首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human respiratory syncytial virus (HRSV) and Streptococcus pneumoniae are important causative agents of respiratory tract infections. Both pathogens are associated with seasonal disease outbreaks in the pediatric population, and can often be detected simultaneously in infants hospitalized with bronchiolitis or pneumonia. It has been described that respiratory virus infections may predispose for bacterial superinfections, resulting in severe disease. However, studies on the influence of bacterial colonization of the upper respiratory tract on the pathogenesis of subsequent respiratory virus infections are scarce. Here, we have investigated whether pneumococcal colonization enhances subsequent HRSV infection. We used a newly generated recombinant subgroup B HRSV strain that expresses enhanced green fluorescent protein and pneumococcal isolates obtained from healthy children in disease-relevant in vitro and in vivo model systems. Three pneumococcal strains specifically enhanced in vitro HRSV infection of primary well-differentiated normal human bronchial epithelial cells grown at air-liquid interface, whereas two other strains did not. Since previous studies reported that bacterial neuraminidase enhanced HRSV infection in vitro, we measured pneumococcal neuraminidase activity in these cultures but found no correlation with the observed infection enhancement in our model. Subsequently, a selection of pneumococcal strains was used to induce nasal colonization of cotton rats, the best available small animal model for HRSV. Intranasal HRSV infection three days later resulted in strain-specific enhancement of HRSV replication in vivo. One S. pneumoniae strain enhanced HRSV both in vitro and in vivo, and was also associated with enhanced syncytium formation in vivo. However, neither pneumococci nor HRSV were found to spread from the upper to the lower respiratory tract, and neither pathogen was transmitted to naive cage mates by direct contact. These results demonstrate that pneumococcal colonization can enhance subsequent HRSV infection, and provide tools for additional mechanistic and intervention studies.  相似文献   

2.
BackgroundWe aimed to study if certain clinical and/or microbiological factors are associated with a high nasopharyngeal (NP) density of Streptococcus pneumoniae in pneumococcal pneumonia. In addition, we aimed to study if a high NP pneumococcal density could be useful to detect severe pneumococcal pneumonia.MethodsAdult patients hospitalized for radiologically confirmed community-acquired pneumonia were included in a prospective study. NP aspirates were collected at admission and were subjected to quantitative PCR for pneumococcal DNA (Spn9802 DNA). Patients were considered to have pneumococcal etiology if S. pneumoniae was detected in blood culture and/or culture of respiratory secretions and/or urinary antigen test.ResultsOf 166 included patients, 68 patients had pneumococcal DNA detected in NP aspirate. Pneumococcal etiology was noted in 57 patients (84%) with positive and 8 patients (8.2%) with negative test for pneumococcal DNA (p<0.0001). The median NP pneumococcal density of DNA positive patients with pneumococcal etiology was 6.83 log10 DNA copies/mL (range 1.79–9.50). In a multivariate analysis of patients with pneumococcal etiology, a high pneumococcal density was independently associated with severe pneumonia (Pneumonia Severity Index risk class IV-V), symptom duration ≥2 days prior to admission, and a medium/high serum immunoglobulin titer against the patient’s own pneumococcal serotype. NP pneumococcal density was not associated with sex, age, smoking, co-morbidity, viral co-infection, pneumococcal serotype, or bacteremia. Severe pneumococcal pneumonia was noted in 28 study patients. When we studied the performance of PCR with different DNA cut-off levels for detection of severe pneumococcal pneumonia, we found sensitivities of 54–82% and positive predictive values of 37–56%, indicating suboptimal performance.ConclusionsPneumonia severity, symptom duration ≥2 days, and a medium/high serum immunoglobulin titer against the patient’s own serotype were independently associated with a high NP pneumococcal density. NP pneumococcal density has limited value for detection of severe pneumococcal pneumonia.  相似文献   

