphism and bulked DNA templates from resistant and susceptible plants were used to define a 2.6-cM interval containing the Bs4 locus. A standard tomato mapping population was employed to localize Bs4-linked markers on the short arm of chromosome 5. Investigation of X. campestris pv. vesicatoria hrp mutant strains revealed that AvrBs4 secretion and avirulence activity are hrp dependent. Agrobacterium-based delivery of the avrBs4 gene into tomato triggered a plant response that phenotypically resembled the hypersensitive response induced by avrBs4-expressing X. campestris pv. vesicatoria strains, suggesting symplastic perception of the avirulence protein. Mutations in the avrBs4 C-terminal nuclear localization signals (NLSs) showed that NLSs are dispensable for Bs4-mediated recognition. Our data suggest that tomato Bs4 and pepper Bs3 employ different recognition modes for detection of the highly homologous X. campestris pv. vesicatoria avirulence proteins AvrBs4 and AvrBs3.  相似文献   

10.
The gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria is the causative agent of bacterial spot disease in pepper and tomato plants, which leads to economically important yield losses. This pathosystem has become a well-established model for studying bacterial infection strategies. Here, we present the whole-genome sequence of the pepper-pathogenic Xanthomonas campestris pv. vesicatoria strain 85-10, which comprises a 5.17-Mb circular chromosome and four plasmids. The genome has a high G+C content (64.75%) and signatures of extensive genome plasticity. Whole-genome comparisons revealed a gene order similar to both Xanthomonas axonopodis pv. citri and Xanthomonas campestris pv. campestris and a structure completely different from Xanthomonas oryzae pv. oryzae. A total of 548 coding sequences (12.2%) are unique to X. campestris pv. vesicatoria. In addition to a type III secretion system, which is essential for pathogenicity, the genome of strain 85-10 encodes all other types of protein secretion systems described so far in gram-negative bacteria. Remarkably, one of the putative type IV secretion systems encoded on the largest plasmid is similar to the Icm/Dot systems of the human pathogens Legionella pneumophila and Coxiella burnetii. Comparisons with other completely sequenced plant pathogens predicted six novel type III effector proteins and several other virulence factors, including adhesins, cell wall-degrading enzymes, and extracellular polysaccharides.  相似文献   

11.
12.
13.
14.
Transposon mutagenesis was used to isolate nonpathogenic mutants of Xanthomonas campestris pv. glycines 8ra, which causes bacterial pustule disease in soybean. A 6.1-kb DNA region in which a mutation gave loss of pathogenicity was isolated and found to carry six open reading frames (ORFs). Four ORFs had homology with hrcU, hrcV, hrcR, and hrcS genes of Ralstonia solanacearum and X. campestris pv. vesicatoria. One nonpathogenic mutant, X. campestris pv. glycines H80, lost pathogenicity on soybean but was able to elicit the hypersensitive response (HR) on nonhost pepper and tomato plants. This mutant still multiplied as well as the wild type in the leaves or cotyledons of soybean. Although the DNA and amino acid sequences showed high homology with known hrp genes, the hrcU-homolog ORF is not required for HR induction on nonhost plants, pepper and tomato, or for the multiplication of bacteria in the host plant. This gene was only required for the pathogenic symptoms of X. campestris pv. glycines 8ra on soybean.  相似文献   

