首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To enter target cells, human immunodeficiency virus (HIV) first attaches to the cells and fuses with the cell membrane. Attachment and fusion involve envelope glycoprotein trimers on the surface of the virion and the CD4 receptor and chemokine coreceptors on the surface of the target cell. The stoichiometry of entry, that is, the number of bonds between such trimers and CD4 that are required for infection, is unknown. Pseudotyped virions that express mixed trimers consisting of functional and nonfunctional envelope proteins have been used to study how many trimer-receptor interactions are required for virus entry. However, to extract information on the stoichiometry of entry from data generated in in vitro infectivity assays with such viruses, mathematical models are required. Here, we describe mathematical models that can be used to infer the stoichiometry of entry. By fitting our simplest model to previously published data (X. Yang, S. Kurteva, X. Ren, S. Lee, and J. Sodroski, J. Virol. 79: 12132-12147, 2005), we estimated that the number of trimer-receptor interactions required for HIV to infect a target cell is approximately eight, which is higher than previous estimates. We also consider model extensions that explain some systematic deviations of the data from the prediction of the simplest model. However, these extended models yield very different estimates of the stoichiometry of entry ranging from 2 to 19. These results strongly suggest that, based on our present knowledge of HIV entry, the stoichiometry of this process cannot be reliably estimated. Our study identifies parameters that need to be defined to render the estimation of the stoichiometry of HIV entry possible.  相似文献   

2.
Yang X  Kurteva S  Ren X  Lee S  Sodroski J 《Journal of virology》2005,79(19):12132-12147
The human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Envs) function as a trimer, mediating virus entry by promoting the fusion of the viral and target cell membranes. HIV-1 Env trimers induce membrane fusion through a pH-independent pathway driven by the interaction between an Env trimer and its cellular receptors, CD4 and CCR5/CXCR4. We studied viruses with mixed heterotrimers of wild-type and dominant-negative Envs to determine the number (T) of Env trimers required for HIV-1 entry. To our surprise, we found that a single Env trimer is capable of supporting HIV-1 entry; i.e., T = 1. A similar approach was applied to investigate the entry stoichiometry of envelope glycoproteins from amphotropic murine leukemia virus (A-MLV), avian sarcoma/leukosis virus type A (ASLV-A), and influenza A virus. When pseudotyped on HIV-1 virions, the A-MLV and ASLV-A Envs also exhibit a T = 1 entry stoichiometry. In contrast, eight to nine influenza A virus hemagglutinin trimers function cooperatively to achieve membrane fusion and virus entry, using a pH-dependent pathway. The different entry requirements for cooperativity among Env trimers for retroviruses and influenza A virus may influence viral strategies for replication and evasion of the immune system.  相似文献   

3.
HIV virions infect cells by attaching to target cell receptors, fusing membranes with the cell and by finally releasing their genetic material into the target cells. Antibodies can hinder the infection by attaching to the HIV envelope glycoprotein trimers before or during attachment. The exact mechanisms and the quantitative requirements of antibody neutralization are still debated. Recently, the number of antibodies rendering one trimer non-functional, called stoichiometry of (trimer) neutralization, was studied with mathematical models. Here we extend this theoretical framework to calculate the stoichiometries of neutralizing a single virion and a whole virion population. We derive mathematical equations for antibody neutralization based on restricted occupancy theory. Additionally we simulate these processes when a direct calculation is not possible. We find that the number of trimers needed for cell entry and the number of antibodies neutralizing one trimer strongly influence the mean number of antibodies needed for virion and population neutralization. Further we show that the mean number of antibodies needed to neutralize a virion population exceeds the product of the number of virions in the population and the mean number of antibodies needed to neutralize one virion.  相似文献   

