首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and aims

Although foliar fertilisation using liquid forms of phosphorus (P) is not a new concept, its adoption has been hindered by a limited understanding of the variability in performance of fluid forms of foliar P applied to broadacre crops. There is a need to identify how the surface structure of leaves influences the absorption and subsequent translocation of foliar-applied P in above ground plant parts.

Methods

This study examined the surface properties of wheat leaves using scanning electron microscopy and measured the recovery of foliar-applied fertiliser that was labelled with either 32P or 33P from both the adaxial (upper) and abaxial (lower) leaf sides into untreated plant parts.

Results

We found that the adaxial leaf surface absorbed and translocated more foliar-applied P away from the treated leaf than the abaxial surface, likely related to the higher abundance of trichomes and stomata present on that side of the leaf. The recovery of the foliar-applied fertiliser varied with rate and timing of application; ranging from <30 % to as much as 80 % of the adaxial-applied fertiliser translocated from the treated leaf into the wheat ear.

Conclusions

This study demonstrated that the differences in surface morphological features between leaf sides influenced the combined absorption and subsequent translocation of foliar-applied P in the above ground plant parts. This is due to a direct effect on the foliar pathway and/or due to differences in wettability affecting both the leaf coverage and drying time of fertilisers on the leaves. Although foliar fertilisation in this study contributed less than 10 % of the total P in the plant, it provided a more efficient pathway for P fertilisation than soil-applied P.  相似文献   

2.
The root-knot nematode Meloidogyne incognita was monoxenically cultured on excised roots of soybean cv. Pickett and tomato cv. Rutgers in agar media containing either 0 to 1,600 μg/ml ammonium nitrate or 0 to 100 μg/ml urea. Observations with scanning and transmission electron microscopy indicated that an elevated concentration of ammonium nitrate or urea inhibited giant cell formation and suppressed nematode development in the infected soybean roots. In the tomato roots, concentrations of ammonium nitrate above 400 μg/ml or urea above 25 μg/ml inhibited giant cell formation and nematode development. Coincident with the nitrogen concentrations that suppressed giant cell formation was the appearance of electron-dense spherical bodies in the cortical parenchyma cells of both the soybean and tomato roots. These bodies, which were 1-4 μm in diameter, appeared to form in the cytoplasm and migrate to the cell vacuole.  相似文献   

3.

Aims

This study aimed to analyse the effect of phosphorus (P) nutritional status on wheat leaf surface properties, in relation to foliar P absorption and translocation.

Methods

Plants of Triticum aestivum cv. Axe were grown with three rates of root P supply (equivalent to 24, 8 and 0 kg P ha?1) under controlled conditions. Foliar P treatments were applied and the rate of drop retention, P absorption and translocation was measured. Adaxial and abaxial leaf surfaces were analysed by scanning and transmission electron microscopy. The contact angles, surface free energy and work-of-adhesion for water were determined.

Results

Wheat leaves are markedly non-wettable, the abaxial leaf side having some degree of water drop adhesion versus the strong repulsion of water drops by the adaxial side. The total leaf area, stomatal and trichome densities, cuticle thickness and contact angles decreased with P deficiency, while the work-of-adhesion for water increased. Phosphorous deficient plants failed to absorb the foliar-applied P.

Conclusions

Phosphorous deficiency altered the surface structure and functioning of wheat leaves, which became more wettable and had a higher degree of water drop adhesion, but turned less permeable to foliar-applied P. The results obtained are discussed within an agronomic and eco-physiological context.  相似文献   

4.
Previous studies indicated that Tylenchulus semipenetrans infection reduced concentrations of inorganic osmolytes, (Na⁺, Cl⁻, K⁺), in roots, along with leaf K⁺ in citrus. However, infection increased leaf Na⁺ and Cl⁻, along with carbohydrates in roots. Pruning of roots also increased carbohydrates in intact roots, whereas shoot pruning increased carbohydrates in shoots. Carbohydrates are translocated as reducing sugars, which collectively form organic osmolytes. Because changes in concentrations of osmolytes regulate osmotic potential in plant cells, we hypothesize that increasing concentrations of organic osmolytes in an organ displaces inorganic osmolytes. We measured the osmotic potentials of young citrus trees under nematode infection, stem girdling, and root pruning at two salinity levels. All treatments reduced leaf osmotic potentials at four sampling times. At harvest, 16 days after pruning and girdling treatments, organs with higher carbohydrates had lower inorganic osmolytes and vice versa, regardless of the treatment. Pruning simulated effects of nematode infection, whereas girdling reduced the effects of nematodes. Results suggested that high organic osmolytes in roots displace inorganic osmolytes, thereby avoiding very low osmotic potentials.  相似文献   