15.
The hrp gene cluster of Xanthomonas spp. contains genes for the assembly and function of a type III secretion system (TTSS). The hrpF genes reside in a region between hpaB and the right end of the hrp cluster. The region of the hrpF gene of Xanthomonas oryzae pv. oryzae is bounded by two IS elements and also contains a homolog of hpaF of X. campestris pv. vesicatoria and two newly identified genes, hpa3 and hpa4. A comparison of the hrp gene clusters of different species of Xanthomonas revealed that the hrpF region is a constant yet more variable peninsula of the hrp pathogenicity island. Mutations in hpaF, hpa3, and hpa4 had no effect on virulence, whereas hrpF mutants were severely reduced in virulence on susceptible rice cultivars. The hrpF genes from X. campestris pv. vesicatoria, X. campestris pv. campestris, and X. axonopodis pv. citri each were capable of restoring virulence to the hrpF mutant of X. oryzae pv. oryzae. Correspondingly, none of the Xanthomonas pathovars with hrpF from X. oryzae pv. oryzae elicited a hypersensitive reaction in their respective hosts. Therefore, no evidence was found for hrpF as a host-specialization factor. In contrast to the loss of Bs3-dependent reactions by hrpF mutants of X. campestris pv. vesicatoria, hrpF mutants of X. oryzae pv. oryzae with either avrXa10 or avrXa7 elicited hypersensitive reactions in rice cultivars with the corresponding R genes. A double hrpFxoo-hpa1 mutant also elicited an Xa10-dependent resistance reaction. Thus, loss of hrpF, hpal, or both may reduce delivery or effectiveness of type III effectors. However, the mutations did not completely prevent the delivery of effectors from X. oryzae pv. oryzae into the host cells.  相似文献   

16.
Pathogenicity of Xanthomonas campestris pathovar (pv.) vesicatoria and most other Gram-negative bacterial plant pathogens largely depends on a type III secretion (TTS) system which is encoded by hypersensitive response and pathogenicity (hrp) genes. These genes are induced in the plant and are essential for the bacterium to be virulent in susceptible hosts and for the induction of the hypersensitive response (HR) in resistant host and non-host plants. The TTS machinery secretes proteins into the extracellular milieu and effector proteins into the plant cell cytosol. In the plant, the effectors presumably interfere with cellular processes to the benefit of the pathogen or have an avirulence activity that betrays the bacterium to the plant surveillance system. Type III effectors were identified by their avirulence activity, co-regulation with the TTS system and homology to known effectors. A number of effector proteins are members of families, e.g., the AvrBs3 family in Xanthomonas. AvrBs3 localizes to the nucleus of the plant cell where it modulates plant gene expression. Another family that is also present in Xanthomonas is the YopJ/AvrRxv family. The latter proteins appear to act as SUMO cysteine proteases in the host. Here, we will present an overview about the regulation of the TTS system and its substrates and discuss the function of the AvrRxv and AvrBs3 family members in more detail.  相似文献   

17.
18.
Xanthomonas campestris pv. vesicatoria is an economically important pathogen of pepper and tomato and has been established as a model organism to study bacterial infection strategies. In the last two decades, intensive genetic and molecular analyses led to the isolation of many genes that play a role in the intimate molecular relationship with the host plant. Essential for pathogenicity is a type III protein secretion system, which delivers bacterial effector proteins into the host cell. Currently, the genome of X. campestris pv. vesicatoria is being sequenced. The availability of genomic sequence information will pave the way for the identification of new bacterial virulence factors by bioinformatic approaches. In this article, we will present preliminary data from the genomic sequence analysis and describe recent and novel studies to identify bacterial type III effector genes.  相似文献   

19.
The hrp (hypersensitive response and pathogenicity) gene cluster of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria encodes a type III secretion (TTS) system, which injects bacterial effector proteins into the plant cell. Here, we characterized hpaB (hpa, hrp-associated), which encodes a pathogenicity factor with typical features of a TTS chaperone. We show that HpaB is important for the efficient secretion of at least five effector proteins but is dispensable for the secretion of non-effectors such as XopA and the TTS translocon protein HrpF. GST pull-down assays revealed that HpaB interacts with two unrelated effector proteins, AvrBs1 and AvrBs3, but not with XopA. The HpaB-binding site is located within the first 50 amino acids of AvrBs3. This region also contains the targeting signal for HpaB-dependent secretion, which is missing in HrpF and XopA. Intriguingly, the N-termini of HrpF and XopA target the AvrBs3Delta2 reporter for translocation in a DeltahpaB mutant but not in the wild-type strain. This indicates that HpaB plays an essential role in the exit control of the TTS system. Our data suggest that HpaB promotes the secretion of a large set of effector proteins and prevents the delivery of non-effectors into the plant cell.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号