3.
Streptococcus pneumoniae accounts for more deaths worldwide than any other single pathogen through diverse disease manifestations including pneumonia, sepsis and meningitis. Life-threatening acute cardiac complications are more common in pneumococcal infection compared to other bacterial infections. Distinctively, these arise despite effective antibiotic therapy. Here, we describe a novel mechanism of myocardial injury, which is triggered and sustained by circulating pneumolysin (PLY). Using a mouse model of invasive pneumococcal disease (IPD), we demonstrate that wild type PLY-expressing pneumococci but not PLY-deficient mutants induced elevation of circulating cardiac troponins (cTns), well-recognized biomarkers of cardiac injury. Furthermore, elevated cTn levels linearly correlated with pneumococcal blood counts (r=0.688, p=0.001) and levels were significantly higher in non-surviving than in surviving mice. These cTn levels were significantly reduced by administration of PLY-sequestering liposomes. Intravenous injection of purified PLY, but not a non-pore forming mutant (PdB), induced substantial increase in cardiac troponins to suggest that the pore-forming activity of circulating PLY is essential for myocardial injury in vivo. Purified PLY and PLY-expressing pneumococci also caused myocardial inflammatory changes but apoptosis was not detected. Exposure of cultured cardiomyocytes to PLY-expressing pneumococci caused dose-dependent cardiomyocyte contractile dysfunction and death, which was exacerbated by further PLY release following antibiotic treatment. We found that high PLY doses induced extensive cardiomyocyte lysis, but more interestingly, sub-lytic PLY concentrations triggered profound calcium influx and overload with subsequent membrane depolarization and progressive reduction in intracellular calcium transient amplitude, a key determinant of contractile force. This was coupled to activation of signalling pathways commonly associated with cardiac dysfunction in clinical and experimental sepsis and ultimately resulted in depressed cardiomyocyte contractile performance along with rhythm disturbance. Our study proposes a detailed molecular mechanism of pneumococcal toxin-induced cardiac injury and highlights the major translational potential of targeting circulating PLY to protect against cardiac complications during pneumococcal infections.  相似文献   

4.
Interleukin-1 receptor like 1 (ST2) is a negative regulator of Toll-like receptor (TLR) signaling. TLRs are important for host defense during respiratory tract infections by both influenza and Streptococcus (S.) pneumoniae. Enhanced susceptibility to pneumococcal pneumonia is an important complication following influenza virus infection. We here sought to determine the role of ST2 in primary influenza A infection and secondary pneumococcal pneumonia. ST2 knockout (st2 −/−) and wild-type (WT) mice were intranasally infected with influenza A virus; in some experiments mice were infected 2 weeks later with S. pneumoniae. Both mouse strains cleared the virus similarly during the first 14 days of influenza infection and had recovered their weights equally at day 14. Overall st2−/− mice tended to have a stronger pulmonary inflammatory response upon infection with influenza; especially 14 days after infection modest but statistically significant elevations were seen in lung IL-6, IL-1β, KC, IL-10, and IL-33 concentrations and myeloperoxidase levels, indicative of enhanced neutrophil activity. Interestingly, bacterial lung loads were higher in st2−/− mice during the later stages of secondary pneumococcal pneumonia, which was associated with relatively increased lung IFN-γ levels. ST2 deficiency did not impact on gross lung pathology in either influenza or secondary S. pneumoniae pneumonia. These data show that ST2 plays a limited anti-inflammatory role during both primary influenza and postinfluenza pneumococcal pneumonia.  相似文献   

5.
Pneumonia is one of the major health care problems in developing and industrialized countries and is associated with considerable morbidity and mortality. Despite advances in knowledge of this illness, the availability of intensive care units (ICU), and the use of potent antimicrobial agents and effective vaccines, the mortality rates remain high1. Streptococcus pneumoniae is the leading pathogen of community-acquired pneumonia (CAP) and one of the most common causes of bacteremia in humans. This pathogen is equipped with an armamentarium of surface-exposed adhesins and virulence factors contributing to pneumonia and invasive pneumococcal disease (IPD). The assessment of the in vivo role of bacterial fitness or virulence factors is of utmost importance to unravel S. pneumoniae pathogenicity mechanisms. Murine models of pneumonia, bacteremia, and meningitis are being used to determine the impact of pneumococcal factors at different stages of the infection. Here we describe a protocol to monitor in real-time pneumococcal dissemination in mice after intranasal or intraperitoneal infections with bioluminescent bacteria. The results show the multiplication and dissemination of pneumococci in the lower respiratory tract and blood, which can be visualized and evaluated using an imaging system and the accompanying analysis software.  相似文献   

