首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of Skp1 as an adaptor protein that links Cullin-1 to F-box proteins in E3 Skp1/Cullin-1/F-box protein (SCF) ubiquitin ligases is well characterized. In the social amoeba Dictyostelium and probably many other unicellular eukaryotes, Skp1 is modified by a pentasaccharide attached to a hydroxyproline near its C terminus. This modification is important for oxygen-sensing during Dictyostelium development and is mediated by a HIF-α type prolyl 4-hydroxylase and five sequentially acting cytoplasmic glycosyltransferase activities. Gene disruption studies show that AgtA, the enzyme responsible for addition of the final two galactose residues, in α-linkages to the Skp1 core trisaccharide, is unexpectedly critical for oxygen-dependent terminal development. AgtA possesses a WD40 repeat domain C-terminal to its single catalytic domain and, by use of domain deletions, binding studies, and enzyme assays, we find that the WD40 repeats confer a salt-sensitive second-site binding interaction with Skp1 that mediates novel catalytic activation in addition to simple substrate recognition. In addition, AgtA binds similarly well to precursor isoforms of Skp1 by a salt-sensitive mechanism that competes with binding to an F-box protein and recognition by early modification enzymes, and the effect of binding is diminished when AgtA modifies Skp1. Genetic studies show that loss of AgtA is more severe when an earlier glycosylation step is blocked, and overexpressed AgtA is deleterious if catalytically inactivated. Together, the findings suggest that AgtA mediates non-enzymatic control of unmodified and substrate precursor forms of Skp1 by a binding mechanism that is normally relieved by switch-like activation of its glycosylation function.  相似文献   

2.
Charcot–Marie–Tooth (CMT) disease is an inherited neurological disorder. Mutations in the small integral membrane protein of the lysosome/late endosome (SIMPLE) account for the rare autosomal-dominant demyelination in CMT1C patients. Understanding the molecular basis of CMT1C pathogenesis is impeded, in part, by perplexity about the role of SIMPLE, which is expressed in multiple cell types. Here we show that SIMPLE resides within the intraluminal vesicles of multivesicular bodies (MVBs) and inside exosomes, which are nanovesicles secreted extracellularly. Targeting of SIMPLE to exosomes is modulated by positive and negative regulatory motifs. We also find that expression of SIMPLE increases the number of exosomes and secretion of exosome proteins. We engineer a point mutation on the SIMPLE allele and generate a physiological mouse model that expresses CMT1C-mutated SIMPLE at the endogenous level. We find that CMT1C mouse primary embryonic fibroblasts show decreased number of exosomes and reduced secretion of exosome proteins, in part due to improper formation of MVBs. CMT1C patient B cells and CMT1C mouse primary Schwann cells show similar defects. Together the data indicate that SIMPLE regulates the production of exosomes by modulating the formation of MVBs. Dysregulated endosomal trafficking and changes in the landscape of exosome-mediated intercellular communications may place an overwhelming burden on the nervous system and account for CMT1C molecular pathogenesis.  相似文献   

3.
The three cloned galanin receptors show a higher affinity for galanin than for galanin N-terminal fragments. Galanin fragment (1–15) binding sites were discovered in the rat Central Nervous System, especially in dorsal hippocampus, indicating a relevant role of galanin fragments in central galanin communication. The hypothesis was introduced that these N-terminal galanin fragment preferring sites are formed through the formation of GalR1–GalR2 heteromers which may play a significant role in mediating galanin fragment (1–15) signaling. In HEK293T cells evidence for the existence of GalR1–GalR2 heteroreceptor complexes were obtained with proximity ligation and BRET2 assays. PLA positive blobs representing GalR1–GalR2 heteroreceptor complexes were also observed in the raphe-hippocampal system. In CRE luciferase reporter gene assays, galanin (1–15) was more potent than galanin (1–29) in inhibiting the forskolin-induced increase of luciferase activity in GalR1–GalR2 transfected cells. The inhibition of CREB by 50 nM of galanin (1–15) and of galanin (1–29) was fully counteracted by the non-selective galanin antagonist M35 and the selective GalR2 antagonist M871. These results suggested that the orthosteric agonist binding site of GalR1 protomer may have an increased affinity for the galanin (1–15) vs galanin (1–29) which can lead to its demonstrated increase in potency to inhibit CREB vs galanin (1–29). In contrast, in NFAT reporter gene assays galanin (1–29) shows a higher efficacy than galanin (1–15) in increasing Gq/11 mediated signaling over the GalR2 of these heteroreceptor complexes. This disbalance in the signaling of the GalR1–GalR2 heteroreceptor complexes induced by galanin (1–15) may contribute to depression-like actions since GalR1 agonists produce such effects.  相似文献   

