首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L. W. Tam  P. A. Lefebvre 《Genetics》1993,135(2):375-384
Chlamydomonas is a popular genetic model system for studying many cellular processes. In this report, we describe a new approach to isolate Chlamydomonas genes using the cloned nitrate reductase gene (NIT1) as an insertional mutagen. A linearized plasmid containing the NIT1 gene was introduced into nit1 mutant cells by glass-bead transformation. Of 3000 Nit(+) transformants examined, 74 showed motility defects of a wide range of phenotypes, suggesting that DNA transformation is an effective method for mutagenizing cells. For 13 of 15 such motility mutants backcrossed to nit(-) mutant strains, the motility phenotype cosegregated with the Nit(+) phenotype, indicating that the motility defects of these 13 mutants may be caused by integration of the plasmid. Further genetic analysis indicated that three of these mutants contained alleles of previously identified loci: mbo2 (move backward only), pf13 (paralyzed flagella) and vfl1 (variable flagellar number). Three other abnormal-flagellar-number mutants did not map to any previously described loci at which mutations produce similar phenotypes. Genomic sequences flanking the integrated plasmid in the mbo2 and vfl1 mutants were isolated and used as probes to obtain wild-type genomic clones, which complemented the motility defects upon transformation into cells. Our results demonstrate the potential of this new approach for cloning genes identified by mutation in Chlamydomonas.  相似文献   

2.
A new mutant causing jaundice in mice is reported. Allelism tests indicate that it is not allelic with known hemolytic anemia mutants in mice [hemolytic anemia (sphha), jaundiced (ja), normoblastic anemia (nb), and spherocytosis (sph and sph2Be)]. The jaundiced condition appears in young mice at about 24 hours postpartum and is due to a major increase in unconjugated bilirubin in serum compared to normal controls. Adult mutant mice are not jaundiced and bilirubin levels do not differ from normal mice. Adult male mutants have reduced testes size and no viable sperm. Female mutants are fertile but overall maternal performance is reduced as indicated by increased mortality and reduced growth rate of pups. Genetic tests indicate that a single autosomal recessive gene is responsible for the condition. We propose that the mutant be designated hyper-unconjugated bilirubinemia, with the gene symbol hub.  相似文献   

3.
Previous reports revealed that mutation of mitochondrial inner-membrane located protein SFXN1 led to pleiotropic hematological and skeletal defects in mice, associated with the presence of hypochromic erythroid cell, iron overload in mitochondrion of erythroblast and the development of sideroblastic anemia (SA). However, the potential role of sfxn1 during erythrocyte differentiation and the development of anemia, especially the pathological molecular mechanism still remains elusive. In this study, the correlation between sfxn1 and erythroid cell development is explored through zebrafish in vivo coupled with human hematopoietic cells assay ex vivo. Both knockdown and knockout of sfxn1 result in hypochromic anemia phenotype in zebrafish. Further analyses demonstrate that the development of anemia attributes to the biosynthetic deficiency of hemoglobin, which is caused by the biosynthetic disorder of heme that associates with one?carbon (1C) metabolism process of mitochondrial branch in erythrocyte. Sfxn1 is also involved in the differentiation and maturation of erythrocyte in inducible human umbilical cord blood stem cells. In addition, we found that functional disruption of sfxn1 causes hypochromic anemia that is distinct from SA. These findings reveal that sfxn1 is genetically conserved and essential for the maturation of erythrocyte via facilitating the production of hemoglobin, which may provide a possible guidance for the future clinical treatment of sfxn1 mutation associated hematological disorders.  相似文献   

4.
A protein encoded by the Staphylococcus aureus dnaC gene has 44% and 58% homology with Escherichia coli DnaB and Bacillus subtilis DnaC replicative DNA helicases, respectively. We identified five mutant strains whose temperature-sensitive colony formation phenotypes were complemented by the dnaC gene. DNA replication in these mutants has a fast-stop phenotype, indicating that the S. aureus dnaC gene encodes the replicative DNA helicase required for the elongation step. These mutants were also sensitive to UV irradiation, suggesting that the dnaC gene is involved in DNA repair. The number of viable mutant cells decreased at a non-permissive temperature, suggesting that S. aureus DnaC helicase is a promising target for antibiotics providing bactericidal effects.  相似文献   

