首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pain is a multidimensional experience, which includes sensory, cognitive, and affective aspects. Converging lines of evidence indicate that dopaminergic neurotransmission plays an important role in human pain perception. However, the precise effects of dopamine on different aspects of pain perception remain to be elucidated. To address this question, we experimentally decreased dopaminergic neurotransmission in 22 healthy human subjects using Acute Phenylalanine and Tyrosine Depletion (APTD). During APTD and a control condition we applied brief painful laser stimuli to the hand, assessed different aspects of pain perception, and recorded electroencephalographic responses. APTD-induced decreases of cerebral dopaminergic activity did not influence sensory aspects of pain perception. In contrast, APTD yielded increases of pain unpleasantness. The increases of unpleasantness ratings positively correlated with effectiveness of APTD. Our finding of an influence of dopaminergic neurotransmission on affective but not sensory aspects of phasic pain suggests that analgesic effects of dopamine might be mediated by indirect effects on pain affect rather than by direct effects on ascending nociceptive signals. These findings contribute to our understanding of the complex relationship between dopamine and pain perception, which may play a role in various clinical pain states.  相似文献   

2.
The purpose of this study was to use functional near-infrared spectroscopy (fNIRS) to examine patterns of both activation and deactivation that occur in the frontal lobe in response to noxious stimuli. The frontal lobe was selected because it has been shown to be activated by noxious stimuli in functional magnetic resonance imaging studies. The brain region is located behind the forehead which is devoid of hair, providing a relative ease of placement for fNIRS probes on this area of the head. Based on functional magnetic resonance imaging studies showing blood-oxygenation-level dependent changes in the frontal lobes, we evaluated functional near-infrared spectroscopy measures in response to two levels of electrical pain in awake, healthy human subjects (n = 10; male = 10). Each subject underwent two recording sessions separated by a 30-minute resting period. Data collected from 7 subjects were analyzed, containing a total of 38/36 low/high intensity pain stimuli for the first recording session and 27/31 pain stimuli for the second session. Our results show that there is a robust and significant deactivation in sections of the frontal cortices. Further development and definition of the specificity and sensitivity of the approach may provide an objective measure of nociceptive activity in the brain that can be easily applied in the surgical setting.  相似文献   

3.
In this review, we summarize the contribution of functional imaging to the question of nociception in humans. In the beginning of the 90's, brain areas supposed to be involved in physiological pain processes were almost exclusively the primary somatosensory area (SI), thalamus, and anterior cingulate cortex. In spite of these a priori hypotheses, the first imaging studies revealed that the main brain areas and those providing the most consistent activations in pain conditions were the insular and the SII cortices, bilaterally. This has been confirmed with other techniques such as intracerebral recordings of evoked potentials after nociceptive stimulations with laser showing a consistent response in the operculo-insular area which amplitude correlates with pain intensity. In spite of electrode implantations in other areas of the brain, only rare and inconsistent responses have been found outside the operculo-insular cortices. With electrical stimulation delivered directly in the brain, it has also been shown that stimulation in this area only--and not in other brain areas--was able to elicit a painful sensation. Thus, over the last 15 years, the operculo-insular cortex has been re-discovered as a main area of pain integration, mainly in its sensory and intensity aspects. In neuropathic pain also, these areas have been demonstrated as being abnormally recruited, bilaterally, in response to innocuous stimuli. These results suggest that plastic changes may occur in brain areas that were pre-defined for generating pain sensations. Conversely, when the brain activations concomitant to pain relief is taken into account, a large number of studies pointed out medial prefrontal and rostral cingulate areas as being associated with pain controls. Interestingly, these activations may correlate with the magnitude of pain relief, with the activation of the PAG, and, at least in some instances, with the involvement of endogenous opioids.  相似文献   

4.
痛觉的脑功能成像研究进展   总被引:3,自引:0,他引:3  
Zhang WT  Luo F  Han JS 《生理科学进展》2001,32(3):209-214
本文综述了近年来关于痛觉功能性脑成像的研究进展,痛觉的感觉辨别成分似与外侧丘脑、初级和次级躯体感觉区及岛叶皮层有关,而伤害性信息的认知-注意过程则与顶叶后部和前额中皮层有关。扣带回的不同部分调节着痛觉认知和情感的不同方面。文章最后对临床各种疼痛特别是神经源性痛病人的成像研究进行了分析。  相似文献   

5.