4.
Geometries, vibrational frequencies, vertical and adiabatic excitation energies, dipole moments and dipole polarizabilities of the ground and the three lowest electronic excited states, S(1)(n, π (*)), T(1)(n, π (*)), and T(2)(π, π (*)) of the 2-cyclopenten-1-one molecule (2CP) were calculated at the CCSD and CCSD(T) levels of approximation. Our results indicate that two triplets T(1)(n, π (*)) and T(2)(π, π (*)) are lying very close each to other, while the singlet S(1)(n, π (*)) is well above them. There are dramatic changes in dipole moments for (n, π (*)) excited states in respect to the ground state. On the other hand the T(2)(π, π (*)) state has a similar dipole moment as the ground state. These changes can be interpreted within the MO picture using electrostatic potential maps and changes in model IR spectra. Our CCSD(T) dipole moment data for the ground state and almost isoenergetic triplets T(1)(n, π (*)) and T(2)(π, π (*)) are 1.469?a.u., 0.551?a.u., and 1.124?a.u., respectively. Dipole polarizabilities of investigated excited states are much less affected by electron excitations than dipole moments. These are the first dipole moment and polarizability data of 2CP in the literature. The changes of molecular properties upon excitation to S(1)(n, π (*)) and T(1)(n, π (*)) correlate with the experimental data on the biological activity of 2CP related to the α, β-unsaturated carbonyl group.  相似文献   

5.
β1–3-N-Acetylglucosaminyltransferases (β3GlcNAcTs) and β1–4-galactosyltransferases (β4GalTs) have been broadly used in enzymatic synthesis of N-acetyllactosamine (LacNAc)-containing oligosaccharides and glycoconjugates including poly-LacNAc, and lacto-N-neotetraose (LNnT) found in the milk of human and other mammals. In order to explore oligosaccharides and derivatives that can be synthesized by the combination of β3GlcNAcTs and β4GalTs, donor substrate specificity studies of two bacterial β3GlcNAcTs from Helicobacter pylori (Hpβ3GlcNAcT) and Neisseria meningitidis (NmLgtA), respectively, using a library of 39 sugar nucleotides were carried out. The two β3GlcNAcTs have complementary donor substrate promiscuity and 13 different trisaccharides were produced. They were used to investigate the acceptor substrate specificities of three β4GalTs from Neisseria meningitidis (NmLgtB), Helicobacter pylori (Hpβ4GalT), and bovine (Bβ4GalT), respectively. Ten of the 13 trisaccharides were shown to be tolerable acceptors for at least one of these β4GalTs. The application of NmLgtA in one-pot multienzyme (OPME) synthesis of two trisaccharides including GalNAcβ1–3Galβ1–4GlcβProN3 and Galβ1–3Galβ1–4Glc was demonstrated. The study provides important information for using these glycosyltransferases as powerful catalysts in enzymatic and chemoenzymatic syntheses of oligosaccharides and derivatives which can be useful probes and reagents.  相似文献   

6.
Poly(ADP-ribose) polymerases (PARP) attach poly(ADP-ribose) (PAR) chains to various proteins including themselves and chromatin. Topoisomerase I (Top1) regulates DNA supercoiling and is the target of camptothecin and indenoisoquinoline anticancer drugs, as it forms Top1 cleavage complexes (Top1cc) that are trapped by the drugs. Endogenous and carcinogenic DNA lesions can also trap Top1cc. Tyrosyl-DNA phosphodiesterase 1 (TDP1), a key repair enzyme for trapped Top1cc, hydrolyzes the phosphodiester bond between the DNA 3′-end and the Top1 tyrosyl moiety. Alternative repair pathways for Top1cc involve endonuclease cleavage. However, it is unknown what determines the choice between TDP1 and the endonuclease repair pathways. Here we show that PARP1 plays a critical role in this process. By generating TDP1 and PARP1 double-knockout lymphoma chicken DT40 cells, we demonstrate that TDP1 and PARP1 are epistatic for the repair of Top1cc. The N-terminal domain of TDP1 directly binds the C-terminal domain of PARP1, and TDP1 is PARylated by PARP1. PARylation stabilizes TDP1 together with SUMOylation of TDP1. TDP1 PARylation enhances its recruitment to DNA damage sites without interfering with TDP1 catalytic activity. TDP1–PARP1 complexes, in turn recruit X-ray repair cross-complementing protein 1 (XRCC1). This work identifies PARP1 as a key component driving the repair of trapped Top1cc by TDP1.  相似文献   

