首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A software package was designed and used in a detailed study of the contact regions (interfaces) of a large number of protein–protein complexes using the PDB data. It appeared that for about 75% of the complexes the amino acid composition of the subunit surface in the contact region is not essential. Thus one may suggest that, along with the amino acid residues at the interface, the residues in the interior of the globules substantially contribute to protein–protein recognition. Such interactions between quite remote residues are most probably of electrical nature, and are involved in recognition by contributing to the overall electric field created by the protein molecule; the configuration of this field is perhaps the definitive factor of recognition. The overall field of the protein molecule is additively built of the fields created by each constituent residue, and it can be calculated as a sum of the fields created by the protein multipole (aggregate of partial electric charges assigned to every atom of the protein molecule). Preliminary assessment of the remote electrostatic interaction has been performed for ribonuclease subunits in vacuum. The results are indicative of a real possibility that the electric field created by the protein multipole can strongly influence the mutual orientation of molecules before Brownian collision.  相似文献   

2.
It is shown that the apoproteins of core complexes (CC) I and II, the - and -subunits of CF1 ATP-synthase complexes, are present in seedlings grown under intermittent light (IML). The levels of light-harvesting complex (LHC) apoproteins in the 30- to 18-kD region increase rapidly upon exposure to continuous light (CL). The newly synthesized LHC apoproteins appear to be present predominantly in monomeric forms that later assemble into higher-order oligomeric forms. During the early stages of greening of wheat seedlings, polypeptides in the 20.5-19 and 17.5-15.5 kD regions (so-called early light-induced proteins (ELIP)) are observed, but they disappear fully after 6 h. As greening proceeds, the 727-nm band in low-temperature fluorescence spectra (77 K) gradually shifts to longer wavelength (740-742 nm), which clearly demonstrates the light-driven biogenesis of LHC I and its assembly with CC I.  相似文献   

3.
Right-handed helical double-stranded DNA molecules were shown to interact with chitosans to form under certain conditions (chitosan molecular weight, content of amino groups, distance between amino groups, ionic strength and pH of solution) cholesteric liquid-crystalline dispersions characterized by abnormal positive band in CD spectrum in the absorption region of DNA nitrogen bases. Conditions were found for the appearance of intense negative band in CD spectrum upon dispersion formation. In some cases, no intense band appeared in CD spectrum in spite of dispersion formation. These results indicate not only the multiple forms of liquid-crystalline dispersions of DNA–chitosan complexes but also a possibility to control the spatial properties of these complexes. The multiplicity of liquid-crystalline forms of DNA–chitosan complexes was attempted to explain by the effect of character of dipoles distribution over the surface of DNA molecules on the sense of spatial twist of cholesteric liquid crystals resulting from molecules of the complexes.  相似文献   

4.
The cellular functions of proteins are maintained by forming diverse complexes. The stability of these complexes is quantified by the measurement of binding affinity, and mutations that alter the binding affinity can cause various diseases such as cancer and diabetes. As a result, accurate estimation of the binding stability and the effects of mutations on changes of binding affinity is a crucial step to understanding the biological functions of proteins and their dysfunctional consequences. It has been hypothesized that the stability of a protein complex is dependent not only on the residues at its binding interface by pairwise interactions but also on all other remaining residues that do not appear at the binding interface. Here, we computationally reconstruct the binding affinity by decomposing it into the contributions of interfacial residues and other non-interfacial residues in a protein complex. We further assume that the contributions of both interfacial and non-interfacial residues to the binding affinity depend on their local structural environments such as solvent-accessible surfaces and secondary structural types. The weights of all corresponding parameters are optimized by Monte-Carlo simulations. After cross-validation against a large-scale dataset, we show that the model not only shows a strong correlation between the absolute values of the experimental and calculated binding affinities, but can also be an effective approach to predict the relative changes of binding affinity from mutations. Moreover, we have found that the optimized weights of many parameters can capture the first-principle chemical and physical features of molecular recognition, therefore reversely engineering the energetics of protein complexes. These results suggest that our method can serve as a useful addition to current computational approaches for predicting binding affinity and understanding the molecular mechanism of protein–protein interactions.  相似文献   

