首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular injections of horseradish peroxidase were used to label commissural cells connecting the electrosensory lateral line lobes of the weakly electric fish Apteronotus leptorhynchus. Multiple commissural pathways exist; a caudal commissure is made up of ovoid cell axons, and polymorphic cells' axons project via a rostral commissure. Intracellular recording and labeling showed that ovoid cells discharge spontaneously at high rates, fire at preferred phases to the electric organ discharge, and respond to increased receptor afferent input with short latency partially adapting excitation. Ovoid cell axons ramify extensively in the rostro-caudal direction but are otherwise restricted to a single ELL subdivision. Polymorphic cells are also spontaneously active, but their firing is unrelated to the electric organ discharge waveform. They respond to increased receptor afferent activity with reduced firing frequency and response latency is long. Electrical stimulation of the commissural axons alters the behavior of pyramidal cells in the contralateral ELL. Basilar pyramidal cells are hyperpolarized and nonbasilar pyramidal cells are depolarized by this type of stimulation. The physiological results indicate that the ovoid cells participate in common mode rejection mechanisms and also suggest that the ELLs may function in a differential mode in which spatially restricted electrosensory stimuli can evoke heightened responses.Abbreviations ccELL caudal commissure of the ELL - CE contralaterally excited - DML dorsal molecular layer - ELL electrosensory lateral line lobe - EOD electric organ discharge - HRP horseradish peroxidase - IE ipsilaterally excited - MTI mouth-tail inverted - MTN mouth-tail normal - rcELL rostral commissure of the ELL - TRI transverse inverted - TRN transverse normal  相似文献   

2.
Throughout the central nervous system, the timescale over which pairs of neural spike trains are correlated is shaped by stimulus structure and behavioral context. Such shaping is thought to underlie important changes in the neural code, but the neural circuitry responsible is largely unknown. In this study, we investigate a stimulus-induced shaping of pairwise spike train correlations in the electrosensory system of weakly electric fish. Simultaneous single unit recordings of principal electrosensory cells show that an increase in the spatial extent of stimuli increases correlations at short () timescales while simultaneously reducing correlations at long () timescales. A spiking network model of the first two stages of electrosensory processing replicates this correlation shaping, under the assumptions that spatially broad stimuli both saturate feedforward afferent input and recruit an open-loop inhibitory feedback pathway. Our model predictions are experimentally verified using both the natural heterogeneity of the electrosensory system and pharmacological blockade of descending feedback projections. For weak stimuli, linear response analysis of the spiking network shows that the reduction of long timescale correlation for spatially broad stimuli is similar to correlation cancellation mechanisms previously suggested to be operative in mammalian cortex. The mechanism for correlation shaping supports population-level filtering of irrelevant distractor stimuli, thereby enhancing the population response to relevant prey and conspecific communication inputs.  相似文献   

3.
The functional role of burst firing (i.e. the firing of packets of action potentials followed by quiescence) in sensory processing is still under debate. Should bursts be considered as unitary events that signal the presence of a particular feature in the sensory environment or is information about stimulus attributes contained within their temporal structure? We compared the coding of stimulus attributes by bursts in vivo and in vitro of electrosensory pyramidal neurons in weakly electric fish by computing correlations between burst and stimulus attributes. Our results show that, while these correlations were strong in magnitude and significant in vitro, they were actually much weaker in magnitude if at all significant in vivo. We used a mathematical model of pyramidal neuron activity in vivo and showed that such a model could reproduce the correlations seen in vitro, thereby suggesting that differences in burst coding were not due to differences in bursting seen in vivo and in vitro. We next tested whether variability in the baseline (i.e. without stimulation) activity of ELL pyramidal neurons could account for these differences. To do so, we injected noise into our model whose intensity was calibrated to mimic baseline activity variability as quantified by the coefficient of variation. We found that this noise caused significant decreases in the magnitude of correlations between burst and stimulus attributes and could account for differences between in vitro and in vivo conditions. We then tested this prediction experimentally by directly injecting noise in vitro through the recording electrode. Our results show that this caused a lowering in magnitude of the correlations between burst and stimulus attributes in vitro and gave rise to values that were quantitatively similar to those seen under in vivo conditions. While it is expected that noise in the form of baseline activity variability will lower correlations between burst and stimulus attributes, our results show that such variability can account for differences seen in vivo. Thus, the high variability seen under in vivo conditions has profound consequences on the coding of information by bursts in ELL pyramidal neurons. In particular, our results support the viewpoint that bursts serve as a detector of particular stimulus features but do not carry detailed information about such features in their structure.  相似文献   