7.
Synovial sarcoma is an aggressive mesenchymal malignancy characterized by unique gene fusions. Tissue culture cells are essential tools for further understanding tumorigenesis and anti-cancer drug development; however, only a limited number of well-characterized synovial sarcoma cell lines exist. Thus, the objective of this study was to establish a patient-derived synovial sarcoma cell line. We established a synovial sarcoma cell line from tumor tissue isolated from a 72-year-old female patient. Prepared cells were analyzed for the presence of gene fusions by fluorescence in situ hybridization, RT-PCR, and karyotyping. In addition, the resulting cell line was characterized by viability, short tandem repeat, colony and spheroid formation, and invasion analyses. Differences in gene enrichment between the primary tumor and cell line were examined by mass spectrometric protein expression profiling and KEGG pathway analysis. Our analyses revealed that the primary tumor and NCC–SS1–C1 cell line harbored the SS18SSX1 fusion gene typical of synovial sarcoma and similar proteomics profiles. In vitro analyses also confirmed that the established cell line harbored invasive, colony-forming, and spheroid-forming potentials. Moreover, drug screening with chemotherapeutic agents and tyrosine kinase inhibitors revealed that doxorubicin, a subset of tyrosine kinase inhibitors, and several molecular targeting drugs markedly decreased NCC–SS1–C1 cell viability. Results from the present study support that the NCC–SS1–C1 cell line will be an effective tool for sarcoma research.  相似文献   

8.
We previously reported a unique peptide–peptoid hybrid, PPS1 that specifically recognizes lipid–phosphatidylserine (PS) and a few other negatively charged phospholipids, but not neutral phospholipids, on the cell membrane. The dimeric version of PPS1, i.e., PPS1D1 triggers strong cancer cell cytotoxicity and has been validated in lung cancer models both in vitro and in vivo. Given that PS and other negatively charged phospholipids are abundant in almost all tumor microenvironments, PPS1D1 is an attractive drug lead that can be developed into a globally applicable anti-cancer agent. Therefore, it is extremely important to identify the minimum pharmacophore of PPS1D1. In this study, we have synthesized alanine/sarcosine derivatives as well as truncated derivatives of PPS1D1. We performed ELISA-like competitive binding assay to evaluate the PS-recognition potential and standard MTS cell viability assay on HCC4017 lung cancer cells to validate the cell cytotoxicity effects of these derivatives. Our studies indicate that positively charged residues at the second and third positions, as well as four hydrophobic residues at the fifth through eighth positions, are imperative for the binding and activity of PPS1D1. Methionine at the first position was not essential, whereas the positively charged Nlys at the fourth position was minimally needed, as two derivatives that were synthesized replacing this residue were almost as active as PPS1D1.  相似文献   

9.
10.
We describe a procedure for the selection of alcohol dehydrogenase negative mutants in Drosophila. The method consists of exposing eggs and larvae to low concentrations of 1-pentyne-3-ol dissolved in the culture medium. Only those flies with greatly reduced levels of alcohol dehydrogenase activity survive. In addition, genotypically negative flies die if their mothers are alcohol dehydrogenase positive. Using this procedure and formaldehyde to generate mutants, we were able to detect seven alcohol dehydrogenase negative mutants out of 350,000 individuals subjected to selection. At least five of the mutants contain small deletions that include the alcohol dehydrogenase locus.  相似文献   