6.
IntroductionPatients undergoing immunosuppressive therapy are at increased risk of infection. Community-acquired pneumonia and invasive pneumococcal disease account for substantial morbidity and mortality in this population and may be prevented by vaccination. Ideally, immunization to pneumococcal antigens should take place before the start of immunosuppressive treatment. Often, however, the treatment cannot be delayed. Little is known about the efficacy of pneumococcal vaccines during immunosuppressive treatment. The objectives of this study were to determine the percentage of vaccine-naïve, immunosuppressed adults with inflammatory diseases seroprotected against Streptococcus pneumoniae and to assess factors associated with the immunogenicity, clinical impact and safety of 23-valent pneumococcal polysaccharide vaccine (PPV) in seronegative subjects.MethodsThis observational study included patients 18 years of age and older who were receiving prednisone ≥20 mg/day or other immunosuppressive drugs. Exclusion criteria were PPV administration in the previous 5 years, intravenous immunoglobulins and pregnancy. Serum immunoglobulin G (IgG) antibody levels against six pneumococcal serotypes were measured. Seropositivity was defined as IgG of 0.5 μg/ml or greater for at least four of six serotypes. Seronegative patients received PPV, and seropositive patients were included as a comparison group. Vaccine response and tolerance were assessed after 4–8 weeks. Disease activity was evaluated on the basis of the Physician Global Assessment scores. Serology was repeated after 1 year, and information on any kind of infection needing medical attention was collected. Outcomes were the proportion of seropositivity and infections between vaccinated and unvaccinated patients.ResultsOf 201 included patients, 35 received high-dose corticosteroids and 181 were given immunosuppressive drugs. Baseline seronegativity in 60 (30 %) patients was associated with corticotherapy and lower total IgG. After PPV, disease activity remained unchanged or decreased in 81 % of patients, and 87 % became seropositive. After 1 year, 67 % of vaccinated compared with 90 % of observed patients were seropositive (p < 0.001), whereas the rate of infections did not differ between groups. Those still taking prednisone ≥10 mg/day tended to have poorer serological responses and had significantly more infections.ConclusionsPPV was safe and moderately effective based on serological response. Seropositivity to pneumococcal antigens significantly reduced the risk of infections. Sustained high-dose corticosteroids were associated with poor vaccine response and more infections.  相似文献   

7.
Toll-like receptors (TLR) and the downstream adaptor protein MyD88 are considered crucial for protective immunity during bacterial infections. Streptococcus (S.) pneumoniae is a human respiratory pathogen and a large majority of clinical pneumococcal isolates expresses an external polysaccharide capsule. We here sought to determine the role of pneumococcal capsule in MyD88-mediated antibacterial defense during S. pneumonia pneumonia. Wild type (WT) and Myd88-/- mice were inoculated intranasally with serotype 2 S. pneumoniae D39 or with an isogenic capsule locus deletion mutant (D39∆cps), and analysed for bacterial outgrowth and inflammatory responses in the lung. As compared to WT mice, Myd88-/- mice infected with D39 demonstrated a modestly impaired bacterial clearance accompanied by decreased inflammatory responses in the lung. Strikingly, while WT mice rapidly cleared D39∆cps, Myd88-/- mice showed 105-fold higher bacterial burdens in their lungs and dissemination to blood 24 hours after infection. These data suggest that the pneumococcal capsule impairs recognition of TLR ligands expressed by S. pneumoniae and thereby partially impedes MyD88-mediated antibacterial defense.  相似文献   

8.

Background

Protective host responses to respiratory pathogens are typically characterized by inflammation. However, lung inflammation is not always protective and it may even become deleterious to the host. We have recently reported substantial protection against Streptococcus pneumoniae (pneumococcal) pneumonia by induction of a robust inflammatory innate immune response to an inhaled bacterial lysate. Conversely, the allergic inflammation associated with asthma has been proposed to promote susceptibility to pneumococcal disease. This study sought to determine whether preexisting allergic lung inflammation influences the progression of pneumococcal pneumonia or reduces the inducibilty of protective innate immunity against bacteria.