4.
HIV-1 virions infect target cells by first establishing contact between envelope glycoprotein trimers on the virion''s surface and CD4 receptors on a target cell, recruiting co-receptors, fusing with the cell membrane and finally releasing the genetic material into the target cell. Specific experimental setups allow the study of the number of trimer-receptor-interactions needed for infection, i.e., the stoichiometry of entry and also the number of antibodies needed to prevent one trimer from engaging successfully in the entry process, i.e., the stoichiometry of (trimer) neutralization. Mathematical models are required to infer the stoichiometric parameters from these experimental data. Recently, we developed mathematical models for the estimations of the stoichiometry of entry [1]. In this article, we show how our models can be extended to investigate the stoichiometry of trimer neutralization. We study how various biological parameters affect the estimate of the stoichiometry of neutralization. We find that the distribution of trimer numbers—which is also an important determinant of the stoichiometry of entry—influences the estimated value of the stoichiometry of neutralization. In contrast, other parameters, which characterize the experimental system, diminish the information we can extract from the data about the stoichiometry of neutralization, and thus reduce our confidence in the estimate. We illustrate the use of our models by re-analyzing previously published data on the neutralization sensitivity [2], which contains measurements of neutralization sensitivity of viruses with different envelope proteins to antibodies with various specificities. Our mathematical framework represents the formal basis for the estimation of the stoichiometry of neutralization. Together with the stoichiometry of entry, the stoichiometry of trimer neutralization will allow one to calculate how many antibodies are required to neutralize a virion or even an entire population of virions.  相似文献   

5.
The trimeric envelope spike of HIV-1 mediates virus entry into human cells. The exposed part of the trimer, gp140, consists of two noncovalently associated subunits, gp120 and gp41 ectodomain. A recombinant vaccine that mimics the native trimer might elicit entry-blocking antibodies and prevent virus infection. However, preparation of authentic HIV-1 trimers has been challenging. Recently, an affinity column containing the broadly neutralizing antibody 2G12 has been used to capture recombinant gp140 and prepare trimers from clade A BG505 that naturally produces stable trimers. However, this antibody-based approach may not be as effective for the diverse HIV-1 strains with different epitope signatures. Here, we report a new and simple approach to produce HIV-1 envelope trimers. The C terminus of gp140 was attached to Strep-tag II with a long linker separating the tag from the massive trimer base and glycan shield. This allowed capture of nearly homogeneous gp140 directly from the culture medium. Cleaved, uncleaved, and fully or partially glycosylated trimers from different clade viruses were produced. Extensive biochemical characterizations showed that cleavage of gp140 was not essential for trimerization, but it triggered a conformational change that channels trimers into correct glycosylation pathways, generating compact three-blade propeller-shaped trimers. Uncleaved trimers entered aberrant pathways, resulting in hyperglycosylation, nonspecific cross-linking, and conformational heterogeneity. Even the cleaved trimers showed microheterogeneity in gp41 glycosylation. These studies established a broadly applicable HIV-1 trimer production system as well as generating new insights into their assembly and maturation that collectively bear on the HIV-1 vaccine design.  相似文献   

6.
The human immunodeficiency virus envelope glycoproteins function as trimers on the viral surface, where they are targeted by neutralizing antibodies. Different monoclonal antibodies neutralize human immunodeficiency virus type 1 (HIV-1) infectivity by binding to structurally and functionally distinct moieties on the envelope glycoprotein trimer. By measuring antibody neutralization of viruses with mixtures of neutralization-sensitive and neutralization-resistant envelope glycoproteins, we demonstrate that the HIV-1 envelope glycoprotein trimer is inactivated by the binding of a single antibody molecule. Virus neutralization requires essentially all of the functional trimers to be occupied by at least one antibody. This model applies to antibodies differing in neutralizing potency and to virus isolates with various neutralization sensitivities. Understanding these requirements for HIV-1 neutralization by antibodies will assist in establishing goals for an effective AIDS vaccine.  相似文献   