11.
The checkpoint clamp Rad9–Hus1–Rad1 (9–1–1) interacts with TopBP1 via two casein kinase 2 (CK2)-phosphorylation sites, Ser-341 and Ser-387 in Rad9. While this interaction is known to be important for the activation of ATR-Chk1 pathway, how the interaction contributes to their accumulation at sites of DNA damage remains controversial. Here, we have studied the contribution of the 9–1–1/TopBP1 interaction to the assembly and activation of checkpoint proteins at damaged DNA. UV-irradiation enhanced association of Rad9 with chromatin and its localization to sites of DNA damage without a direct interaction with TopBP1. TopBP1, as well as RPA and Rad17 facilitated Rad9 recruitment to DNA damage sites. Similar to Rad9, TopBP1 also localized to sites of UV-induced DNA damage. The DNA damage-induced TopBP1 redistribution was delayed in cells expressing a TopBP1 binding-deficient Rad9 mutant. Pharmacological inhibition of ATR recapitulated the delayed accumulation of TopBP1 in the cells, suggesting that ATR activation will induce more efficient accumulation of TopBP1. Taken together, TopBP1 and Rad9 can be independently recruited to damaged DNA. Once recruited, a direct interaction of 9–1–1/TopBP1 occurs and induces ATR activation leading to further TopBP1 accumulation and amplification of the checkpoint signal. Thus, we propose a new positive feedback mechanism that is necessary for successful formation of the damage-sensing complex and DNA damage checkpoint signaling in human cells.  相似文献   

12.
After removal of tightly bound NAD(+) by using charcoal, a preparation of d-glucose 6-phosphate-1 l-myoinositol 1-phosphate cyclase catalysed the reduction of 5-keto-d-glucitol 6-phosphate and 5-keto-d-glucose 6-phosphate by [4-(3)H]NADH to give [5-(3)H]-glucitol 6-phosphate and [5-(3)H]glucose 6-phosphate respectively. The position of the tritium atom in the latter was shown by degradation. Both enzyme-catalysed reductions were strongly inhibited by 2-deoxy-d-glucose 6-phosphate, a powerful competitive inhibitor of inositol cyclase. The charcoal-treated enzyme preparation also converted 5-keto-d-glucose 6-phosphate into [(3)H]myoinositol 1-phosphate in the presence of [4-(3)H]NADH, but less effectively. These partial reactions of inositol cyclase are interpreted as providing strong evidence for the formation of 5-keto-d-glucose 6-phosphate as an enzyme-bound intermediate in the conversion of d-glucose 6-phosphate into 1 l-myoinositol 1-phosphate. The enzyme was partially inactivated by NaBH(4) in the presence of NAD(+). Glucose 6-phosphate did not increase the inactivation, and there was no inactivation in the absence of NAD(+). There was no evidence for Schiff base formation during the cyclization. d-Glucitol 6-phosphate (l-sorbitol 1-phosphate) was a good inhibitor of the overall reaction. It did not inactivate the enzyme. The apparent molecular weight of inositol cyclase as determined by Sephadex chromatography was 2.15x10(5).  相似文献   