Methods

To compare the effect of different inflammatory and secretory stimuli on defense against pneumonia, intraperitoneally ovalbumin-sensitized mice were challenged with inhaled pneumococci following exposure to various inhaled combinations of ovalbumin, ATP, and/or a bacterial lysate. Thus, allergic inflammation, mucin degranulation and/or stimulated innate resistance were induced prior to the infectious challenge. Pathogen killing was evaluated by assessing bacterial CFUs of lung homogenates immediately after infection, the inflammatory response to the different conditions was evaluated by measurement of cell counts of bronchoalveolar lavage fluid 18 hours after challenge, and mouse survival was assessed after seven days.

Results

We found no differences in survival of mice with and without allergic inflammation, nor did the induction of mucin degranulation alter survival. As we have found previously, mice treated with the bacterial lysate demonstrated substantially increased survival at seven days, and this was not altered by the presence of allergic inflammation or mucin degranulation. Allergic inflammation was associated with predominantly eosinophilic infiltration, whereas the lysate-induced response was primarily neutrophilic. The presence of allergic inflammation did not significantly alter the neutrophilic response to the lysate, and did not affect the induced bacterial killing within the lungs.

Conclusion

These results suggest that allergic airway inflammation neither promotes nor inhibits progression of pneumococcal lung infection in mice, nor does it influence the successful induction of stimulated innate resistance to bacteria.  相似文献   

9.

Background

Even though the pathogenicity and invasiveness of pneumococcus largely depend on capsular types, the impact of serotypes on post-viral pneumococcal pneumonia is unknown.

Methods and Findings

This study was performed to evaluate the impact of capsular serotypes on the development of pneumococcal pneumonia after preceding respiratory viral infections. Patients with a diagnosis of pneumococcal pneumonia were identified. Pneumonia patients were divided into two groups (post-viral pneumococcal pneumonia versus primary pneumococcal pneumonia), and then their pneumococcal serotypes were compared. Nine hundred and nineteen patients with pneumococcal pneumonia were identified during the study period, including 327 (35.6%) cases with post-viral pneumococcal pneumonia and 592 (64.4%) cases with primary pneumococcal pneumonia. Overall, serotypes 3 and 19A were the most prevalent, followed by serotypes 19F, 6A, and 11A/11E. Although relatively uncommon (33 cases, 3.6%), infrequently colonizing invasive serotypes (4, 5, 7F/7A, 8, 9V/9A, 12F, and 18C) were significantly associated with preceding respiratory viral infections (69.7%, P<0.01). Multivariate analysis revealed several statistically significant risk factors for post-viral pneumococcal pneumonia: immunodeficiency (OR 1.66; 95% CI, 1.10–2.53), chronic lung diseases (OR 1.43; 95% CI, 1.09–1.93) and ICI serotypes (OR 4.66; 95% CI, 2.07–10.47).

Conclusions

Infrequently colonizing invasive serotypes would be more likely to cause pneumococcal pneumonia after preceding respiratory viral illness, particularly in patients with immunodeficiency or chronic lung diseases.  相似文献   

10.
BackgroundPneumonia is the major cause of death in children globally, with more than 900,000 deaths annually in children under five years of age. Streptococcus pneumoniae causes most deaths, most often in the form of community acquired pneumonia. Pneumococcal conjugate vaccines (PCVs) are currently being implemented in many low-income countries. PCVs decrease vaccine-type pneumococcal carriage, a prerequisite for invasive pneumococcal disease, and thereby affects pneumococcal disease and transmission. In Uganda, PCV was launched in 2014, but baseline data is lacking for pneumococcal serotypes in carriage.ObjectivesTo study pneumococcal nasopharyngeal carriage and serotype distribution in children under 5 years of age prior to PCV introduction in UgandaMethodsThree cross-sectional pneumococcal carriage surveys were conducted in 2008, 2009 and 2011, comprising respectively 150, 587 and 1024 randomly selected children aged less than five years from the Iganga/Mayuge Health and Demographic Surveillance Site. The caretakers were interviewed about illness history of the child and 1723 nasopharyngeal specimens were collected. From these, 927 isolates of S. pneumoniae were serotyped.ResultsOverall, the carriage rate of S. pneumoniae was 56% (957/1723). Pneumococcal carriage was associated with illness on the day of the interview (OR = 1.50, p = 0.04). The most common pneumococcal serotypes were in descending order 19F (16%), 23F (9%), 6A (8%), 29 (7%) and 6B (7%). One percent of the strains were non-typeable. The potential serotype coverage rate for PCV10 was 42% and 54% for PCV13.ConclusionAbout half of circulating pneumococcal serotypes in carriage in the Ugandan under-five population studied was covered by available PCVs.  相似文献   