5.
Studies were conducted to determine the potential of two avermectin compounds, abamectin and emamectin benzoate, for controlling plant-parasitic nematodes when applied by three methods: foliar spray, root dip, and pseudostem injection. Experiments were conducted against Meloidogyne incognita on tomato, M. javanica on banana, and Radopholus similis on banana. Foliar applications of both avermectins to banana and tomato were not effective for controlling any of the nematodes evaluated. Root dips of banana and tomato were moderately effective for controlling M. incognita on tomato and R. similis on banana. Injections (1 ml) of avermectins into banana pseudostems were effective for controlling M. javanica and R similis, and were comparable to control achieved with a conventional chemical nematicide, fenamiphos. Injections of 125 to 2,000 μg/plant effectively controlled one or both nematodes on banana; abamectin was more effective than emamectin benzoate for controlling nematodes.  相似文献   

6.
The volatile organic compound (VOC) profile in plant leaves often changes after biotic and abiotic stresses. Monitoring changes in VOCs in plant leaves could provide valuable information about multitrophic interactions. In the current study, we investigated the effect of Asian citrus psyllid (ACP) infestation, citrus greening pathogen (Candidatus Liberibacter asiaticus [CLas]) infection, and simultaneous attack by ACP and CLas on the VOC content of citrus leaves. Leaf volatiles were extracted using hexane and analyzed with gas chromatography-mass spectrometry (GC-MS). Although ACP is a phloem-sucking insect that causes minimal damage to plant tissues, the relative amount of 21 out of the 27 VOCs increased 2- to 10-fold in ACP-infested plants. The relative amount of d-limonene, β-phelandrene, citronellal, and undecanal were increased 4- to 20- fold in CLas-infected plants. A principle component analysis (PCA) and cluster analysis (CA) showed that VOC patterns of ACP-infested and CLas-infected plants were different from each other and were also different from the controls, while the VOC pattern of double-attacked plants was more like that of the controls than that of ACP-infested or CLas-infected plants. VOC amounts from leaves were compromised when plants were attacked by ACP and CLas. The results of this study showed that a simple direct extraction of citrus leaf volatiles could be successfully used to discriminate between healthy and CLas-infected plants. Information about the effects of insect and pathogen attack on the VOC content profile of plants might contribute to a better understanding of biotic stress.  相似文献   

7.
8.
The hypothesis that plants supplied with organic fertilizers are better defended against insect herbivores than those supplied with synthetic fertilizers was tested over two field seasons. Organic and synthetic fertilizer treatments at two nitrogen concentrations were supplied to Brassica plants, and their effects on the abundance of herbivore species and plant chemistry were assessed. The organic treatments also differed in fertilizer type: a green manure was used for the low-nitrogen treatment, while the high-nitrogen treatment contained green and animal manures. Two aphid species showed different responses to fertilizers: the Brassica specialist Brevicoryne brassicae was more abundant on organically fertilized plants, while the generalist Myzus persicae had higher populations on synthetically fertilized plants. The diamondback moth Plutella xylostella (a crucifer specialist) was more abundant on synthetically fertilized plants and preferred to oviposit on these plants. Glucosinolate concentrations were up to three times greater on plants grown in the organic treatments, while foliar nitrogen was maximized on plants under the higher of the synthetic fertilizer treatments. The varying response of herbivore species to these strong differences in plant chemistry demonstrates that hypotheses on defence in organically grown crops have over-simplified the response of phytophagous insects.  相似文献   

9.
10.
In previous greenhouse and laboratory studies, citrus seedlings infested with the citrus nematode Tylenchulus semipenetrans and later inoculated with the fungus Phylophthora nicotianae grew larger and contained less fungal protein in root tissues than plants infected by only the fungus, demonstrating antagonism of the nematode to the fungus. In this study, we determined whether eggs of the citrus nematode T. semipenetrans and root-knot nematode Meloidogyne arenaria affected mycelial growth of P. nicotianae and Fusarium solani in vitro. Approximately 35,000 live or heat-killed (60°C, 10 minutes) eggs of each nematode species were surface-sterilized with cupric sulfate, mercuric chloride, and streptomycin sulfate and placed in 5-pl drops onto the center of nutrient agar plates. Nutrient agar plugs from actively growing colonies of P. nicotianae or F. solani were placed on top of the eggs for 48 hours after which fungal colony growth was determined. Live citrus nematode eggs suppressed mycelial growth of P. nicotianae and F. solani (P ≤ 0.05) compared to heat-killed eggs and water controls. Reaction of the fungi to heat-killed eggs was variable. Root-knot nematode eggs had no effect on either P. nicotianae or F. solani mycelial growth. The experiment demonstrated a species-specific, direct effect of the eggs of the citrus nematode on P, nicotianae and F. solani.  相似文献   