13.
The identification of ubiquitin E3 ligase substrates has been challenging, due in part to low-affinity, transient interactions, the rapid degradation of targets and the inability to identify proteins from poorly soluble cellular compartments. SCFβ-TrCP1 and SCFβ-TrCP2 are well-studied ubiquitin E3 ligases that target substrates for proteasomal degradation, and play important roles in Wnt, Hippo, and NFκB signaling. Combining 26S proteasome inhibitor (MG132) treatment with proximity-dependent biotin labeling (BioID) and semiquantitative mass spectrometry, here we identify SCFβ-TrCP1/2 interacting partners. Based on their enrichment in the presence of MG132, our data identify over 50 new putative SCFβ-TrCP1/2 substrates. We validate 12 of these new substrates and reveal previously unsuspected roles for β-TrCP in the maintenance of nuclear membrane integrity, processing (P)-body turnover and translational control. Together, our data suggest that β-TrCP is an important hub in the cellular stress response. The technique presented here represents a complementary approach to more standard IP-MS methods and should be broadly applicable for the identification of substrates for many ubiquitin E3 ligases.More than 600 putative ubiquitin E3 ligases are encoded in the human genome (1, 2). Although a number of these proteins are known to play critical roles in human health (14), the specific biological functions—and substrates—of most E3s remain poorly characterized. The identification of E3 substrates has been difficult in part because: (1) ligase - substrate interactions are often of low affinity (generally in the high nm to microMolar (μM) range) and/or of a transient nature; (2) many substrates are subjected to rapid proteasomal degradation and are therefore not available for detection; (3) the human ubiquitome is extremely complex, and; (4) many substrate proteins are localized to poorly soluble cellular compartments, making their isolation and identification by standard immunoprecipitation (IP)-based techniques extremely challenging (14).Methods such as protein chip (5) and yeast two-hybrid screening (6) have been used to identify a limited number of E3-substrate interactions. However, these methods are not conducted in live mammalian cells, and may not be generally applicable for the identification of substrates of the hundreds of unique multi-protein E3 complexes (e.g. SCF, APC, VHL, etc.) or the identification of E3-substrate interactions that are dependent on specific types of post-translational modifications. Several putative inhibitors of apoptosis substrates were identified using the recently described NEDDylator technique (7), in which the E2 protein UBC12 (UBE2M) is fused to the E3 ligase of interest, allowing for the conjugation of the ubiquitin-like protein NEDD8 to substrates. Global protein stability profiling (8) and quantitative mass spectrometry methods (9) have also been used successfully to identify E3 targets. However, because of their cost and/or complexity, and the challenges posed by the extremely large size of the human ubiquitome, these methods have not been widely adopted to date.Proximity-based biotinylation, or BioID1 (10), is a new method developed for the characterization of protein-protein interactions in living cells. Briefly, a protein of interest is fused in-frame with an E. coli biotin conjugating enzyme mutant (BirA R118G, or BirA*). The BirA* moiety can efficiently activate biotin, but exhibits a reduced affinity for the activated molecule (11); biotinoyl-AMP thus simply diffuses away from BirA* and reacts with nearby amine groups - including those present on lysine residues in neighboring polypeptides. Following cell lysis, biotinylated proteins can be affinity purified using streptavidin and identified using mass spectrometry (Fig. 1A). Since interactors are covalently modified with biotin, robust lysis conditions can be used to solubilize polypeptides localized to poorly soluble cellular compartments (10, 1216). Moreover, since this method does not require that protein-protein interactions be maintained post-lysis, weak and/or transient interactors may also be identified. We reasoned that BioID may be exploited to capture ubiquitin E3 ligase substrates and tested this notion here.Open in a separate windowFig. 1.BioID can be used to identify ubiquitin E3 ligase substrates. A, An N-terminal tag consisting of the FLAG epitope and the mutant E. coli biotin conjugating protein BirA R118G (BirA*) was fused to the N terminus of the human F-box proteins β-TrCP1 and β-TrCP2. The BirA* protein converts biotin (black hexagon) to biotinoyl-AMP (yellow hexagon). The mutant BirA protein exhibits a reduced affinity for the activated biotin molecule; biotinoyl-AMP thus diffuses away and reacts with free amine groups on lysine residues in nearby polypeptides, including e.g. the bait protein itself, other SCF complex components (CUL1, SKP1), SCF substrates (S) and substrate binding partners (A, B). In the presence of the 26S proteasome inhibitor MG132, β-TrCP substrates are stabilized. Following cell lysis under stringent buffer conditions, biotinylated proteins are affinity purified using streptavidin coupled to Sepharose beads. Streptavidin-bound proteins are washed and subjected to trypsin proteolysis, and the liberated peptides are identified using tandem mass spectrometry. B, Expression of FLAGBirA*-β-TrCP1/2 leads to biotinylation of endogenous proteins. 293 T-REx cells expressing FLAGBirA*-β-TrCP1 or FLAGBirA*-β-TrCP2 were treated with tetracycline (1 μg/ml) to induce protein expression, and with biotin (50 μm) to enable proximity-dependent polypeptide labeling. Whole cell lysates were subjected to SDS-PAGE and immunoblotted with an anti-FLAG antibody (top panel) or streptavidin-HRP (horseradish peroxidase; bottom panel). C, β-TrCP1/2 interactors displaying a substrate profile. Proteins identified in the BioID analysis with a ProteinProphet score ≥0.85 (corresponding to ≤1% FDR), a SAINT score ≥0.75, and a spectral count ratio (+MG132/untreated) log2 >1. Circles, polypeptides identified in β-TrCP1 BioID; squares, proteins identified in β-TrCP2 BioID. Previously identified β-TrCP interactors are highlighted in blue. Proteins demonstrated in this study to be stabilized following β-TrCP1/2 knockdown (see Fig. 2 and Supplemental Fig. 2) are highlighted in green. D, Overlap of FLAG IP-MS and BioID substrate candidates. Diagram highlighting the overlap between BioID hits displaying a substrate profile (pink), FLAG IP-MS hits displaying a substrate profile (yellow), and previously reported β-TrCP interactors (blue). E, Functional categories of FLAG IP-MS and BioID substrate candidates. Numbers of previously reported β-TrCP interactors within each category are indicated in blue and numbers of new substrate candidates in each category indicated in red.The human beta transducin repeat-containing polypeptides β-TrCP1 (FBXW1) and β-TrCP2 (FBXW11) are evolutionarily conserved paralogous F-box proteins sharing >80% amino acid sequence identity and >90% homology, and act as substrate recognition components of SCF (Skp1-Cullin-F-box) complexes (17). A number of β-TrCP substrates have been well documented, implicating these ligases in numerous biological functions, including regulation of the NFκB, Hippo, Wnt and Hedgehog signaling pathways (1821). Some β-TrCP targets harbor the sequence DSGX(n)S or variants thereof. Phosphorylation of this sequence is required for SCFβ-TrCP1/2 binding and thus regulates the half-life of these “phosphodegron”-containing proteins (21, 22). However, other bona fide SCFβ-TrCP1/2 substrates contain highly degenerate or non-canonical degrons, which are thought to mediate constitutive turnover (21). A single, simple linear sequence motif that could predict β-TrCP binding has thus not been defined.Here we demonstrate that BioID performed on cells treated with the proteasome inhibitor MG132 can recover many of the previously characterized substrates and stable interactors of β-TrCP1/2. Using semi-quantitative mass spectrometry, we identify and validate a number of new substrates, linking these well-studied E3 ligases to several new biological functions. The method used here is simple, scalable, and should be broadly applicable for the identification of substrates for many other E3s.  相似文献   