Background

The Contact Heat Evoked Potential Stimulator (CHEPS) utilises rapidly delivered heat pulses with adjustable peak temperatures to stimulate the differential warm/heat thresholds of receptors expressed by Aδ and C fibres. The resulting evoked potentials can be recorded and measured, providing a useful clinical tool for the study of thermal and nociceptive pathways. Concurrent recording of contact heat evoked potentials using electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) has not previously been reported with CHEPS. Developing simultaneous EEG and fMRI with CHEPS is highly desirable, as it provides an opportunity to exploit the high temporal resolution of EEG and the high spatial resolution of fMRI to study the reaction of the human brain to thermal and nociceptive stimuli.

Methods

In this study we have recorded evoked potentials stimulated by 51°C contact heat pulses from CHEPS using EEG, under normal conditions (baseline), and during continuous and simultaneous acquisition of fMRI images in ten healthy volunteers, during two sessions. The pain evoked by CHEPS was recorded on a Visual Analogue Scale (VAS).

Results

Analysis of EEG data revealed that the latencies and amplitudes of evoked potentials recorded during continuous fMRI did not differ significantly from baseline recordings. fMRI results were consistent with previous thermal pain studies, and showed Blood Oxygen Level Dependent (BOLD) changes in the insula, post-central gyrus, supplementary motor area (SMA), middle cingulate cortex and pre-central gyrus. There was a significant positive correlation between the evoked potential amplitude (EEG) and the psychophysical perception of pain on the VAS.

Conclusion

The results of this study demonstrate the feasibility of recording contact heat evoked potentials with EEG during continuous and simultaneous fMRI. The combined use of the two methods can lead to identification of distinct patterns of brain activity indicative of pain and pro-nociceptive sensitisation in healthy subjects and chronic pain patients. Further studies are required for the technique to progress as a useful tool in clinical trials of novel analgesics.  相似文献   

6.
It is generally accepted that the sensory and affective components of pain may be differentially associated with various acute and chronic diseases, and that some treatment regimens are best directed toward certain aspects of the pain experience. In addition, experimental animal models have been described that presume to assess either the sensory-discriminative aspects of phasic pain or the affective responses associated with tonic pain. The present psychophysical experiment directly compares the perceived intensity and unpleasantness of sensations evoked by four types of experimental noxious stimuli: contact heat, electric shock, ischemic exercise, and cold-pressor pain. A novel pain measurement technique is described that incorporates unbounded magnitude-estimation/category scales; this technique allows precise ratio responses, while minimizing within- and between- subject variability. We observe that, relative to the perceived intensity of the individual stimuli, subjects consistently differentiate among the degrees of unpleasantness evoked by the four stimulus modalities. Ischemic exercise and cold-pressor pain evoke higher estimates of unpleasantness, and thus may better mimic the pain of chronic disease. The relative unpleasantness produced by contact heat is significantly less than that of the other modalities tested, and therefore contact heat stimuli may be ideally suited for assessing sensory-discriminative aspects of pain perception. Possible neurophysiological mechanisms underlying the observed differences in perceived unpleasantness are discussed in relation to the growing body of literature concerning tonic and phasic pain stimuli.  相似文献   

7.

Background

Recent neuroscientific evidence suggests that empathy for pain activates similar neural representations as the first-hand experience of pain. However, empathy is not an all-or-none phenomenon but it is strongly malleable by interpersonal, intrapersonal and situational factors. This study investigated how two different top-down mechanisms – attention and cognitive appraisal - affect the perception of pain in others and its neural underpinnings.

Methodology/Principal Findings

We performed one behavioral (N = 23) and two functional magnetic resonance imaging (fMRI) experiments (N = 18). In the first fMRI experiment, participants watched photographs displaying painful needle injections, and were asked to evaluate either the sensory or the affective consequences of these injections. The role of cognitive appraisal was examined in a second fMRI experiment in which participants watched injections that only appeared to be painful as they were performed on an anesthetized hand. Perceiving pain in others activated the affective-motivational and sensory-discriminative aspects of the pain matrix. Activity in the somatosensory areas was specifically enhanced when participants evaluated the sensory consequences of pain. Perceiving non-painful injections into the anesthetized hand also led to signal increase in large parts of the pain matrix, suggesting an automatic affective response to the putatively harmful stimulus. This automatic response was modulated by areas involved in self/other distinction and valence attribution – including the temporo-parietal junction and medial orbitofrontal cortex.