4.
The roles of amino acid neurotransmitters in determining the processing characteristics of the electrosensory lateral line lobe (ELL) in Apteronotus leptorhynchus were investigated by studying the responses of ELL output neurons to pressure ejection of various neurotransmitter agonists and antagonists alone and in combination with simple electrosensory stimuli.
  1. Pressure ejection of L-glutamate into the ELL dorsal molecular layer caused either excitation or inhibition of ELL efferent neurons (pyramidal cells). The sign of these responses reversed with changes in the position of the pressure pipette. Histological verification of drug ejection sites relative to recorded cells and diffusion estimates indicate that excitatory and inhibitory responses result from glutamate activation of pyramidal cells and of inhibitory interneurons, respectively.
  2. ELL output cells respond to both NMDA and non-NMDA glutamate agonists and the responses are attenuated by co-ejection of specific antagonists indicating that both AMPA/kainate and NMDA receptors exist on pyramidal cell apical dendrites.
  3. Gamma-aminobutyric acid inhibits basilar and nonbasilar pyramidal cells when ejected near their apical dendrites and disinhibits them when ejected near surrounding inhibitory interneurons confirming the presence of GABA receptors on these cell types.
  4. An NMDA antagonist did not alter pyramidal cell responses to electrosensory stimuli but a non-NMDA antagonist altered both responses to the stimuli and firing frequency shortly following stimulus cessation.
  相似文献   

5.
Electrosensory systems comprise extensive feedback pathways. It is also well known that these pathways exhibit synaptic plasticity on a wide-range of time scales. Recent in vitro brain slice studies have characterized synaptic plasticity in the two main feedback pathways to the electrosensory lateral line lobe (ELL), a primary electrosensory nucleus in Apteronotus leptorhynchus. Currently-used slice preparations, involving networks in open-loop conditions, allow feedback inputs to be studied in isolation, a critical step in determining their synaptic properties. However, to fully understand electrosensory processing, we must understand how dynamic feedback modulates neuronal responses under closed-loop conditions. To bridge the gap between current in vitro approaches and more complex in vivo work, we present two new in vitro approaches for studying the roles of closed-loop feedback in electrosensory processing. The first involves a hybrid-network approach using dynamic clamp, and the second involves a new slice preparation that preserves one of the feedback pathways to ELL in a closed-loop condition.  相似文献   

6.
Sensory neurons encode natural stimuli by changes in firing rate or by generating specific firing patterns, such as bursts. Many neural computations rely on the fact that neurons can be tuned to specific stimulus frequencies. It is thus important to understand the mechanisms underlying frequency tuning. In the electrosensory system of the weakly electric fish, Apteronotus leptorhynchus, the primary processing of behaviourally relevant sensory signals occurs in pyramidal neurons of the electrosensory lateral line lobe (ELL). These cells encode low frequency prey stimuli with bursts of spikes and high frequency communication signals with single spikes. We describe here how bursting in pyramidal neurons can be regulated by intrinsic conductances in a cell subtype specific fashion across the sensory maps found within the ELL, thereby regulating their frequency tuning. Further, the neuromodulatory regulation of such conductances within individual cells and the consequences to frequency tuning are highlighted. Such alterations in the tuning of the pyramidal neurons may allow weakly electric fish to preferentially select for certain stimuli under various behaviourally relevant circumstances.  相似文献   