7.
Magnus C  Regoes RR 《PloS one》2012,7(3):e33441
Virions of the Human Immunodeficiency Virus (HIV) infect cells by first attaching with their surface spikes to the CD4 receptor on target cells. This leads to conformational changes in the viral spikes, enabling the virus to engage a coreceptor, commonly CCR5 or CXCR4, and consecutively to insert the fusion peptide into the cellular membrane. Finally, the viral and the cellular membranes fuse. The HIV spike is a trimer consisting of three identical heterodimers composed of the gp120 and gp41 envelope proteins. Each of the gp120 proteins in the trimer is capable of attaching to the CD4 receptor and the coreceptor, and each of the three gp41 units harbors a fusion domain. It is still under debate how many of the envelope subunits within a given trimer have to bind to the CD4 receptors and to the coreceptors, and how many gp41 protein fusion domains are required for fusion. These numbers are referred to as subunit stoichiometries. We present a mathematical framework for estimating these parameters individually by analyzing infectivity assays with pseudotyped viruses. We find that the number of spikes that are engaged in mediating cell entry and the distribution of the spike number play important roles for the estimation of the subunit stoichiometries. Our model framework also shows why it is important to subdivide the question of the number of functional subunits within one trimer into the three different subunit stoichiometries. In a second step, we extend our models to study whether the subunits within one trimer cooperate during receptor binding and fusion. As an example for how our models can be applied, we reanalyze a data set on subunit stoichiometries. We find that two envelope proteins have to engage with CD4-receptors and coreceptors and that two fusion proteins must be revealed within one trimer for viral entry. Our study is motivated by the mechanism of HIV entry but the experimental technique and the model framework can be extended to other viral systems as well.  相似文献   

8.
We have investigated the effects of Nef on infectivity in the context of various viral envelope proteins. These experiments were performed with a minimal vector system where Nef is the only accessory protein present. Our results support the hypothesis that the route of entry influences the ability of Nef to enhance human immunodeficiency virus (HIV) infectivity. We show that HIV particles pseudotyped with Ebola virus glycoprotein or vesicular stomatitis virus glycoprotein (VSV-G), which fuse at low pH, do not require Nef for optimal infectivity. In contrast, Nef significantly enhances the infectivity of virus particles that contain envelope proteins that fuse at neutral pH (CCR5-dependent HIV Env, CXCR4-dependent HIV Env, or amphotropic murine leukemia virus Env). In addition, our results demonstrate that virus particles containing mixed CXCR4-dependent HIV and VSV-G envelope proteins show a conditional requirement for Nef for optimal infectivity, depending on which protein is allowed to facilitate entry.  相似文献   

9.
10.
We simulated the docking of human immunodeficiency virus (HIV) with a cell membrane using Brownian adhesive dynamics. The main advance in the current version of Brownian adhesive dynamics is that we use a simple bead-spring model to coarsely approximate the role of gp120 trimerization on HIV docking. We used our simulations to elucidate the effect of env spike density on the rate and probability of HIV binding, as well as the probability that each individual gp120 trimer is fully engaged. We found that for typical CD4 surface densities, viruses expressing as few as 8 env spikes will dock with binding rate constants comparable to viruses expressing 72 spikes. We investigated the role of cellular receptor diffusion on the degree of binding achieved by the virus on both short timescales (where binding has reached steady state but before substantial receptor accumulation in the viral-cell contact zone has occurred) and long timescales (where the system has reached steady state). On short timescales, viruses with 10-23 env trimers most efficiently form fully engaged trimers. On long timescales, all gp120 in the contact area will become bound to CD4. We found that it takes seconds for engaged trimers to cluster CD4 molecules in the contact zone, which partially explains the deleay in viral entry.  相似文献   

11.
The alpha-chemokine SDF-1 binds CXCR4, a coreceptor for human immunodeficiency virus type 1 (HIV-1), and inhibits viral entry mediated by this receptor. Since chemokines are potent chemoattractants and activators of leukocytes, we examined whether the stimulation of HIV target cells by SDF-1 affects the replication of virus with different tropisms. We observed that SDF-1 inhibited the entry of X4 strains and increased the infectivity of particles bearing either a CCR5-tropic HIV-1 envelope or a vesicular stomatitis virus G envelope. In contrast to the inhibitory effect of SDF-1 on X4 strains, which is at the level of entry, the stimulatory effect does not involve envelope-receptor interactions or proviral DNA synthesis. Rather, we observed an increased ability of Tat to transactivate the HIV-1 long terminal repeat in the presence of the chemokine. Therefore, the effects of SDF-1 on the HIV-1 life cycle can be multiple and opposite, including both an inhibition of viral entry and a stimulation of proviral gene expression.  相似文献   