Conclusions/Significance

Our findings elucidate how top-down control mechanisms and automatic bottom-up processes interact to generate and modulate other-oriented responses. They stress the role of cognitive processing in empathy, and shed light on how emotional and bodily awareness enable us to evaluate the sensory and affective states of others.  相似文献   

8.
Chen LM  Friedman RM  Roe AW 《生理学报》2008,60(5):664-668
While the activation of primary somatosensory (SI) cortex during pain perception is consistently reported in functional imaging studies on normal subjects and chronic pain patients, the specific roles of SI, particularly the subregions within SI, in the processing of sensory aspects of pain are still largely unknown. Using optical imaging of intrinsic signal (OIS) and single unit electrophysiology, we studied cortical activation patterns within SI cortex (among Brodmann areas 3a, 3b and 1) and signal amplitude changes to various intensities of non-nociceptive, thermal nociceptive and mechanical nociceptive stimulation of individual distal finerpads in anesthetized squirrel monkeys. We have demonstrated that areas 3a and 1 are preferentially involved in the processing of nociceptive information while areas 3b and 1 are preferentially activated in the processing of non-nociceptive (touch) information. Nociceptive activations of individual fingerpad were organized topographically suggesting that nociceptive topographic map exits in areas 3a and 1. Signal amplitude was enhanced to increasing intensity of mechanical nociceptive stimuli in areas 3a, 3b and 1. Within area 1, nociceptive response co-localizes with the non-nociceptive response. Therefore, we hypothesize that nocicepitve information is area-specifically represented within SI cortex, in which nociceptive inputs are preferentially represented in areas 3a and 1 while non-nociceptive inputs are preferentially represented in areas 3b and 1.  相似文献   

9.
Meis S  Stork O  Munsch T 《PloS one》2011,6(3):e18020
The neuropeptide S (NPS) receptor system modulates neuronal circuit activity in the amygdala in conjunction with fear, anxiety and the expression and extinction of previously acquired fear memories. Using in vitro brain slice preparations of transgenic GAD67-GFP (Δneo) mice, we investigated the effects of NPS on neural activity in the lateral amygdala as a key region for the formation and extinction of fear memories. We are able to demonstrate that NPS augments excitatory glutamatergic synaptic input onto both projection neurons and interneurons of the lateral amygdala, resulting in enhanced spike activity of both types of cells. These effects were at least in part mediated by presynaptic mechanisms. In turn, inhibition of projection neurons by local interneurons was augmented by NPS, and subthreshold oscillations were strengthened, leading to their shift into the theta frequency range. These data suggest that the multifaceted effects of NPS on amygdaloid circuitry may shape behavior-related network activity patterns in the amygdala and reflect the peptide's potent activity in various forms of affective behavior and emotional memory.  相似文献   

10.
The perception of pain involves the activation of the spinal pathway as well as the supra-spinal pathway,which targets brain regions involved in affective and cognitive processes.Pain and emotions have the capacity to influence each other reciprocally;negative emotions,such as depression and anxiety,increase the risk for chronic pain,which may lead to anxiety and depression.The amygdala is a key-player in the expression of emotions,receives direct nociceptive information from the parabrachial nucleus,and is densely innervated by noradrenergic brain centers.In recent years,the amygdala has attracted increasing interest for its role in pain perception and modulation.In this review,we will give a short overview of structures involved in the pain pathway,zoom in to afferent and efferent connections to and from the amygdala,with emphasis on the direct parabrachio-amygdaloid pathway and discuss the evidence for amygdala’s role in pain processing and modulation.In addition to the involvement of the amygdala in negative emotions during the perception of pain,this brain structure is also a target site for many neuromodulators to regulate the perception of pain.We will end this article with a short review on the effects of noradrenaline and its role in hypoalgesia and analgesia.  相似文献   