7.
Bastian J  Chacron MJ  Maler L 《Neuron》2004,41(5):767-779
Pyramidal cells show marked variation in their morphology, including dendritic structure, which is correlated with physiological diversity; however, it is not known how this variation is related to a cell's role within neural networks. In this report, we describe correlations among electrosensory lateral line lobe (ELL) pyramidal cells' highly variable dendritic morphology and their ability to adaptively cancel redundant inputs via an anti-Hebbian form of synaptic plasticity. A subset of cells, those with the largest apical dendrites, are plastic, but those with the smallest dendrites are not. A model of the network's connectivity predicts that efficient redundancy reduction requires that nonplastic cells provide feedback input to those that are plastic. Anatomical results confirm the model's prediction of optimal network architecture. These results provide a demonstration of different roles for morphological/physiological variants of a single cell type within a neural network performing a well-defined function.  相似文献   

8.
The electromotor and electrosensory systems of the weakly electric fish Apteronotus leptorhynchus are model systems for studying mechanisms of high-frequency motor pattern generation and sensory processing. Voltage-dependent ionic currents, including low-threshold potassium currents, influence excitability of neurons in these circuits and thereby regulate motor output and sensory filtering. Although Kv1-like potassium channels are likely to carry low-threshold potassium currents in electromotor and electrosensory neurons, the distribution of Kv1 alpha subunits in A. leptorhynchus is unknown. In this study, we used immunohistochemistry with six different antibodies raised against specific mammalian Kv1 alpha subunits (Kv1.1-Kv1.6) to characterize the distribution of Kv1-like channels in electromotor and electrosensory structures. Each Kv1 antibody labeled a distinct subset of neurons, fibers, and/or dendrites in electromotor and electrosensory nuclei. Kv1-like immunoreactivity in the electrosensory lateral line lobe (ELL) and pacemaker nucleus are particularly relevant in light of previous studies suggesting that potassium currents carried by Kv1 channels regulate neuronal excitability in these regions. Immunoreactivity of pyramidal cells in the ELL with several Kv1 antibodies is consistent with Kv1 channels carrying low-threshold outward currents that regulate spike waveform in these cells (Fernandez et al., J Neurosci 2005;25:363-371). Similarly, Kv1-like immunoreactivity in the pacemaker nucleus is consistent with a role of Kv1 channels in spontaneous high-frequency firing in pacemaker neurons. Robust Kv1-like immunoreactivity in several other structures, including the dorsal torus semicircularis, tuberous electroreceptors, and the electric organ, indicates that Kv1 channels are broadly expressed and are likely to contribute significantly to generating the electric organ discharge and processing electrosensory inputs.  相似文献   

9.
1. Extracellular HRP injections into the nucleus praeeminentialis dorsalis (NPd) of Apteronotus leptorhynchus retrogradely labeled a population of electrosensory lateral line lobe (ELL) efferent cells, deep basilar pyramidal cells, that differ morphologically from the previously described basilar and nonbasilar pyramidal cells. These neurons are found deep in the ELL cellular layers; they have small cell bodies and very short sparsely branching apical dendritic trees. The previously described basilar and nonbasilar pyramidal cells are larger, have extensive apical dendrites and are found more superficially. 2. Axon terminals of the deep basilar pyramidal cells were recorded from in the NPd and labeled with lucifer yellow. These NPd afferents have high, regular spontaneous firing rates, and respond tonically to changes in electric organ discharge amplitude. 3. Deep basilar pyramidal cell bodies were recorded from and labeled in the ELL, and these showed the same physiological responses as did the NPd afferent fibers. 4. In addition, basilar pyramidal cells were found which had spontaneous activity patterns and adaptation characteristics intermediate to those typical of the superficial basilar pyramidal cells and the deep basilar pyramidal cells. The size of the pyramidal cells' apical dendritic trees and the placement of their somata within the dorsoventral extent of the ELL cellular layers are highly correlated with the neurons' physiological properties.  相似文献   