11.
Increasing iron (Fe) concentration in food crops is an important global challenge due to high incidence of Fe deficiency in human populations. Evidence is available showing that nitrogen (N) fertilization increases Fe concentration in wheat grain. This positive impact of N on grain Fe was, however, not studied under varied soil and foliar applications of Fe. Greenhouse experiments were conducted to investigate a role of soil- and foliar-applied Fe fertilizers in improving shoot and grain Fe concentration in durum wheat (Triticum durum) grown under increasing N supply as Ca-nitrate. Additionally, an effect of foliar Fe fertilizers on grain Fe was tested with and without urea in the spray solution. Application of various soil or foliar Fe fertilizers had either a little positive effect or remained ineffective on shoot or grain Fe. By contrast, at a given Fe treatment, raising N supply substantially enhanced shoot and grain concentrations of Fe and Zn. Improving N status of plants from low to sufficient resulted in a 3-fold increase in shoot Fe content (e.g., total Fe accumulated), whereas this increase was only 42% for total shoot dry weight. Inclusion of urea in foliar Fe fertilizers had a positive impact on grain Fe concentration. Nitrogen fertilization represents an important agronomic practice in increasing grain Fe. Therefore, the plant N status deserves special attention in biofortification of food crops with Fe.  相似文献   

12.
Zinc (Zn) is an important micronutrient for the physiology of plants. It is poorly available to the plants in soil solution. A pot experiment was conducted to evaluate effectiveness of various Zn application methods on key enzyme activities and protein content of two contrasting rice genotypes viz., PD16 (Zn efficient) and NDR359 (Zn inefficient). The treatments were, control (0 mg Zn kg−1 soil), soil application (5 mg Zn kg−1 soil), foliar application (0.5 % ZnSO4 + 0.25 % lime at 30, 60 and 90 days after transplanting), soil (5 mg Zn kg−1 soil) + foliar application of 0.5 % ZnSO4 + 0.25 % lime at 30, 60 and 90 days after transplanting. Among all the methods tested soil+foliar application of Zn fertilizers was found most effective in increasing superoxide dismutase (SOD) and carbonic anhydrase (CA) activities as well as chlorophyll and protein content in both the rice varieties. NDR359, showed higher enzyme activities and more chlorophyll content in leaves than PD16, when Zn was applied either through foliar spray alone or in soil along with foliar application. Regarding the protein content in grains, PD16 showed higher protein content than NDR359, thus showed better translocation of Zn from leaves to grains.  相似文献   

13.
Eggs, either dispersed or in masses, and second-stage juveniles (J2) of Meloidogyne incognita were exposed to different concentrations of ammonium ions in a nutrient agar medium upon which excised tomato roots were growing. Egg hatch and J2 penetration of the roots was slowed or inhibited at high (54 and 324 mg/liter) but not at low (1.5 and 9 mg/liter) concentrations of ammonium nitrate. The effect of ammonium on J2 appeared to be temporary and reversible. High potassium nitrate concentration (1,116 mg/liter) did not modify egg hatch or J2 penetration. There was no adverse effect from the high ammonium nitrate concentrations or an equivalent potassium nitrate concentration on root dry weight. Ammonium ions influence nematodes both directly and via plant roots and do so independently of microbial organisms.  相似文献   

14.
Fluopyram is a succinate dehydrogenase inhibitor (SDHI) fungicide that is being evaluated as a seed treatment and in-furrow spray at planting on row crops for management of fungal diseases and its effect on plant-parasitic nematodes. Currently, there are no data on nematode toxicity, nematode recovery, or effects on nematode infection for Meloidogyne incognita or Rotylenchulus reniformis after exposure to low concentrations of fluopyram. Nematode toxicity and recovery experiments were conducted in aqueous solutions of fluopyram, while root infection assays were conducted on tomato. Nematode paralysis was observed after 2 hr of exposure at 1.0 µg/ml fluopyram for both nematode species. Using an assay of nematode motility, 2-hr EC50 values of 5.18 and 12.99 µg/ml fluopyram were calculated for M. incognita and R. reniformis, respectively. Nematode recovery in motility was greater than 50% for M. incognita and R. reniformis 24 hr after nematodes were rinsed and removed from a 1-hr treatment of 5.18 and 12.99 µg/ml fluopyram, respectively. Nematode infection of tomato roots was reduced and inversely proportional to 1-hr treatments with water solutions of fluopyram at low concentrations, which ranged from 1.3 to 5.2 µg/ml for M. incognita and 3.3 to 13.0 µg/ml for R. reniformis. Though fluopyram is nematistatic, low concentrations of the fungicide were effective at reducing the ability of both nematode species to infect tomato roots.  相似文献   

15.