11.
Techniques in neuroimaging such as functional magnetic resonance imaging (fMRI) have helped to provide insights into the role of supraspinal mechanisms in pain perception. This review focuses on studies that have applied fMRI in an attempt to gain a better understanding of the mechanisms involved in the processing of pain associated with fibromyalgia. This article provides an overview of the nociceptive system as it functions normally, reviews functional brain imaging methods, and integrates the existing literature utilizing fMRI to study central pain mechanisms in fibromyalgia.  相似文献   

12.
Zylka MJ 《Neuron》2005,47(6):771-772
Pain consists of both a sensory component and an affective component. In this issue of Neuron, Braz and colleagues genetically targeted the transneuronal tract tracer wheat germ agglutinin (WGA) to nonpeptidergic nociceptive neurons. They found that these neurons give rise to a specialized multisynaptic circuit that links pain signals in the periphery to limbic/affective regions of the brain.  相似文献   

13.

Background

Mice lacking the preproenkephalin (ppENK) gene are hyperalgesic and show more anxiety and aggression than wild-type (WT) mice. The marked behavioral changes in ppENK knock-out (KO) mice appeared to occur in supraspinal response to painful stimuli. However the functional role of enkephalins in the supraspinal nociceptive processing and their underlying mechanism is not clear. The aim of present study was to compare supraspinal nociceptive and morphine antinociceptive responses between WT and ppENK KO mice.

Results

The genotypes of bred KO mice were confirmed by PCR. Met-enkephalin immunoreactive neurons were labeled in the caudate-putamen, intermediated part of lateral septum, lateral globus pallidus, intermediated part of lateral septum, hypothalamus, and amygdala of WT mice. Met-enkephalin immunoreactive neurons were not found in the same brain areas in KO mice. Tail withdrawal and von Frey test results did not differ between WT and KO mice. KO mice had shorter latency to start paw licking than WT mice in the hot plate test. The maximal percent effect of morphine treatments (5 mg/kg and 10 mg/kg, i.p.) differed between WT and KO mice in hot plate test. The current source density (CSD) profiles evoked by peripheral noxious stimuli in the primary somatosenstory cortex (S1) and anterior cingulate cortex (ACC) were similar in WT and KO mice. After morphine injection, the amplitude of the laser-evoked sink currents was decreased in S1 while the amplitude of electrical-evoked sink currents was increased in the ACC. These differential morphine effects in S1 and ACC were enhanced in KO mice. Facilitation of synaptic currents in the ACC is mediated by GABA inhibitory interneurons in the local circuitry. Percent increases in opioid receptor binding in S1 and ACC were 5.1% and 5.8%, respectively.

Conclusion

The present results indicate that the endogenous enkephalin system is not involved in acute nociceptive transmission in the spinal cord, S1, and ACC. However, morphine preferentially suppressed supraspinal related nociceptive behavior in KO mice. This effect was reflected in the potentiated differential effects of morphine in the S1 and ACC in KO mice. This potentiation may be due to an up-regulation of opioid receptors. Thus these findings strongly suggest an antagonistic interaction between the endogenous enkephalinergic system and exogenous opioid analgesic actions in the supraspinal brain structures.  相似文献   

14.
Implementing a recall paradigm without hypnosis, we use functional MRI (fMRI) to explore and compare nociceptive and centrally-driven pain experiences. We posit that a trace of a recent nociceptive event can be used to create sensory-re-experiencing of pain that can be qualified in terms of intensity and vividness. Fifteen healthy volunteers received three levels of thermal stimuli (warm, low pain and high pain) and subsequently were asked to recall and then rate this experience. Neuroimaging results reveal that recalling a previous sensory experience activates an extensive network of classical pain processing structures except the contralateral posterior insular cortex. Nociceptive-specific activation of this structure and the rated intensity difference between physical and recalled pain events allow us to investigate the link between the quality of the original nociceptive stimulus and the mental trace, as well as the differences between the accompanying neural responses. Additionally, by incorporating the behavioural ratings, we explored which brain regions were separately responsible for generating either an accurate or vivid recall of the physical experience. Together, these observations further our understanding of centrally-mediated pain experiences and pain memory as well as the potential relevance of these factors in the maintenance of chronic pain.  相似文献   

15.