14.
Dynamic modulation of cell adhesion is integral to a wide range of biological processes. The small guanosine triphosphatase (GTPase) Rap1 is an important regulator of cell–cell and cell–matrix adhesions. We show here that induced expression of activated Abl tyrosine kinase reduces Rap1-GTP levels through phosphorylation of Tyr221 of CrkII, which disrupts interaction of CrkII with C3G, a guanine nucleotide exchange factor for Rap1. Abl-dependent down-regulation of Rap1-GTP causes cell rounding and detachment only when the Rho–ROCK1 pathway is also activated, for example, by lysophosphatidic acid (LPA). During ephrin-A1–induced retraction of PC3 prostate cancer cells, we show that endogenous Abl is activated and disrupts the CrkII–C3G complex to reduce Rap1-GTP. Interestingly, ephrin-A1–induced PC3 cell retraction also requires LPA, which stimulates Rho to a much higher level than that is activated by ephrin-A1. Our results establish Rap1 as another downstream target of the Abl–CrkII signaling module and show that Abl–CrkII collaborates with Rho–ROCK1 to stimulate cell retraction.  相似文献   

15.
A high-throughput screen (HTS) of the MLPCN library using a homogenous fluorescence polarization assay identified a small molecule as a first-in-class direct inhibitor of Keap1–Nrf2 protein–protein interaction. The HTS hit has three chiral centers; a combination of flash and chiral chromatographic separation demonstrated that Keap1-binding activity resides predominantly in one stereoisomer (SRS)-5 designated as ML334 (LH601A), which is at least 100× more potent than the other stereoisomers. The stereochemistry of the four cis isomers was assigned using X-ray crystallography and confirmed using stereospecific synthesis. (SRS)-5 is functionally active in both an ARE gene reporter assay and an Nrf2 nuclear translocation assay. The stereospecific nature of binding between (SRS)-5 and Keap1 as well as the preliminary but tractable structure–activity relationships support its use as a lead for our ongoing optimization  相似文献   

16.
Caveolin is an integral membrane protein that is found in high abundance in caveolae. Both the N- and C- termini lie on the same side of the membrane, and the transmembrane domain has been postulated to form an unusual intra-membrane horseshoe configuration. To probe the structure of the transmembrane domain, we have prepared a construct of caveolin-1 that encompasses residues 96–136 (the entire intact transmembrane domain). Caveolin-1(96–136) was over-expressed and isotopically labeled in E. coli, purified to homogeneity, and incorporated into lyso-myristoylphosphatidylglycerol micelles. Circular dichroism and NMR spectroscopy reveal that the transmembrane domain of caveolin-1 is primarily α-helical (57–65%). Furthermore, chemical shift indexing reveals that the transmembrane domain has a helix–break–helix structure which could be critical for the formation of the intra-membrane horseshoe conformation predicted for caveolin-1. The break in the helix spans residues 108 to 110, and alanine scanning mutagenesis was carried out to probe the structural significance of these residues. Our results indicate that mutation of glycine 108 to alanine does not disrupt the structure, but mutation of isoleucine 109 and proline 110 to alanine dramatically alters the helix–break–helix structure. To explore the structural determinants further, additional mutagenesis was performed. Glycine 108 can be substituted with other small side chain amino acids (i.e. alanine), leucine 109 can be substituted with other β-branched amino acids (i.e. valine), and proline 110 cannot be substituted without disrupting the helix–break–helix structure.  相似文献   