11.
Streptococcus (S.) pneumoniae is a common causative pathogen in pneumonia. Serine protease orthologs expressed by a variety of bacteria have been found of importance for virulence. Previous studies have identified two serine proteases in S. pneumoniae, HtrA (high-temperature requirement A) and PrtA (cell wall-associated serine protease A), that contributed to virulence in models of pneumonia and intraperitoneal infection respectively. We here sought to identify additional S. pneumoniae serine proteases and determine their role in virulence. The S. pneumoniae D39 genome contains five putative serine proteases, of which HtrA, Subtilase Family Protein (SFP) and PrtA were selected for insertional mutagenesis because they are predicted to be secreted and surface exposed. Mutant D39 strains lacking serine proteases were constructed by in-frame insertion deletion mutagenesis. Pneumonia was induced by intranasal infection of mice with wild-type or mutant D39. After high dose infection, only D39ΔhtrA showed reduced virulence, as reflected by strongly reduced bacterial loads, diminished dissemination and decreased lung inflammation. D39ΔprtA induced significantly less lung inflammation together with smaller infiltrated lung surface, but without influencing bacterial loads. After low dose infection, D39ΔhtrA again showed strongly reduced bacterial loads; notably, pneumococcal burdens were also modestly lower in lungs after infection with D39Δsfp. These data confirm the important role for HtrA in S. pneumoniae virulence. PrtA contributes to lung damage in high dose pneumonia; it does not however contribute to bacterial outgrowth in pneumococcal pneumonia. SFP may facilitate S. pneumoniae growth after low dose infection.  相似文献   

12.

Background

Acute respiratory infection (ARI) is a leading cause of morbidity and mortality in children worldwide. This study aimed to determine the viral and atypical bacterial causes of different severities and clinical manifestations of ARI in preschool children from low-income families in North-East Brazil.

Methods

Clinical/demographic data and nasopharyngeal aspirates (NPA) were prospectively collected from children <5 years presenting with ARI over one year to a paediatric A&E department. Disease severity was grouped according to presence of lower respiratory tract signs, need for hospital admission and need for oxygen. Clinical manifestation of ARI was based on discharge diagnosis from hospital with four conditions predominating: bronchiolitis, pneumonia, episodic viral wheeze/asthma and upper respiratory tract infection. Multiplex PCR was used to detect 17 common respiratory viral and atypical bacterial pathogens in NPA.

Findings

407 children with a median age of eight months were recruited. Pathogens were detected in 85·5% samples with co-infection being particularly common (39·5%). Respiratory Syncytial Virus (RSV; 37%), Adenoviruses (AdV; 25%), Rhinoviruses (hRV; 19%), Bocavirus (hBoV; 19%), human Meta-pneumovirus (hMPV; 10%) and Mycoplasma pneumoniae (Mpp; 10%) were most prevalent. Detection and co-infection rates were similar in all severities and clinical manifestations of ARI apart from RSV, which was associated with more severe disease and specifically more severe cases of bronchiolitis, and Mpp, which was associated with more severe cases of pneumonia. Mpp was detected in 17% of children admitted to hospital with pneumonia.