Background

Intravenous infusion of calcitonin-gene-related-peptide (CGRP) provokes headache and migraine in humans. Mechanisms underlying CGRP-induced headache are not fully clarified and it is unknown to what extent CGRP modulates nociceptive processing in the brain. To elucidate this we recorded blood-oxygenation-level-dependent (BOLD) signals in the brain by functional MRI after infusion of CGRP in a double-blind placebo-controlled crossover study of 27 healthy volunteers. BOLD-signals were recorded in response to noxious heat stimuli in the V1-area of the trigeminal nerve. In addition, we measured BOLD-signals after injection of sumatriptan (5-HT1B/1D antagonist).

Results

Brain activation to noxious heat stimuli following CGRP infusion compared to baseline resulted in increased BOLD-signal in insula and brainstem, and decreased BOLD-signal in the caudate nuclei, thalamus and cingulate cortex. Sumatriptan injection reversed these changes.

Conclusion

The changes in BOLD-signals in the brain after CGRP infusion suggests that systemic CGRP modulates nociceptive transmission in the trigeminal pain pathways in response to noxious heat stimuli.  相似文献   

16.
Serotonin (5-HT) contributes to the prenatal development of the central nervous system, acting as a morphogen in the young embryo and later as a neurotransmitter. This biologically active agent influences both morphological and biochemical differentiation of raphe neurons, which give rise to the descending serotonergic paths that regulate the processing of acutely evoked nociceptive inputs. The involvement of 5-HT in the prenatal development of tonic nociceptive system has not been studied. In the present study we evaluated the effects of a single injection (400 mg/kg, 2 ml, i.p.) of the 5-HT synthesis inhibitor, para-chlorophenylalanine (pCPA), given to pregnant rats during the critical period fetal serotonin development. The functional integrity of the tonic nociceptive response was investigated in 25 day old rats using the classic formalin test. Morphological analysis of brain structures involved in formalin-induced pain and 5-HT levels in the heads of 12-day embryos were also evaluated. Embryonic levels of 5-HT were significantly lowered by the treatment. The juvenile rats from pCPA-treated females showed altered brain morphology and cell differentiation in the developing cortex, hippocampus, raphe nuclei, and substantia nigra. In the formalin test, there were significant decreases in the intensity and duration of the second phase of the formalin-induced response, characterizing persistent, tonic pain. The extent of impairments in the brain structures correlated positively with the level of decrease in the behavioral responses. The data demonstrate the involvement of 5-HT in the prenatal development of the tonic nociceptive system. The decreased tonic component of the behavioral response can be explained by lower activity of the descending excitatory serotonergic system originating in the raphe nuclei, resulting in decreased tonic pain processing organized at the level of the dorsal horn of the spinal cord.  相似文献   

17.
The properties of a newly developed tonic heat pain model (THPM), which makes use of pulsating contact heat, were investigated in 18 young men. The most important feature of this model is that repetitive heat pulses with an intensity of 1°C above the individual pain threshold are employed. This approach was used to tailor the tonic pain stimulation to the individual pain sensitivity. In the first of two experiments, the effects of pulse frequencies ranging from 5 to 30 pulses per minute (ppm) on ratings of pain intensity and pain unpleasantness (visual analogue scales) were examined. At all frequencies, both ratings increased steadily over the 5-min test period. Frequencies of 15 ppm or more appeared to enhance pain intensity throughout the test period compared to the lower frequencies, but did not appear to alter pain unpleasantness. This suggests that only pain intensity is influenced by slow temporal summation and that a sort of frequency threshold exists for this kind of summation. In the second experiment, the THPM was compared to a well-established form of tonic pain stimulation, the compressor test (CPT); visual analogue scales were again used, and in addition the McGill Pain Questionnaire was employed. The CPT appeared to produce stronger tonic pain than the THPM. However, as is typical with tonic pain, both tonic pain models induced relatively higher values on the affective pain dimension than on the sensory pain dimension. The time course of pain was dynamic in the CPT, with an increase followed by a plateau phase, at least in those subjects who could tolerate the CPT for more than 60 sec. In contrast, as in the first experiment, the pain ratings in the THPM were characterized by a slow and steady increase over time. Moreover, there was absolutely no indication of a dichotomy between “pain-sensitive” and “pain-tolerant” individuals in the THPM, although such a dichotomy was evident in the CPT. This implies that the distinction between pain-sensitive and pain-tolerant individuals can be made only with the CPT, and that this distinction represents individual differences in peripheral vascular reactions to cold rather than in pain perception. In conclusion, the THPM appears to produce a stable and predictable temporal pattern of tonic pain with a predominant affective component, and to be suitable for application in the majority of individuals without causing undue discomfort.  相似文献   