5.
Cross-saturation experiments allow the identification of the contact residues of large protein complexes (MW>50 K) more rigorously than conventional NMR approaches which involve chemical shift perturbations and hydrogen-deuterium exchange experiments [Takahashi et al. (2000) Nat. Struct. Biol., 7, 220–223]. In the amide proton-based cross-saturation experiment, the combined use of high deuteration levels for non-exchangeable protons of the ligand protein and a solvent with a low concentration of 1H2O greatly enhanced the selectivity of the intermolecular cross-saturation phenomenon. Unfortunately, experimental limitations caused losses in sensitivity. Furthermore, since main chain amide protons are not generally exposed to solvent, the efficiency of the saturation transfer directed to the main chain amide protons is not very high. Here we propose an alternative cross-saturation experiment which utilizes the methyl protons of the side chains of the ligand protein. Owing to the fast internal rotation along the methyl axis, we theoretically and experimentally demonstrated the enhanced efficiency of this approach. The methyl-utilizing cross-saturation experiment has clear advantages in sensitivity and saturation transfer efficiency over the amide proton-based approach. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

6.
The inhibition of DNA damage response pathway seems to be an attractive strategy for cancer therapy. It was previously reported that in rodent cells exposed to heat stress, cell growth was promoted by the activity of DNA-dependent protein kinase (DNA-PK), an enzyme involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair. The absence of a functioning DNA-PK was associated with down regulation of heat shock protein 70 (HSP70). The objective of this study is thus to investigate the role of DNA-PK inhibition in heat-induced apoptosis in human cell lines. The inhibitors of phosphorylation of the DNA-PK catalytic subunit (DNA-PKcs) at Ser2056, such as NU7026 and NU7441, were utilized. Furthermore, knock down of DNA-PKcs was carried out using small interfering RNA (siDNA-PKcs). For heat exposure, cells were placed in water bath at 44°C for 60 min. Apoptosis was evaluated after 24 h incubation flow cytometrically. Proteins were extracted after 24 h and analyzed for HSP70 and HSP40 expression by Western blotting. Total RNA was extracted 6 h after treatment and analyzed using a GeneChip® microarray system to identify and select the up-regulated genes (≥1.5 fold). The results showed an enhancement in heat-induced apoptosis in absence of functioning DNA-PKcs. Interestingly, the expression levels of HSP70 and HSP40 were elevated in the absence of DNA-PKcs under heat stress. The results of genetic network analysis showed that HSPs and JUN genes were up-regulated independently of DNA-PKcs in exposed parent and knock out cells. In the presence of functioning DNA-PKcs, there was an observed up-regulation of anti-apoptotic genes, such as NR1D1, whereas in the absence of DNA-PKcs the pro-apoptotic genes, such as EGR2, were preferentially up-regulated. From these findings, we concluded that in human cells, the inactivation of DNA-PKcs can promote heat-induced apoptosis independently of heat-shock proteins.  相似文献   

7.
The formation of electrostatic complexes within mixtures of canola protein isolates (CPI) and gum Arabic (GA) was investigated by turbidity during an acid pH titration (7.00–1.50) as a function of mixing ratio (1:1 to 8:1 CPI: GA), and the resulting functional properties (e.g., flow behavior, solubility, foaming and emulsification) of formed complexes were studied. Complexation typically follows two pH-dependent structure forming events associated with the formation of soluble (pHc) and insoluble complexes (pH?1). Both pHc and pH?1, was found to shift to higher pHs with increasing mixing ratio until reaching a plateau at a 4:1 CPI-GA ratio. Maximum coacervation occurred at pH 4.20 at a ratio of 2:1 CPI-GA, prior to complete dissolution at pH 2.20. The coacervate phase was pseudoplastic in nature, with some evidence of elastic-like behavior associated with a weakly interconnected network or entangled polymer solution. Solubility of CPI and CPI-GA was found to be pH-dependent with minimum solubility occurring at pH 4.00 and 3.00, respectively. Foaming and emulsifying properties of CPI-GA remained unaffected relative to CPI alone, except foaming capacity which was reduced for the mixed system.  相似文献   