Background and Aims

The most plausible explanation for treeline formation so far is provided by the growth limitation hypothesis (GLH), which proposes that carbon sinks are more restricted by low temperatures than by carbon sources. Evidence supporting the GLH has been strong in evergreen, but less and weaker in deciduous treeline species. Here a test is made of the GLH in deciduous–evergreen mixed species forests across elevational gradients, with the hypothesis that deciduous treeline species show a different carbon storage trend from that shown by evergreen species across elevations.

Methods

Tree growth and concentrations of non-structural carbohydrates (NSCs) in foliage, branch sapwood and stem sapwood tissues were measured at four elevations in six deciduous–evergreen treeline ecotones (including treeline) in the southern Andes of Chile (40°S, Nothofagus pumilio and Nothofagus betuloides; 46°S, Nothofagus pumilio and Pinus sylvestris) and in the Swiss Alps (46°N, Larix decidua and Pinus cembra).

Key Results

Tree growth (basal area increment) decreased with elevation for all species. Regardless of foliar habit, NSCs did not deplete across elevations, indicating no shortage of carbon storage in any of the investigated tissues. Rather, NSCs increased significantly with elevation in leaves (P < 0·001) and branch sapwood (P = 0·012) tissues. Deciduous species showed significantly higher NSCs than evergreens for all tissues; on average, the former had 11 % (leaves), 158 % (branch) and 103 % (sapwood) significantly (P < 0·001) higher NSCs than the latter. Finally, deciduous species had higher NSC (particularly starch) increases with elevation than evergreens for stem sapwood, but the opposite was true for leaves and branch sapwood.

Conclusions

Considering the observed decrease in tree growth and increase in NSCs with elevation, it is concluded that both deciduous and evergreen treeline species are sink limited when faced with decreasing temperatures. Despite the overall higher requirements of deciduous tree species for carbon storage, no indication was found of carbon limitation in deciduous species in the alpine treeline ecotone.  相似文献   

16.
Nitric oxide (NO) is a bioactive molecule involved in numerous biological events that has been reported to display both pro-oxidant and antioxidant properties in plants. Several reports exist which demonstrate the protective action of sodium nitroprusside (SNP), a widely used NO donor, which acts as a signal molecule in plants responsible for the expression regulation of many antioxidant enzymes. This study attempts to provide a novel insight into the effect of application of low (100 μΜ) and high (2.5 mM) concentrations of SNP on the nitrosative status and nitrate metabolism of mature (40 d) and senescing (65 d) Medicago truncatula plants. Higher concentrations of SNP resulted in increased NO content, cellular damage levels and reactive oxygen species (ROS) concentration, further induced in older tissues. Senescing M. truncatula plants demonstrated greater sensitivity to SNP-induced oxidative and nitrosative damage, suggesting a developmental stage-dependent suppression in the plant’s capacity to cope with free oxygen and nitrogen radicals. In addition, measurements of the activity of nitrate reductase (NR), a key enzyme involved in the generation of NO in plants, indicated a differential regulation in a dose and time-dependent manner. Furthermore, expression levels of NO-responsive genes (NR, nitrate/nitrite transporters) involved in nitrogen assimilation and NO production revealed significant induction of NR and nitrate transporter during long-term 2.5 mM SNP application in mature plants and overall gene suppression in senescing plants, supporting the differential nitrosative response of M. truncatula plants treated with different concentrations of SNP.  相似文献   