18.
Experimentally induced pain often reveals sex differences, with higher pain sensitivity in females. The degree of differences has been shown to depend on the stimulation and assessment methods. Since sex differences in pain develop anywhere along the physiological and psychological components of the nociceptive system, we intended to compare the nociceptive flexion reflex (NFR) as a more physiological (spinal) aspect of pain procession to the verbal pain report of intensity and unpleasantness as the more psychological (cortical) aspect. Twenty female and twenty male healthy university students were investigated by use of nociceptive flexion reflex threshold (staircase method) after electrical stimulation of the N. suralis. Furthermore, we assessed supra-threshold reflex responses (latency, amplitude and area) by applying 10 stimuli 5 mA above reflex threshold. Following each stimulation, the subjects provided pain ratings of intensity and unpleasantness on a visual analogue scale. Females exhibited marked lower nociceptive flexion reflex thresholds than males, while the supra-threshold reflex response tailored to the individual reflex threshold did not show any significant differences. The verbal pain ratings, corrected for NFR threshold, were not found to differ significantly. The large sex differences in nociception that were present in NFR threshold but not in the pain ratings corroborate the hypothesis that spinal processes contribute substantially to sex differences in pain procession.  相似文献   

19.
While genetic evidence shows that the Nav1.7 voltage-gated sodium ion channel is a key regulator of pain, it is unclear exactly how Nav1.7 governs neuronal firing and what biophysical, physiological, and distribution properties of a pharmacological Nav1.7 inhibitor are required to produce analgesia. Here we characterize a series of aminotriazine inhibitors of Nav1.7 in vitro and in rodent models of pain and test the effects of the previously reported “compound 52” aminotriazine inhibitor on the spiking properties of nociceptors in vivo. Multiple aminotriazines, including some with low terminal brain to plasma concentration ratios, showed analgesic efficacy in the formalin model of pain. Effective concentrations were consistent with the in vitro potency as measured on partially-inactivated Nav1.7 but were far below concentrations required to inhibit non-inactivated Nav1.7. Compound 52 also reversed thermal hyperalgesia in the complete Freund’s adjuvant (CFA) model of pain. To study neuronal mechanisms, electrophysiological recordings were made in vivo from single nociceptive fibers from the rat tibial nerve one day after CFA injection. Compound 52 reduced the spontaneous firing of C-fiber nociceptors from approximately 0.7 Hz to 0.2 Hz and decreased the number of action potentials evoked by suprathreshold tactile and heat stimuli. It did not, however, appreciably alter the C-fiber thresholds for response to tactile or thermal stimuli. Surprisingly, compound 52 did not affect spontaneous activity or evoked responses of Aδ-fiber nociceptors. Results suggest that inhibition of inactivated states of TTX-S channels, mostly likely Nav1.7, in the peripheral nervous system produces analgesia by regulating the spontaneous discharge of C-fiber nociceptors.  相似文献   

20.
Wang Y 《Neurochemical research》2008,33(10):2008-2012
Transient receptor potential V1 (TRPV1) is specifically expressed in the nociceptive receptors and can detect a variety of noxious stimuli, thus potentiating pain sensitization. While peripheral delivery of capsaicin causes the desensitization of sensory neurons, thus alleviating pain. Therefore capsaicin is used in the clinical treatment of various types of pain; however, these treatments will bring many side effects, such as a strong burning pain in the early stages of treatment which hampers the further use of capsaicin. Thus, the studies of the functional regulation of TRPV1 are mainly focused on two aspects: to develop more potent analogues of capsaicin with less side effects; or to elucidate the mechanisms of TRPV1 in pain sensitivity, especially of that TRPV1 as a target of various protein kinases such as PKD1 and Cdk5 is involved pain hypersensitivity. Thus we would summarize the progress of these two aspects in this mini review. Special issue article in honor of Dr. Ji-Sheng Han.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号