8.
The role of Skp1 as an adaptor protein that links Cullin-1 to F-box proteins in E3 Skp1/Cullin-1/F-box protein (SCF) ubiquitin ligases is well characterized. In the social amoeba Dictyostelium and probably many other unicellular eukaryotes, Skp1 is modified by a pentasaccharide attached to a hydroxyproline near its C terminus. This modification is important for oxygen-sensing during Dictyostelium development and is mediated by a HIF-α type prolyl 4-hydroxylase and five sequentially acting cytoplasmic glycosyltransferase activities. Gene disruption studies show that AgtA, the enzyme responsible for addition of the final two galactose residues, in α-linkages to the Skp1 core trisaccharide, is unexpectedly critical for oxygen-dependent terminal development. AgtA possesses a WD40 repeat domain C-terminal to its single catalytic domain and, by use of domain deletions, binding studies, and enzyme assays, we find that the WD40 repeats confer a salt-sensitive second-site binding interaction with Skp1 that mediates novel catalytic activation in addition to simple substrate recognition. In addition, AgtA binds similarly well to precursor isoforms of Skp1 by a salt-sensitive mechanism that competes with binding to an F-box protein and recognition by early modification enzymes, and the effect of binding is diminished when AgtA modifies Skp1. Genetic studies show that loss of AgtA is more severe when an earlier glycosylation step is blocked, and overexpressed AgtA is deleterious if catalytically inactivated. Together, the findings suggest that AgtA mediates non-enzymatic control of unmodified and substrate precursor forms of Skp1 by a binding mechanism that is normally relieved by switch-like activation of its glycosylation function.  相似文献   

9.
The photoreceptor-specific glycoprotein retinal degeneration slow (RDS, also called PRPH2) is necessary for the formation of rod and cone outer segments. Mutations in RDS cause rod and cone-dominant retinal disease, and it is well established that both cell types have different requirements for RDS. However, the molecular mechanisms for this difference remain unclear. Although RDS glycosylation is highly conserved, previous studies have revealed no apparent function for the glycan in rods. In light of the highly conserved nature of RDS glycosylation, we hypothesized that it is important for RDS function in cones and could underlie part of the differential requirement for RDS in the two photoreceptor subtypes. We generated a knockin mouse expressing RDS without the N-glycosylation site (N229S). Normal levels of RDS and the unglycosylated RDS binding partner rod outer segment membrane protein 1 (ROM-1) were found in N229S retinas. However, cone electroretinogram responses were decreased by 40% at 6 months of age. Because cones make up only 3–5% of photoreceptors in the wild-type background, N229S mice were crossed into the nrl−/− background (in which all rods are converted to cone-like cells) for biochemical analysis. In N229S/nrl−/− retinas, RDS and ROM-1 levels were decreased by ∼60% each. These data suggest that glycosylation of RDS is required for RDS function or stability in cones, a difference that may be due to extracellular versus intradiscal localization of the RDS glycan in cones versus rods.  相似文献   

10.
11.
Members of the K+ channel-interacting protein (KChIP) family bind the distal N termini of members of the Shal subfamily of voltage-gated K+ channel (Kv4) pore-forming (α) subunits to generate rapidly activating, rapidly inactivating neuronal A-type (IA) and cardiac transient outward (Ito) currents. In heterologous cells, KChIP co-expression increases cell surface expression of Kv4 α subunits and Kv4 current densities, findings interpreted to suggest that Kv4·KChIP complex formation enhances forward trafficking of channels (from the endoplasmic reticulum or the Golgi complex) to the surface membrane. The results of experiments here, however, demonstrate that KChIP2 increases cell surface Kv4.2 protein expression (∼40-fold) by an order of magnitude more than the increase in total protein (∼2-fold) or in current densities (∼3-fold), suggesting that mechanisms at the cell surface regulate the functional expression of Kv4.2 channels. Additional experiments demonstrated that KChIP2 decreases the turnover rate of cell surface Kv4.2 protein by inhibiting endocytosis and/or promoting recycling. Unexpectedly, the experiments here also revealed that Kv4.2·KChIP2 complex formation stabilizes not only (total and cell surface) Kv4.2 but also KChIP2 protein expression. This reciprocal protein stabilization and Kv4·KChIP2 complex formation are lost with deletion of the distal (10 amino acids) Kv4.2 N terminus. Taken together, these observations demonstrate that KChIP2 differentially regulates total and cell surface Kv4.2 protein expression and Kv4 current densities.  相似文献   