Interpretation

This study underlines the importance of viral and atypical bacterial pathogens in ARI in pre-school children and highlights the complex epidemiology of these pathogens in this age group. Generally, viruses and atypical bacteria were detected in all severities and clinical manifestations of ARI but RSV and Mpp were associated with more severe cases of bronchiolitis and pneumonia respectively.  相似文献   

13.
Background Streptococcus pneumoniae is a leading cause of pneumonia worldwide. However, the burden of pneumococcal pneumonia among adults in low- and middle-income countries is not well described.MethodsData from 2008–2012 was analyzed from two surveillance sites in Guatemala to describe the incidence of pneumococcal pneumonia in adults. A case of hospitalized pneumococcal pneumonia was defined as a positive pneumococcal urinary antigen test or blood culture in persons aged ≥ 18 years hospitalized with an acute respiratory infection (ARI).ResultsAmong 1595 adults admitted with ARI, 1363 (82%) had either urine testing (n = 1286) or blood culture (n = 338) performed. Of these, 188 (14%) had pneumococcal pneumonia, including 173 detected by urine only, 8 by blood culture only, and 7 by both methods. Incidence rates increased with age, with the lowest rate among 18–24 year-olds (2.75/100,000) and the highest among ≥65 year-olds (31.3/100,000). The adjusted incidence of hospitalized pneumococcal pneumonia was 18.6/100,000 overall, with in-hospital mortality of 5%.ConclusionsAn important burden of hospitalized pneumococcal pneumonia in adults was described, particularly for the elderly. However, even adjusted rates likely underestimate the true burden of pneumococcal pneumonia in the community. These data provide a baseline against which to measure the indirect effects of the 2013 introduction of the pneumococcal conjugate vaccine in children in Guatemala.  相似文献   

14.
Pneumonia is the leading cause of mortality in children in developing countries and is also the leading infectious cause of death in adults. The most important cause of pneumonia is the Gram-positive bacterial pathogen, Streptococcus pneumoniae, also known as the pneumococcus. It has thus become the leading vaccine-preventable cause of death and is a successful and diverse human pathogen. The development of conjugate pneumococcal vaccines has made possible the prevention of pneumococcal disease in infants, but has also elucidated aspects of pneumococcal biology in a number of ways. Use of the vaccine as a probe has increased our understanding of the burden of pneumococcal disease in children globally. Vaccination has also elucidated the clinical spectrum of vaccine-preventable pneumococcal infections; the identification of a biological niche for multiple pneumococcal serotypes in carriage and the differential invasiveness of pneumococcal serotypes; the impact of pneumococcal transmission among children on disease burden in adults; the role of carriage as a precursor to pneumonia; the plasticity of a naturally transformable pathogen to respond to selective pressure through capsular switching and the accumulation of antibiotic-resistance determinants; and the role of pneumococcal infections in hospitalization and mortality associated with respiratory viral infections, including both seasonal and pandemic influenza. Finally, there has been a recent demonstration that pneumococcal pneumonia in children may be an important cause of hospitalization for those with underlying tuberculosis.  相似文献   

15.
16.
Streptococcus (S.) pneumoniae is the most common causative pathogen in community-acquired pneumonia. Nucleotide-binding oligomerization domain-containing (NOD) 2 is a pattern recognition receptor located in the cytosol of myeloid cells that is able to detect peptidoglycan fragments of S. pneumoniae. We here aimed to investigate the role of NOD2 in the host response during pneumococcal pneumonia. Phagocytosis of S. pneumoniae was studied in NOD2 deficient (Nod2 -/-) and wild-type (Wt) alveolar macrophages and neutrophils in vitro. In subsequent in vivo experiments Nod2 -/- and Wt mice were inoculated with serotype 2 S. pneumoniae (D39), an isogenic capsule locus deletion mutant (D39Δcps) or serotype 3 S. pneumoniae (6303) via the airways, and bacterial growth and dissemination and the lung inflammatory response were evaluated. Nod2 -/- alveolar macrophages and blood neutrophils displayed a reduced capacity to internalize pneumococci in vitro. During pneumonia caused by S. pneumoniae D39 Nod2 -/- mice were indistinguishable from Wt mice with regard to bacterial loads in lungs and distant organs, lung pathology and neutrophil recruitment. While Nod2 -/- and Wt mice also had similar bacterial loads after infection with the more virulent S. pneumoniae 6303 strain, Nod2 -/- mice displayed a reduced bacterial clearance of the normally avirulent unencapsulated D39Δcps strain. These results suggest that NOD2 does not contribute to host defense during pneumococcal pneumonia and that the pneumococcal capsule impairs recognition of S. pneumoniae by NOD2.  相似文献   