17.
Salinization is one of the most important causes of crop productivity reduction in many areas of the world. Mechanisms that control leaf growth and shoot development under the osmotic phase of salinity are still obscure, and opinions differ regarding the Abscisic acid (ABA) role in regulation of biomass allocation under salt stress. ABA concentration in roots and leaves was analyzed in a genotype of processing tomato under two increasing levels of salinity stress for five weeks: 100 mM NaCl (S10) and 150 mM NaCl (S15), to study the effect of ABA changes on leaf gas exchange and dry matter partitioning of this crop under salinity conditions. In S15, salinization decreased dry matter by 78% and induced significant increases of Na+ and Cl in both leaves and roots. Dry matter allocated in different parts of plant was significantly different in salt-stressed treatments, as salinization increased root/shoot ratio 2-fold in S15 and 3-fold in S15 compared to the control. Total leaf water potential (Ψw) decreased from an average value of approximately −1.0 MPa, measured on control plants and S10, to −1.17 MPa in S15. In S15, photosynthesis was reduced by 23% and stomatal conductance decreased by 61%. Moreover, salinity induced ABA accumulation both in tomato leaves and roots of the more stressed treatment (S15), where ABA level was higher in roots than in leaves (550 and 312 ng g−1 fresh weight, respectively). Our results suggest that the dynamics of ABA and ion accumulation in tomato leaves significantly affected both growth and gas exchange-related parameters in tomato. In particular, ABA appeared to be involved in the tomato salinity response and could play an important role in dry matter partitioning between roots and shoots of tomato plants subjected to salt stress.  相似文献   

18.
Memory deficits are common during aging, but little is known about the impact of environmental and genetic variables on memory. The genes SLC30A3 and SEP15 are, respectively, responsible for transporting zinc and selenium, micronutrients that are neuroprotective agents. The aim of this study was to investigate the effect of nutrigenetic interactions on the memory scores of volunteers more than 50 years old. For this cross-sectional study, 240 individuals were enrolled. Micronutrient dosage was determined using atomic absorption spectrophotometry. The SNPs rs5859, rs5854, and rs561104 in SEP15 and rs73924411 and rs11126936 in SLC30A3 were determined by real-time PCR. The evaluations of verbal and visual memory were performed using the Weschler Memory Scale-revised and the Rey’s verbal learning test. A gene versus nutrient interaction was observed for SLC30A3 rs73924411 and zinc concentration. Carriers of the T allele had higher scores for short-term and long-term verbal memories than CC homozygotes only when zinc serum concentration was below the recommended level (p value for the interaction for short-term verbal memory = 0.011, p value for the interaction for long-term verbal memory = 0.039). For SEP15, C carriers of the rs5845 SNP allele had higher verbal learning memory scores than TT homozygotes (0.13 ± 1.13 vs. −1.10 ± 1.20, p = 0.034). Our results suggest the influence of genetic polymorphisms on memory score and identify gene versus nutrient interactions between zinc serum concentration and memory score.  相似文献   

19.
Respiration of selected nematode species was measured relative to CO₂ level, temperature, osmotic pressure, humidity, glucose utilization and high ionic concentrations of sodium and potassium.In general, respiration was stimulated most by the dominant environmental factors at levels near those expected in the nematode''s "natural" habitat. Soil-inhabiting nematodes utilized O₂, most rapidly with high (1-2%) CO₂ whereas a foliar nematode (Aphelenchoides ritzemabosi) did so with 0.03% CO₂, the concentration typically found in air. Temperature optima for respiration corresponded closely to those for other activities. Ditylenchus dipsaci and Pratylenchus penetrans adults and Anguina tritici and A. agrostis second-stage larvae respired within the range of osmotic pressures from 0 to 44.8 arm and respiration of their drought-resistant stages was stimulated by increasing osmotic pressure which accompanies the onset of drought. Rehydration of A. tritici and A. agrostis larvae with RH as low as 5% stimulated measurable respiration. Glucose utilization from liquid medium by A. tritici larvae or A. ritzembosi was not detectable. Supplemental Na⁺ stimulated respiration of Anguina tritici, K⁺ did not.  相似文献   

20.
Laboratory and microplot experiments were conducted to determine the influence of carrier and storage of Paecilomyces lilacinus on its survival and related protection of tomato against Meloidogyne incognita. Spores of P. lilacinus were prepared in five formulations: alginate pellets (pellets), diatomaceous earth granules (granules), wheat grain, soil, and soil plus chitin. Fungal viability was high in wheat and granules, intermediate in pellets, and low in soil and chitin-amended soil stored at 25 ± 2 C. In 1985 P. lilacinus in field microplots resulted in about a 25% increase in tomato yield and 25% gall suppression, compared with nematodes alone. Greatest suppression of egg development occurred in plots treated with P. lilacinus in pellets, wheat grain, and granules. In 1986 carryover protection of tomato against M. incognita resulted in about a threefold increase in tomato fruit yield and 25% suppression of gall development, compared with plants treated with nematodes alone. Higher numbers of fungus-infected egg masses occurred in plots treated with pellets (32%) than in those treated with chitin-amended soil (24%), wheat (16%), granules (12%), or soil (7%). Numbers of fungal colony-forming units per gram of soil in plots treated with pellets were 10-fold greater than initial levels estimated at planting time in 1986.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号