12.
The human immunodeficiency virus (HIV) envelope glycoprotein forms trimers on the virion surface, with each monomer consisting of two subunits, gp120 and gp41. The gp120 envelope component binds to CD4 on target cells and undergoes conformational changes that allow gp120 to interact with certain G-protein-coupled receptors (GPCRs) on the same target membranes. The GPCRs that function as HIV coreceptors were found to be chemokine receptors. The primary coreceptors are CCR5 and CXCR4, but several other chemokine receptors were identified as "minor coreceptors", indicating their ability support entry of some HIV strains in tissue cultures. Formation of the tri-molecular complexes stabilizes virus binding and triggers a series of conformational changes in gp41 that facilitate membrane fusion and viral cell entry. Concerted efforts are underway to decipher the specific interactions between gp120/CD4, gp120/coreceptors, and their contributions to the subsequent membrane fusion process. It is hoped that some of the transient conformational intermediates in gp120 and gp41 would serve as targets for entry inhibitors. In addition, the CD4 and coreceptors are primary targets for several classes of inhibitors currently under testing. Our review summarizes the current knowledge on the interactions of HIV gp120 with its receptor and coreceptors, and the important properties of the chemokine receptors and their regulation in primary target cells. We also summarize the classes of coreceptor inhibitors under development.  相似文献   

13.
The envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) function as a homotrimer of gp120/gp41 heterodimers to support virus entry. During the process of virus entry, an individual HIV-1 envelope glycoprotein trimer binds the cellular receptors CD4 and CCR5/CXCR4 and mediates the fusion of the viral and the target cellular membranes. By studying the function of heterotrimers between wild-type and nonfunctional mutant envelope glycoproteins, we found that two wild-type subunits within an envelope glycoprotein trimer are required to support virus entry. Complementation between HIV-1 envelope glycoprotein mutants defective in different functions to allow virus entry was not evident. These results assist our understanding of the mechanisms whereby the HIV-1 envelope glycoproteins mediate virus entry and membrane fusion and guide attempts to inhibit these processes.  相似文献   

14.
The human immunodeficiency virus type 1 (HIV-1) exterior envelope glycoprotein, gp120, mediates binding to the viral receptors and, along with the transmembrane glycoprotein gp41, is a major target for neutralizing antibodies. We asked whether replacing the gp41 fusion/trimerization domain with a stable trimerization motif might lead to a more stable gp120 trimer that would be amenable to structural and immunologic analysis. To obtain stable gp120 trimers, a heterologous trimerization motif, GCN4, was appended to the C terminus of YU2gp120. Biochemical analysis indicated that the gp120-GCN4 trimers were superior to gp140 molecules in their initial homogeneity, and trilobed structures were observable by electron microscopy. Biophysical analysis of gp120-GCN4 trimers by isothermal titration calorimetry (ITC) and ultracentrifugation analyses indicated that most likely two molecules of soluble CD4 could bind to one gp120-GCN4 trimer. To further examine restricted CD4 stoichiometric binding to the gp120-GCN4 trimers, we generated a low-affinity CD4 binding trimer by introducing a D457V change in the CD4 binding site of each gp120 monomeric subunit. The mutant trimers could definitively bind only one soluble CD4 molecule, as determined by ITC and sedimentation equilibrium centrifugation. These data indicate that there are weak interactions between the gp120 monomeric subunits of the GCN4-stabilized trimers that can be detected by low-affinity ligand sensing. By similar analysis, we also determined that removal of the variable loops V1, V2, and V3 in the context of the gp120-GCN4 proteins allowed the binding of three CD4 molecules per trimer. Interestingly, both the gp120-GCN4 variants displayed a restricted stoichiometry for the CD4-induced antibody 17b of one antibody molecule binding per trimer. This restriction was not evident upon removal of the variable loops V1 and V2 loops, consistent with conformational constraints in the wild-type gp120 trimers and similar to those inherent in the functional Env spike. Thus, the gp120-GCN4 trimers demonstrate several properties that are consistent with some of those anticipated for gp120 in the context of the viral spike.  相似文献   