10.
Pyramidal cells in the electrosensory lateral line lobe (ELL) of weakly electric fish have been observed to produce high-frequency burst discharge with constant depolarizing current (Turner et al., 1994). We present a two-compartment model of an ELL pyramidal cell that produces burst discharges similar to those seen in experiments. The burst mechanism involves a slowly changing interaction between the somatic and dendritic action potentials. Burst termination occurs when the trajectory of the system is reinjected in phase space near the ghost of a saddle-node bifurcation of fixed points. The burst trajectory reinjection is studied using quasi-static bifurcation theory, that shows a period doubling transition in the fast subsystem as the cause of burst termination. As the applied depolarization is increased, the model exhibits first resting, then tonic firing, and finally chaotic bursting behavior, in contrast with many other burst models. The transition between tonic firing and burst firing is due to a saddle-node bifurcation of limit cycles. Analysis of this bifurcation shows that the route to chaos in these neurons is type I intermittency, and we present experimental analysis of ELL pyramidal cell burst trains that support this model prediction. By varying parameters in a way that changes the positions of both saddle-node bifurcations in parameter space, we produce a wide gallery of burst patterns, which span a significant range of burst time scales.  相似文献   

11.
1. The amplitude-coding pyramidal neurons of the first-order nucleus in weakly electric gymnotiform fish (Eigenmannia), the electrosensory lateral line lobe (ELL), exhibit 2 major physiological transformations of primary afferent input. Pyramidal cells rapidly adapt to a step change in amplitude, and they have a center/surround receptive-field organization. This study examined the physiological role of GABAergic inhibition on pyramidal cells. GABAergic synapses onto the somata of pyramidal cells primarily originate from granule-cell interneurons along with descending input. 2. Pyramidal cells fall into two physiologically distinct categories: E units, which are excited by a rise in stimulus amplitude, and I units, which are inhibited by a rise in stimulus amplitude. Microiontophoretic application of bicuculline methiodide onto both types of pyramidal cells increased the time constant of adaptation, defined as the time required for the neuron's response to decay to 37% of its maximum value, by 70-90%. The peak firing rate of E units to a step increase in stimulus amplitude increased by 49%, while the firing rate of I units did not change significantly. 3. Bicuculline application demonstrated that GABAergic inhibition may contribute to the strict segregation of E and I response properties. In the presence of bicuculline, many E units (normally excited only by stimulus amplitude increases) became excited by both increases and decreases; many I units (normally excited only by amplitude decreases) also became excited to increases. 4. The size of the excitatory receptive-field of E units was not affected by bicuculline, although response magnitude increased. The inhibitory surround increased in spatial extent by 175% with bicuculline administration. Neither the size of the I unit receptive-field center nor the response magnitude changed in the presence of bicuculline. The antagonistic surround of I units, however, increased by 49%. 5. The anatomy of the ELL is well understood (see Carr and Maler 1986). The physiological results obtained in this study, along with the results of Bastian (1986a, b), further our understanding of the functional role of the ELL circuitry. Our results suggest that spatial and temporal response properties of pyramidal cells are regulated by different but interacting inhibitory interneurons, some of which use GABA as a neurotransmitter. The activity of these interneurons is in turn controlled by descending feedback systems.  相似文献   