12.
The pyridazinone-type herbicide norflurazon SAN 9789 inhibiting the biosynthesis of long-chain carotenoids results in significant decrease in PS II core complexes and content of light-harvesting complex (LHC) polypeptides. At the same time, early light-induced proteins (ELIP) with molecular masses of 20.5-16.5 and 13.5 kD disappear in norflurazon-treated seedlings grown under intermittent (pulsed) light, confirming the hypothesis that they are carotenoid-binding proteins. Full disappearance of Chl a forms at 668, 676, and 690 nm and a sharp decrease in Chl b form at 648 nm in treated seedlings grown under 30 or 100 lx light intensity shows close contact of these forms with carotenoids in the thylakoid membrane. The band shift from 740 to 720 nm in the low-temperature fluorescence spectrum (77 K) suggests a disturbance of energy transfer from LHC to the Chl a form at 710-712 nm.  相似文献   

13.
We studied fluorescent and absorption properties of the chloroplasts and pigment–protein complexes isolated by gel electrophoresis from the leaves of pea, the parent cultivar Torsdag and mutants chlorotica 2004 and 2014. Specific fluorescence peaks of chlorophyll forms in individual complexes have been determined from the absorption and fluorescence spectra of the chloroplast chlorophyll and their second derivatives at 23 and –196°C. The mutant chlorotica 2004 proved to have an increased intensity of a long-wave band of the light-harvesting complex I at both 23°C (745 nm) and –196°C (728 nm). At the same time, this mutant manifested a decreased accumulation of the chlorophyll forms making up the nearest-neighbor antenna of the PS I reaction center (at 690, 697, and 708 nm). No spectral differences have been revealed between chlorotica 2014 mutant and the parent cultivar. Gel electrophoresis revealed the synthesis of all chlorophyll–protein complexes in both mutants. At the same time, analysis of photochemical activity of PS I and PS II reaction centers and calculations of their number and the size of the light-harvesting antenna have shown that the number of reaction centers in the PS I of chlorotica 2004 mutant is reduced by a factor of 1.7 because its chlorophyll a–protein complex is disturbed by the mutation. The primary effect of chlorotica 2014 mutation remains unclear. The proportional changes in the content of photosystem complexes in this mutant suggest that they are secondary and result from a 50% decrease in chlorophyll content.  相似文献   

14.
Acute viral bronchiolitis by Respiratory Syncytial Virus (RSV) is the most common respiratory illness in children in the first year of life. RSV bronchiolitis generates large numbers of hospitalizations and an important burden to health systems. Neutrophils and their products are present in the airways of RSV-infected patients who developed increased lung disease. Neutrophil Extracellular Traps (NETs) are formed by the release of granular and nuclear contents of neutrophils in the extracellular space in response to different stimuli and recent studies have proposed a role for NETs in viral infections. In this study, we show that RSV particles and RSV Fusion protein were both capable of inducing NET formation by human neutrophils. Moreover, we analyzed the mechanisms involved in RSV Fusion protein-induced NET formation. RSV F protein was able to induce NET release in a concentration-dependent fashion with both neutrophil elastase and myeloperoxidase expressed on DNA fibers and F protein-induced NETs was dismantled by DNase treatment, confirming that their backbone is chromatin. This viral protein caused the release of extracellular DNA dependent on TLR-4 activation, NADPH Oxidase-derived ROS production and ERK and p38 MAPK phosphorylation. Together, these results demonstrate a coordinated signaling pathway activated by F protein that led to NET production. The massive production of NETs in RSV infection could aggravate the inflammatory symptoms of the infection in young children and babies. We propose that targeting the binding of TLR-4 by F protein could potentially lead to novel therapeutic approaches to help control RSV-induced inflammatory consequences and pathology of viral bronchiolitis.  相似文献   

15.
Glycosylation of flagellins by pseudaminic acid is required for virulence in Helicobacter pylori. We demonstrate that, in H. pylori, glycosylation extends to proteins other than flagellins and to sugars other than pseudaminic acid. Several candidate glycoproteins distinct from the flagellins were detected via ProQ-emerald staining and DIG- or biotin- hydrazide labeling of the soluble and outer membrane fractions of wild-type H. pylori, suggesting that protein glycosylation is not limited to the flagellins. DIG-hydrazide labeling of proteins from pseudaminic acid biosynthesis pathway mutants showed that the glycosylation of some glycoproteins is not dependent on the pseudaminic acid glycosylation pathway, indicating the existence of a novel glycosylation pathway. Fractions enriched in glycoprotein candidates by ion exchange chromatography were used to extract the sugars by acid hydrolysis. High performance anion exchange chromatography with pulsed amperometric detection revealed characteristic monosaccharide peaks in these extracts. The monosaccharides were then identified by LC-ESI-MS/MS. The spectra are consistent with sugars such as 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic acid (Pse5Ac7Ac) previously described on flagellins, 5-acetamidino-7-acetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic acid (Pse5Am7Ac), bacillosamine derivatives and a potential legionaminic acid derivative (Leg5AmNMe7Ac) which were not previously identified in H. pylori. These data open the way to the study of the mechanism and role of protein glycosylation on protein function and virulence in H. pylori.  相似文献   