15.
The human immunodeficiency virus (HIV) envelope glycoprotein forms trimers on the virion surface, with each monomer consisting of two subunits, gp120 and gp41. The gp120 envelope component binds to CD4 on target cells and undergoes conformational changes that allow gp120 to interact with certain G-protein-coupled receptors (GPCRs) on the same target membranes. The GPCRs that function as HIV coreceptors were found to be chemokine receptors. The primary coreceptors are CCR5 and CXCR4, but several other chemokine receptors were identified as “minor coreceptors”, indicating their ability support entry of some HIV strains in tissue cultures. Formation of the tri-molecular complexes stabilizes virus binding and triggers a series of conformational changes in gp41 that facilitate membrane fusion and viral cell entry. Concerted efforts are underway to decipher the specific interactions between gp120/CD4, gp120/coreceptors, and their contributions to the subsequent membrane fusion process. It is hoped that some of the transient conformational intermediates in gp120 and gp41 would serve as targets for entry inhibitors. In addition, the CD4 and coreceptors are primary targets for several classes of inhibitors currently under testing. Our review summarizes the current knowledge on the interactions of HIV gp120 with its receptor and coreceptors, and the important properties of the chemokine receptors and their regulation in primary target cells. We also summarize the classes of coreceptor inhibitors under development.  相似文献   

16.
Human cytomegalovirus (HCMV) entry involves trimer (gH/gL/gO) that interacts with PDGFRα in fibroblasts. Entry into epithelial and endothelial cells requires trimer, which binds unidentified receptors, and pentamer (gH/gL/UL128-131), which binds neuropilin-2. To identify functionally important domains in trimer, we screened an overlapping 20-mer gO peptide library and identified two sets of peptides: 19/20 (a.a. 235–267) and 32/33 (a.a. 404–436) that could block virus entry. Soluble trimer containing wild type gO blocked HCMV entry, whereas soluble trimers with the 19/20 or 32/33 sequences mutated did not block entry. Interestingly, the mutant trimers retained the capacity to bind to cellular receptors including PDGFRα. Peptide 19/20 and 32/33 sequences formed a lobe extending from the surface of gO and an adjacent concave structure, respectively. Neither of these sets of sequences contacted PDGFRα. Instead, our data support a model in which the 19/20 and 32/33 trimer sequences function downstream of receptor binding, e.g. trafficking of HCMV into endosomes or binding to gB for entry fusion. We also screened for peptides that bound antibodies (Abs) in human sera, observing that peptides 20 and 26 bound Abs. These peptides engendered neutralizing Abs (NAbs) after immunization of rabbits and could pull out NAbs from human sera. Peptides 20 and 26 sequences represent the first NAb epitopes identified in trimer. These studies describe two important surfaces on gO defined by: i) peptides 19/20 and 32/33, which apparently act downstream of receptor binding and ii) peptide 26 that interacts with PDGFRα. Both these surfaces are targets of NAbs.  相似文献   