12.
Corollary discharge signals associated with the motor command that elicits the electric organ discharge are prominent in the electrosensory lobe of mormyrid fish (Gnathonemus petersii). Central pathways and structures that convey these signals from the motor command nucleus to the electrosensory lobe are known anatomically, but these structures and their contributions to the various corollary discharge phenomena have not been examined physiologically. This study examines one such structure, the mesencephalic command associated nucleus (MCA).Recordings from MCA cells show a highly stereotyped two spike response. The first spike of the response has a latency of about 2.5 ms following the initiation of the electric organ discharge (EOD) motor command which is about 5.5 ms before the occurrence of the EOD.Results from stimulation and lesion experiments indicate that MCA is responsible for: 1) the gate-like corollary discharge-driven inhibition of the knollenorgan pathway; 2) the gate-like corollary discharge-driven excitation of granule cells in the mormyromast regions of the electrosensory lobe; and 3) various excitatory effects on other cells in the mormyromast regions.Some corollary discharge phenomena are still present after MCA lesions, including the earliest corollary discharge effects and the plasticity that follows pairing with electrosensory stimuli. These phenomena must be mediated by structures other than MCA.Abbreviations BCA bulbar command associated nucleus - C EOD motor command - C3 central cerebellar lobule 3 - COM EOD motor command nucleus - DLZ dorsolateral zone of ELL cortex - EGa eminentia granularis anterior - EGp eminentia granularis posterior - ELa nucleus exterolateralis anterior - ELL electrosensory lobe - ELLml molecular layer of ELL cortex - EOD electric organ discharge - gang ganglion layer - gran granule layer - jlem juxtalemniscal region - JLl lateral juxtalobar nucleus - JLm medial juxtalobar nucleus - lat nucleus lateralis - ll lateral lemniscus - MCA mesencephalic command associated nucleus - mol molecular layer - MOml molecular layer of the medial octavolateral nucleus - MRN medullary relay nucleus - MZ medial zone of ELL cortex - nALL anterior lateral line nerve - NELL nucleus of the electrosensory lobe - nX cranial nerve X (vagus) - OT optic tectum - PCA paratrigeminal command associated nucleus - pee praeeminentialis electrosensory tract - plex plexiform layer - prae nucleus praeeminentialis - sublem sublemniscal nucleus - TEL telencephalon - VLZ ventrolateral zone of ELL cortex - vped valvular peduncle  相似文献   

13.
An important problem in sensory processing is deciding whether fluctuating neural activity encodes a stimulus or is due to variability in baseline activity. Neurons that subserve detection must examine incoming spike trains continuously, and quickly and reliably differentiate signals from baseline activity. Here we demonstrate that a neural integrator can perform continuous signal detection, with performance exceeding that of trial-based procedures, where spike counts in signal- and baseline windows are compared. The procedure was applied to data from electrosensory afferents of weakly electric fish (Apteronotus leptorhynchus), where weak perturbations generated by small prey add ~1 spike to a baseline of ~300 spikes s–1. The hypothetical postsynaptic neuron, modeling an electrosensory lateral line lobe cell, could detect an added spike within 10–15 ms, achieving near ideal detection performance (80–95%) at false alarm rates of 1–2 Hz, while trial-based testing resulted in only 30–35% correct detections at that false alarm rate. The performance improvement was due to anti-correlations in the afferent spike train, which reduced both the amplitude and duration of fluctuations in postsynaptic membrane activity, and so decreased the number of false alarms. Anti-correlations can be exploited to improve detection performance only if there is memory of prior decisions.Abbreviations B binomial - CV coefficient of variation - EOD electric organ discharge - ELL electrosensory lateral line lobe - EPSP excitatory postsynaptic potential - ISI interspike interval - M0 Markov order zero - M1 Markov order one - N noise - OC operating characteristic - PDF probability density function - ROC receiver operating characteristic - S signal - SNR signal-to-noise ratio - S+N signal in noise  相似文献   

14.
In the rat, neonatal gamma-irradiation of the hippocampus induces a selective destruction of dentate granule cells and prevents the development of the mossy fiber-CA3 pyramidal cell connection. In the absence of mossy fiber input, the CA3 pyramidal neurons exhibit morphological alterations and rats deprived of dentate granule cells fail to develop kainate-induced epileptic activity in the CA3 pyramidal neurons. Neonatal elimination of the granule cells also impairs learning and memory tasks in adult rats. In the present work, we assessed by in situ hybridization and semi-quantitative RT-PCR, whether in the pyramidal layers, the absence of mossy fiber input alters the expression of a number of genes involved in activity-dependent signal transduction, in GABAergic neurotransmitter signaling and in neurite development via microtubule organization. Surprisingly, we show that the expression and the developmentally regulated alternative splicing of the genes we examined in the developing hippocampus are not altered in the pyramidal neurons, whether the dentate granule afferents are present or absent. Our results suggest that in the CA3 pyramidal layer, the developmental expression patterns of the mRNAs we studied are independent of extrinsic cues provided by mossy fiber input.  相似文献   