17.
The tetracyclic diterpenoid carboxylic acids, gibberellins (GAs), orchestrate a broad spectrum of biological programs. In nature, GAs or GA-like substance is produced in bacteria, fungi, and plants. The function of GAs in microorganisms remains largely unknown. Phytohormones GAs mediate diverse growth and developmental processes through the life cycle of plants. The GA biosynthetic and metabolic pathways in bacteria, fungi, and plants are remarkably divergent. In vascular plants, phytohormone GA, receptor GID1, and repressor DELLA shape the GA–GID1–DELLA module in GA signaling cascade. Sequence reshuffling, functional divergence, and adaptive selection are main driving forces during the evolution of GA pathway components. The GA–GID1–DELLA complex interacts with second messengers and other plant hormones to integrate environmental and endogenous cues, which is beneficial to phytohormones homeostasis and other biological events. In this review, we first briefly describe GA metabolism pathway, signaling perception, and its second messengers. Then, we examine the evolution of GA pathway genes. Finally, we focus on reviewing the crosstalk between GA–GID1–DELLA module and phytohormones. Deciphering mechanisms underlying plant hormonal interactions are not only beneficial to addressing basic biological questions, but also have practical implications for developing crops with ideotypes to meet the future demand.  相似文献   

18.
In-vitro incubation of human cerebrospinal fluid (CSF) obtained from patients ranging from 22–78 years with 10 μM of dynorphin A1–13 (Dyn A1–13) resulted in several cleavage products. Dyn A1–12 and A2–13 were identified as the major CSF metabolites by matrix-assisted laser desorption mass spectrometry (LD-MS). Further metabolites were Dyn A1–6, A2–12 and A4–12. LD-MS further suggested the formation of Dyn A1–8, A1–7, A1–10, A7–10, A3–12, A7–12, A3–13, A7–13 and A8–13. The metabolic half-life of Dyn A1–13 at 37°C was approximately 2.5 h (range 1.75–8.5 h), compared to less than one minute in plasma. The half-life of Dyn A1–13 decreased markedly with age or age-associated processes (n=20, r2=0.498). Noncompartmental kinetic analysis in the absence or presence of enzyme inhibitors (leucinethiol 10 μM, captopril 100 μM and GEMSA 20 μM) suggested that Dyn A1–13 is mainly metabolized by carboxypeptidase to A1–12 (51%) and by aminopeptidases to A2–13 (35%). The generation of A1–6 (13%) was only detected under enzyme inhibition. The extent of conversion into the main metabolites did not follow an age-associated trend, thus over-all enzyme levels but no specific enzymatic systems are elevated with age.  相似文献   

19.
The bacterial expression of human progastrin6–80 has been reported previously [Baldwin, G.S. et al. (2001) J. Biol. Chem. 276: 7791-7796]. The aims of the present study were to prepare full-length recombinant human progastrin1–80 and to compare its biological activity with that of progastrin6–80 in vitro, to determine whether or not the N-terminal five amino acids contributed to activity. A fusion protein of glutathione-S-transferase and human progastrin1–80 was expressed in Escherichia coli, collected on glutathione-agarose beads, and cleaved with enterokinase. Progastrin1–80 was purified by reversed-phase and anion exchange HPLC and characterized by radioimmunoassay, amino acid sequencing, and mass spectrometry. No differences were detected in the extent of stimulation by progastrin1–80 and progastrin6–80 in proliferation and migration assays with the mouse gastric cell line IMGE-5. We conclude that residues 1–5 of progastrin1–80 are not essential for biological activity.  相似文献   

20.
The synthesis of a series of berberine, phenantridine and isoquinoline derivatives was realized to explore their Rho GTPase nucleotide inhibitory activity. The compounds were evaluated in a nucleotide binding competition assay against Rac1, Rac1b, Cdc42 and in a cellular Rac GTPase activation assay. The insertion of 19 AA in the splice variant Rac1b is shown to be sufficient to introduce a conformational difference that allows compounds 4, 21, 22, and 26 to exhibit selective inhibition of Rac 1b over Rac1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号