17.
Bacterial uptake by phagocytic cells is a vital event in the clearance of invading pathogens such as Streptococcus pneumoniae. A major role of the P-selectin glycoprotein ligand-1 (PSGL-1) on leukocytes against invasive pneumococcal disease is described in this study. Phagocytosis experiments using different serotypes demonstrated that PSGL-1 is involved in the recognition, uptake and killing of S. pneumoniae. Co-localization of several clinical isolates of S. pneumoniae with PSGL-1 was demonstrated, observing a rapid and active phagocytosis in the presence of PSGL-1. Furthermore, the pneumococcal capsular polysaccharide and the main autolysin of the bacterium ―the amidase LytA― were identified as bacterial ligands for PSGL-1. Experimental models of pneumococcal disease including invasive pneumonia and systemic infection showed that bacterial levels were markedly increased in the blood of PSGL-1 −/− mice. During pneumonia, PSGL-1 controls the severity of pneumococcal dissemination from the lung to the bloodstream. In systemic infection, a major role of PSGL-1 in host defense is to clear the bacteria in the systemic circulation controlling bacterial replication. These results confirmed the importance of this receptor in the recognition and clearance of S. pneumoniae during invasive pneumococcal disease. Histological and cellular analysis demonstrated that PSGL-1 −/− mice have increased levels of T cells migrating to the lung than the corresponding wild-type mice. In contrast, during systemic infection, PSGL-1 −/− mice had increased numbers of neutrophils and macrophages in blood, but were less effective controlling the infection process due to the lack of this functional receptor. Overall, this study demonstrates that PSGL-1 is a novel receptor for S. pneumoniae that contributes to protection against invasive pneumococcal disease.  相似文献   

18.
BackgroundThere is limited empiric evidence on the coverage of pneumococcal conjugate vaccines (PCVs) required to generate substantial indirect protection. We investigate the association between population PCV coverage and indirect protection against invasive pneumococcal disease (IPD) and pneumonia hospitalisations among undervaccinated Australian children.Methods and findingsBirth and vaccination records, IPD notifications, and hospitalisations were individually linked for children aged <5 years, born between 2001 and 2012 in 2 Australian states (New South Wales and Western Australia; 1.37 million children). Using Poisson regression models, we examined the association between PCV coverage, in small geographical units, and the incidence of (1) 7-valent PCV (PCV7)-type IPD; (2) all-cause pneumonia; and (3) pneumococcal and lobar pneumonia hospitalisation in undervaccinated children. Undervaccinated children received <2 doses of PCV at <12 months of age and no doses at ≥12 months of age. Potential confounding variables were selected for adjustment a priori with the assistance of a directed acyclic graph.There were strong inverse associations between PCV coverage and the incidence of PCV7-type IPD (adjusted incidence rate ratio [aIRR] 0.967, 95% confidence interval [CI] 0.958 to 0.975, p-value < 0.001), and pneumonia hospitalisations (all-cause pneumonia: aIRR 0.991 95% CI 0.990 to 0.994, p-value < 0.001) among undervaccinated children. Subgroup analyses for children <4 months old, urban, rural, and Indigenous populations showed similar trends, although effects were smaller for rural and Indigenous populations. Approximately 50% coverage of PCV7 among children <5 years of age was estimated to prevent up to 72.5% (95% CI 51.6 to 84.4) of PCV7-type IPD among undervaccinated children, while 90% coverage was estimated to prevent 95.2% (95% CI 89.4 to 97.8). The main limitations of this study include the potential for differential loss to follow-up, geographical misclassification of children (based on residential address at birth only), and unmeasured confounders.ConclusionsIn this study, we observed substantial indirect protection at lower levels of PCV coverage than previously described—challenging assumptions that high levels of PCV coverage (i.e., greater than 90%) are required. Understanding the association between PCV coverage and indirect protection is a priority since the control of vaccine-type pneumococcal disease is a prerequisite for reducing the number of PCV doses (from 3 to 2). Reduced dose schedules have the potential to substantially reduce program costs while maintaining vaccine impact.

In an observational study, Jocelyn Chan and colleagues investigate associations between pneumococcal conjugate vaccine coverage and incidence of invasive pneumococcal disease and pneumonia among children under 5 years in Australia.  相似文献   

19.