15.
Modification of an existing neural structure to support a second function will produce a trade-off between the two functions if they are in some way incompatible. The trade-off between two such sensory functions is modeled here in pyramidal neurons of the gymnotiform electric fish's medullar electrosensory lateral line lobe (ELL). These neurons detect two electric stimulus features produced when a nearby object interferes with the fish's autogenous electric field: (1) amplitude modulation across a cell's entire receptive field and (2) amplitude variation within a cell's receptive field produced by an object's edge. A model of sensory integration shows that detection of amplitude modulation and enhancement of spatial contrast involve an inherent mechanistic trade-off and that the severity of the trade-off depends on the particular algorithm of sensory integration. Electrophysiology data indicate that of the two algorithms for sensory integration modeled here for the gymnotiform fish Brachyhypopomus pinnicaudatus, the algorithm with the better trade-off function is used. Further, the intrinsic trade-off within single cells has been surmounted by the replication of ELL into multiple electrosensory map segments, each specialized to emphasize different sensory features. Accepted: 14 June 1997  相似文献   

16.
Wave-type weakly electric fish such as Eigenmannia produce continuous sinusoidal electric fields. When conspecifics are in close proximity, interaction of these electric fields can produce deficits in electrosensory function. We examined a neural correlate of such jamming at the level of the midbrain. Previous results indicate that neurons in the dorsal layers of the torus semicircularis can (1) respond to jamming signals, (2) respond to moving electrosensory stimuli, and (3) receive convergent information from the four sensory maps of the electrosensory lateral line lobe (ELL). In this study we recorded the intracellular responses of both tuberous and ampullary neurons to moving objects. Robust Gaussian-shaped or sinusoidal responses with half-height durations between 55 ms and 581 ms were seen in both modalities. The addition of ongoing global signals with temporal-frequencies of 5 Hz attenuated the responses to the moving object by 5 dB or more. In contrast, the responses to the moving object were not attenuated by the addition of signals with temporal frequencies of 20 Hz or greater. This occurred in both the ampullary and tuberous systems, despite the fact that the ampullary afferents to the torus originate in a single ELL map whereas the tuberous afferents emerge from three maps.  相似文献   

17.
It is quite important for investigation of sensory mechanism to understand how dynamical property of neurons is used for encoding the feature of spatiotemporally varying stimuli. To consider concretely the problem, we focus our study on electrosensory system of a weakly electric fish. Weakly electric fish generate electric field around their body using electric organ discharge (EOD) and accurately detect the location of an object through the modulation of electric field induced by the object. We made a neural network model of electrosensory lateral-line lobe (ELL). Here we show that the features of EOD modulation depending specifically distance and size of an object are encoded into the timing of burst firing of ELL neurons. These features can be represented by the spatial area of synchronous burst firing and the interburst interval in the ELL network. We show that short-term changes of excitatory and inhibitory synapses, induced by efferent signals, regulate the ELL activity so as to effectively encode the features of EOD modulation.  相似文献   