16.
We analyze the characteristics of protein–protein interfaces using the largest datasets available from the Protein Data Bank (PDB). We start with a comparison of interfaces with protein cores and non-interface surfaces. The results show that interfaces differ from protein cores and non-interface surfaces in residue composition, sequence entropy, and secondary structure. Since interfaces, protein cores, and non-interface surfaces have different solvent accessibilities, it is important to investigate whether the observed differences are due to the differences in solvent accessibility or differences in functionality. We separate out the effect of solvent accessibility by comparing interfaces with a set of residues having the same solvent accessibility as the interfaces. This strategy reveals residue distribution propensities that are not observable by comparing interfaces with protein cores and non-interface surfaces. Our conclusions are that there are larger numbers of hydrophobic residues, particularly aromatic residues, in interfaces, and the interactions apparently favored in interfaces include the opposite charge pairs and hydrophobic pairs. Surprisingly, Pro-Trp pairs are over represented in interfaces, presumably because of favorable geometries. The analysis is repeated using three datasets having different constraints on sequence similarity and structure quality. Consistent results are obtained across these datasets. We have also investigated separately the characteristics of heteromeric interfaces and homomeric interfaces.  相似文献   

17.
18.
19.
The α-synuclein immunopositive and chaotrope-insoluble material from human brains with Lewy body pathology was analyzed by mass spectrometry. From the proteinase K-cleavable peripheral fraction of Lewy bodies, which was densely cross-linked by γ-glutamyl-ϵ-lysine bonds between HspB1 and ubiquitin in a pattern similar to neurofibrillary tangles (Nemes, Z., Devreese, B., Steinert, P. M., Van Beeumen, J., and Fésüs, L. (2004) FASEB J. 18, 1135–1137), 53 proteins were identified. In the core of Lewy bodies only α-synuclein was found, and it contained a low amount of intramolecular cross-links between Gln-99 and Lys-58. In vitro cross-linking of α-synuclein by transglutaminases 1–3 and 5 produced a heterogeneous population of variably cross-linked α-synucleins in solution, which inhibited the aggregation of the protein into amyloid. However, in the presence of phosphatidylserine-rich membranes and micromolar calcium concentrations, the cross-linking by transglutaminases 1, 2, and 5 showed specificity toward the utilization of Gln-99 and Lys-58. As shown by thioflavin T fluorescence monitoring, the formation of this cross-link accelerated the aggregation of native α-synuclein. Chemical cross-linking of residues 58–99 triggered amyloid formation, whereas such bonding of residues 99 to 10 was inhibitory. Our findings reveal the pivotal role of membrane attachment and transglutaminase-mediated intermolecular cross-linking for the propagative misfolding and aggregation of α-synuclein.α-Synuclein is a widely expressed neuronal protein, which can form amyloid deposits under pathological conditions. The extracellularly deposited α-synuclein, or the central segment of it, is known as the “non-Aβ component” of amyloid and is involved in the formation of senile plaques in Alzheimer disease (AD).2The intraneuronal aggregation of α-synuclein leads to the formation of Lewy bodies. These inclusions were initially thought to hallmark the degenerating dopaminergic neurons in Parkinson disease; however, they are abundant in cortical neurons and basal ganglia in distinct neurodegenerative dementias, such as AD and Lewy body dementia (LBD), and are often found in neurons of elderly people without any clinical record of parkinsonism or dementia (1). The ultrastructure of a Lewy body reveals a compact amyloid core surrounded by a fuzzy halo that is vaguely abridged from the neuronal cytoplasm. Lewy bodies (LB) are strongly immunopositive for α-synuclein and ubiquitin. They may also contain many other components (such as synphilin-1, Dorfin, or Parkin), which have not yet been investigated in detail (see Ref. 2 and references therein).