Background

There are very limited data on children with pneumonia in Mali. The objective was to assess the etiology and factors associated with community-acquired pneumonia in hospitalized children <5 years of age in Mali.

Methods

A prospective hospital-based case-control study was implemented in the Pediatric department of Gabriel Touré University Hospital at Bamako, Mali, between July 2011-December 2012. Cases were children with radiologically-confirmed pneumonia; Controls were hospitalized children without respiratory features, matched for age and period. Respiratory specimens, were collected to identify 19 viruses and 5 bacteria. Whole blood was collected from cases only. Factors associated with pneumonia were assessed by multivariate logistic regression.

Results

Overall, 118 cases and 98 controls were analyzed; 44.1% were female, median age was 11 months. Among pneumonia cases, 30.5% were hypoxemic at admission, mortality was 4.2%. Pneumonia cases differed from the controls regarding clinical signs and symptoms but not in terms of past medical history. Multivariate analysis of nasal swab findings disclosed that S. pneumoniae (adjusted odds ratio [aOR] = 3.4, 95% confidence interval [95% CI]: 1.6–7.0), human metapneumovirus (aOR = 17.2, 95% CI: 2.0–151.4), respiratory syncytial virus [RSV] (aOR = 7.4, 95% CI: 2.3–23.3), and influenza A virus (aOR = 10.7, 95% CI: 1.0–112.2) were associated with pneumonia, independently of patient age, gender, period, and other pathogens. Distribution of S. pneumoniae and RSV differed by season with higher rates of S. pneumoniae in January-June and of RSV in July-September. Pneumococcal serotypes 1 and 5 were more frequent in pneumonia cases than in the controls (P = 0.009, and P = 0.04, respectively).

Conclusions

In this non-PCV population from Mali, pneumonia in children was mainly attributed to S. pneumoniae, RSV, human metapneumovirus, and influenza A virus. Increased pneumococcal conjugate vaccine coverage in children could significantly reduce the burden of pneumonia in sub-Saharan African countries.  相似文献   

20.
IntroductionThe aim of present study is to inverstigate the association between antibody levels after vaccination with 7-valent pneumococcal conjugate vaccine (PCV7) and subsequent serious pneumococcal infections in rheumatoid arthritis (RA) and spondylarthropathy (SpA) patients.MethodsA cohort of 497 patients (RA = 248 and SpA = 249) received a single dose of PCV7. At vaccination, patients were treated with methotrexate (MTX; n = 85), anti-tumour necrosis factor (anti-TNF) + MTX (n = 169), anti-TNF monotherapy (n = 158) and non-steroidal anti-inflammatory drugs (NSAIDs)/analgesics (n = 85). Antibody levels of serotypes 6B and 23B were analyzed before and 4 to 6 weeks after vaccination using standard enzyme-linked immunosorbent assay (ELISA). Serious pneumococcal infections (pneumonia/lower respiratory tract infection, meningitis, sepsis, septic arthritis) occurring within 4.5 years after vaccination were identified in the Skåne Healthcare Register using the International Classification of Diseases, tenth revision (ICD-10) codes. The association between post-vaccination antibody levels and protection against infections and determination of protective cutoff levels was explored using receiver operating characteristic (ROC) curves. Predictors of infection were studied using regression analyses.ResultsEighteen infections were registered in 15 patients before vaccination and 27 infections in 23 patients after vaccination. Patients with serious infections after vaccination had significantly lower post-vaccination antibody titres for both 6B (P = 0.04) and 23 F (P = 0.04). Post-vaccination antibody levels of at least 1.29 mg/L and 1.01 mg/L for 6B and 23, respectively, were associated with better protection from serious infections. Higher age, concomitant prednisolone but not MTX or anti-TNF were associated with such infections.ConclusionsPatients with more robust antibody responses after vaccination with pneumococcal conjugate vaccine were less likely to suffer from serious infections. High age and prednisolone at vaccination were associated with putative serious pneumococcal infections in this cohort.

Trial registration number

EudraCT EU 2007-006539-29 and NCT00828997. Registered 23 January 2009.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号