18.
The electric fish, Eigenmannia, will smoothly shift the frequency of its electric organ discharge away from an interfering electric signal. This shift in frequency is called the jamming avoidance response (JAR). In this article, we analyze the behavioral development of the JAR and the anatomical development of structures critical for the performance of the JAR. The JAR first appears when juvenile Eigenmannia are approximately 1 month old, at a total length of 13-18 mm. We have found that the establishment of much of the sensory periphery and of central connections precedes the onset of the JAR. We describe three aspects of the behavioral development of the JAR: (a) the onset and development of the behavior is closely correlated with size, not age; (b) the magnitude (in Hz) of the JAR increases with size until the juveniles display values within the adult range (10-20 Hz) at a total length of 25-30 mm; and (3) the JAR does not require prior experience or exposure to electrical signals. Raised in total electrical isolation from the egg stage, animals tested at a total length of 25 mm performed a correct JAR when first exposed to the stimulus. We examine the development of anatomical areas important for the performance of the JAR: the peripheral electrosensory system (mechano- and electroreceptors and peripheral nerves); and central electrosensory pathways and nuclei [the electrosensory lateral line lobe (ELL), the lateral lemniscus, the torus semicircularis, and the pace-maker nucleus]. The first recognizable structures in the developing electrosensory system are the peripheral neurites of the anterior lateral line nerve. The afferent nerves are established by day 2, which is prior to the formation of receptors in the epidermis. Thus, the neurites wait for their targets. This sequence of events suggests that receptor formation may be induced by innervation of primordial cells within the epidermis. Mechanoreceptors are first formed between day 3 and 4, while electroreceptors are first formed on day 7. Electroreceptor multiplication is observed for the first time at an age of 25 days and correlates with the onset of the JAR. The somata of the anterior lateral line nerve ganglion project afferents out to peripheral electroreceptors and also send axons centrally into the ELL. The first electroreceptive axons invade the ELL by day 6, and presumably a rough somatotopic organization and segmentation within the ELL may arise as early as day 7. Axonal projections from the ELL to the torus develop after day 18.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
It is well known that noise is inevitable in gene regulatory networks due to the low-copy numbers of molecules and local environmental fluctuations. The prediction of noise effects is a key issue in ensuring reliable transmission of information. Interlinked positive and negative feedback loops are essential signal transduction motifs in biological networks. Positive feedback loops are generally believed to induce a switch-like behavior, whereas negative feedback loops are thought to suppress noise effects. Here, by using the signal sensitivity (susceptibility) and noise amplification to quantify noise propagation, we analyze an abstract model of the Myc/E2F/MiR-17-92 network that is composed of a coupling between the E2F/Myc positive feedback loop and the E2F/Myc/miR-17-92 negative feedback loop. The role of the feedback loop on noise effects is found to depend on the dynamic properties of the system. When the system is in monostability or bistability with high protein concentrations, noise is consistently suppressed. However, the negative feedback loop reduces this suppression ability (or improves the noise propagation) and enhances signal sensitivity. In the case of excitability, bistability, or monostability, noise is enhanced at low protein concentrations. The negative feedback loop reduces this noise enhancement as well as the signal sensitivity. In all cases, the positive feedback loop acts contrary to the negative feedback loop. We also found that increasing the time scale of the protein module or decreasing the noise autocorrelation time can enhance noise suppression; however, the systems sensitivity remains unchanged. Taken together, our results suggest that the negative/positive feedback mechanisms in coupled feedback loop dynamically buffer noise effects rather than only suppressing or amplifying the noise.  相似文献   

20.
In the hippocampus, episodic memories are thought to be encoded by the formation of ensembles of synaptically coupled CA3 pyramidal cells driven by sparse but powerful mossy fiber inputs from dentate gyrus granule cells. The neuromodulators acetylcholine and noradrenaline are separately proposed as saliency signals that dictate memory encoding but it is not known if they represent distinct signals with separate mechanisms. Here, we show experimentally that acetylcholine, and to a lesser extent noradrenaline, suppress feed-forward inhibition and enhance Excitatory–Inhibitory ratio in the mossy fiber pathway but CA3 recurrent network properties are only altered by acetylcholine. We explore the implications of these findings on CA3 ensemble formation using a hierarchy of models. In reconstructions of CA3 pyramidal cells, mossy fiber pathway disinhibition facilitates postsynaptic dendritic depolarization known to be required for synaptic plasticity at CA3-CA3 recurrent synapses. We further show in a spiking neural network model of CA3 how acetylcholine-specific network alterations can drive rapid overlapping ensemble formation. Thus, through these distinct sets of mechanisms, acetylcholine and noradrenaline facilitate the formation of neuronal ensembles in CA3 that encode salient episodic memories in the hippocampus but acetylcholine selectively enhances the density of memory storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号