17.
18.
The HIV-1 envelope spike is a trimer of heterodimers composed of an external glycoprotein gp120 and a transmembrane glycoprotein gp41. gp120 initiates virus entry by binding to host receptors, whereas gp41 mediates fusion between viral and host membranes. Although the basic pathway of HIV-1 entry has been extensively studied, the detailed mechanism is still poorly understood. Design of gp41 recombinants that mimic key intermediates is essential to elucidate the mechanism as well as to develop potent therapeutics and vaccines. Here, using molecular genetics and biochemical approaches, a series of hypotheses was tested to overcome the extreme hydrophobicity of HIV-1 gp41 and design a soluble near full-length gp41 trimer. The two long heptad repeat helices HR1 and HR2 of gp41 ectodomain were mutated to disrupt intramolecular HR1-HR2 interactions but not intermolecular HR1-HR1 interactions. This resulted in reduced aggregation and improved solubility. Attachment of a 27-amino acid foldon at the C terminus and slow refolding channeled gp41 into trimers. The trimers appear to be stabilized in a prehairpin-like structure, as evident from binding of a HR2 peptide to exposed HR1 grooves, lack of binding to hexa-helical bundle-specific NC-1 mAb, and inhibition of virus neutralization by broadly neutralizing antibodies 2F5 and 4E10. Fusion to T4 small outer capsid protein, Soc, allowed display of gp41 trimers on the phage nanoparticle. These approaches for the first time led to the design of a soluble gp41 trimer containing both the fusion peptide and the cytoplasmic domain, providing insights into the mechanism of entry and development of gp41-based HIV-1 vaccines.  相似文献   

19.
The minute virus of mice (MVM) provides a simple model for the dissection of the molecular determinants of the self-assembly, stability, and dynamics of a biological supramolecular complex. MVM assembly involves the trimerization of capsid subunits in the cytoplasm; trimers are transported to the nucleus, where they suffer a conformational change and are made competent for capsid formation. Our previous study revealed that capsid assembly from trimers is dependent on stronger intertrimer interactions that are equally spaced in an equatorial belt surrounding each trimer. We have now targeted the interfaces between monomers within each trimer to identify the molecular determinants of trimerization and the rearrangement needed for capsid assembly. Twenty-eight amino acid residues per monomer were individually mutated to alanine to remove most of the stronger intersubunit interactions. The effects on trimer and capsid assembly and virus infectivity in cells were analyzed. No side chain was individually required for trimer assembly in the cytoplasm; in contrast, half of them were required to make the trimers competent for nuclear capsid assembly, even though none was close to intertrimer interfaces. These critical side chains are conserved and participate in extensive hydrophobic contacts, buried hydrogen bonds, or salt bridges between subunits. This study on MVM capsid assembly reveals that: (i) trimerization is a robust process, insensitive to removal of individual intersubunit interactions; and (ii) the rearrangement of the trimer intermediate required for capsid assembly is a global process that depends on the establishment of many interactions along the protein-protein interfaces within each trimer.  相似文献   

20.
Chemokine G protein coupled receptors, principally CCR5 or CXCR4, function as co-receptors for HIV-1 entry into CD4+ T cells. Initial binding of the viral envelope glycoprotein (Env) gp120 subunit to the host CD4 receptor induces a cascade of structural conformational changes that lead to the formation of a high-affinity co-receptor-binding site on gp120. Interaction between gp120 and the co-receptor leads to the exposure of epitopes on the viral gp41 that mediates fusion between viral and cell membranes. Soluble CD4 (sCD4) mimetics can act as an activation-based inhibitor of HIV-1 entry in vitro, as it induces similar structural changes in gp120, leading to increased virus infectivity in the short term but to virus Env inactivation in the long term. Despite promising clinical implications, sCD4 displays low efficiency in vivo, and in multiple HIV strains, it does not inhibit viral infection. This has been attributed to the slow kinetics of the sCD4-induced HIV Env inactivation and to the failure to obtain sufficient sCD4 mimetic levels in the serum. Here we present uniquely structured CCR5 co-receptor mimetics. We hypothesized that such mimetics will enhance sCD4-induced HIV Env inactivation and inhibition of HIV entry. Co-receptor mimetics were derived from CCR5 gp120-binding epitopes and functionalized with a palmitoyl group, which mediated their display on the surface of lipid-coated magnetic beads. CCR5-peptidoliposome mimetics bound to soluble gp120 and inhibited HIV-1 infectivity in a sCD4-dependent manner. We concluded that CCR5-peptidoliposomes increase the efficiency of sCD4 to inhibit HIV infection by acting as bait for sCD4-primed virus, catalyzing the premature discharge of its fusion potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号