α-Synuclein is a small protein of 140 amino acids and consists of an N-terminal lipid-binding amphipathic domain, a C-terminal acidic tail, and amyloid-forming repetitive sequences in between. α-Synuclein is almost unstructured as a monomer in aqueous solution, but it undergoes a conformational change to an α-helical structure upon association with negatively charged membranes or β-pleated sheet conformation upon aggregation to amyloid (see Ref. 3 for references therein). Because of its natively disordered conformation, the protein readily aggregates with itself and co-aggregates with other proteins, a property that may be necessary for LB formation and its cytopathic effects. Given that α-synuclein does not assemble into persistent aggregates under normal conditions of a living neuron, it is critical to identify triggers of propagative α-synuclein misfolding, as these may result in a complex pathological sequelae leading to LB formation and neuron loss.Transglutaminases (TGs) are a family of proteins that catalyze the exchange of the γ-(carbox)amido group with a different amine. If the amine is provided by the ϵ-amino group of a protein-bound lysine, TGs cross-link proteins via γ-glutamyl-ϵ-lysine (GGEL) isopeptide cross-links (see Ref. 4 for references therein). Four of the nine human TGs (TG1–3 and -5) are expressed in the brain (5, 6). The most investigated TG2 is present in two splice variants, the shorter of which results from an intronic read-through and was shown to associate with Alzheimer neurons (7). A previous report (8) from our laboratories identified α-synuclein cross-linked via its Gln-99 moiety to ubiquitin Lys-48 in ubiquitylated intracellular aggregates from AD specimens.Using an anti-GGEL antibody, two earlier reports showed the presence of GGEL cross-links in α-synuclein aggregates from Lewy bodies. However, the precise role and the manner of synuclein cross-linking and its relevance to the pathogenic process have not been revealed (9, 10). The in vitro and cellular models yielded conflicting conclusions; both pro- and anti-aggregation roles have been proposed (1012), and also the lack of α-synuclein cross-linking in a transfection study was also reported (13).A former in vitro analysis identified Gln-79 and Lys-80 as TG2-substrate residues (14), and a recent study (15) found that guinea pig TG2 preferentially forms cross-links in soluble α-synuclein between Gln-79 and Lys-60, Gln-99 and Lys-10, Gln-109 and Lys-32 or Lys-34, and also Gln-109 and Lys-96. This study also analyzed the cross-linking of α-synuclein by soluble TG2 in a phosphatidylglycerol membrane-bound state and found that the cross-linking pattern is dramatically affected by the membrane binding of the substrate inasmuch as it reduced the residues amenable for cross-linking to one, without identifying where this particular cross-link was.In this study, we demonstrate that a small fraction of α-synuclein in the aggregated core of LB is intramolecularly cross-linked, and we show by in vitro model experiments how LB can be nucleated by GGEL cross-links in a membrane-dependent fashion. Our findings suggest that the formation of LB is triggered by TG-mediated intramolecular cross-linking, and this may be an early decisive step in the biogenesis of LB.  相似文献   

20.
Cancer cell invasion and metastasis are the primary causes of treatment failure and death in hepatocellular carcinoma (HCC). We previously reported that core 1 β1,3-galactosyltransferase (C1GALT1) is frequently overexpressed in HCC tumors and its expression is associated with advanced tumor stage, metastasis, and poor survival. However, the underlying mechanisms of C1GALT1 in HCC malignancy remain unclear. In this study, we found that overexpression of C1GALT1 enhanced HCC cell adhesion to extracellular matrix (ECM) proteins, migration, and invasion, whereas RNAi-mediated knockdown of C1GALT1 suppressed these phenotypes. The promoting effect of C1GALT1 on the metastasis of HCC cells was demonstrated in a mouse xenograft model. Mechanistic investigations showed that the C1GALT1-enhanced phenotypic changes in HCC cells were significantly suppressed by anti-integrin β1 blocking antibody. Moreover, C1GALT1 was able to modify O-glycans on integrin β1 and regulate integrin β1 activity as well as its downstream signaling. These results suggest that C1GALT1 could enhance HCC invasiveness through integrin β1 and provide novel insights into the roles of O-glycosylation in HCC metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号