5.
The eukaryotic origin recognition complex (ORC) is made up of six subunits and functions in nuclear DNA replication, chromatin structure, and gene silencing in both fungi and metazoans. We demonstrate that disruption of a plant ORC subunit homolog, AtORC2 of Arabidopsis (Arabidopsis thaliana), causes a zygotic lethal mutant phenotype (orc2). Seeds of orc2 abort early, typically producing embryos with up to eight cells. Nuclear division in the endosperm is arrested at an earlier developmental stage: only approximately four nuclei are detected in orc2 endosperm. The endosperm nuclei in orc2 are dramatically enlarged, a phenotype that is most similar to class B titan mutants, which include mutants in structural maintenance of chromosomes (SMC) cohesins. The highest levels of ORC2 gene expression were found in preglobular embryos, coinciding with the stage at which homozygous orc2 mutant seeds arrest. The homologs of the other five Arabidopsis ORC subunits are also expressed at this developmental stage. The orc2 mutant phenotype is partly suppressed by a mutation in the Polycomb group gene MEDEA. In double mutants between orc2 and medea (mea), orc2 homozygotes arrest later with a phenotype intermediate between those of mea and orc2 single mutants. Either alterations in chromatin structure or the release of cell cycle checkpoints by the mea mutation may allow more cell and nuclear divisions to occur in orc2 homozygous seeds.  相似文献   

6.
Kinesin-related proteins required for assembly of the mitotic spindle   总被引:58,自引:22,他引:36       下载免费PDF全文
We identified two new Saccharomyces cerevisiae kinesin-related genes, KIP1 and KIP2, using polymerase chain reaction primers corresponding to highly conserved regions of the kinesin motor domain. Both KIP proteins are expressed in vivo, but deletion mutations conferred no phenotype. Moreover, kip1 kip2 double mutants and a triple mutant with kinesin-related kar3 had no synthetic phenotype. Using a genetic screen for mutations that make KIP1 essential, we identified another gene, KSL2, which proved to be another kinesin-related gene, CIN8. KIP1 and CIN8 are functionally redundant: double mutants arrested in mitosis whereas the single mutants did not. The microtubule organizing centers of arrested cells were duplicated but unseparated, indicating that KIP1 or CIN8 is required for mitotic spindle assembly. Consistent with this role, KIP1 protein was found to colocalize with the mitotic spindle.  相似文献   

7.
SadA,a novel adhesion receptor in Dictyostelium   总被引:1,自引:0,他引:1  
Little is known about cell-substrate adhesion and how motile and adhesive forces work together in moving cells. The ability to rapidly screen a large number of insertional mutants prompted us to perform a genetic screen in Dictyostelium to isolate adhesion-deficient mutants. The resulting substrate adhesion-deficient (sad) mutants grew in plastic dishes without attaching to the substrate. The cells were often larger than their wild-type parents and displayed a rough surface with many apparent blebs. One of these mutants, sadA-, completely lacked substrate adhesion in growth medium. The sadA- mutant also showed slightly impaired cytokinesis, an aberrant F-actin organization, and a phagocytosis defect. Deletion of the sadA gene by homologous recombination recreated the original mutant phenotype. Expression of sadA-GFP in sadA-null cells restored the wild-type phenotype. In sadA-GFP-rescued mutant cells, sadA-GFP localized to the cell surface, appropriate for an adhesion molecule. SadA contains nine putative transmembrane domains and three conserved EGF-like repeats in a predicted extracellular domain. The EGF repeats are similar to corresponding regions in proteins known to be involved in adhesion, such as tenascins and integrins. Our data combined suggest that sadA is the first substrate adhesion receptor to be identified in Dictyostelium.  相似文献   

8.
9.
The topoisomerase III gene ( top3 (+)) from Schizosaccharomyces pombe was isolated and a targeted gene disruption ( top3 :: kan (R)) was used to make a diploid strain heterozygous for top3 (+). The diploid was sporulated and the top3 :: kan (R)spores went through four to eight cell divisions before arresting as elongated, predominantly binucleated cells with incompletely segregated chromosomes. This demonstrates that top3 (+)is essential for vegetative growth in fission yeast. The aberrant chromosomal segregation seen in top3 :: kan (R)cells is unlike the 'cut' phenotype seen in mitosis-defective mutants and so we refer to this phenotype as 'torn'. A deletion mutant, rad12-hd ( rad12 is a homolog of Saccharomyces cerevisiae SGS1), partially suppressed the lethality of top3 mutants. A point mutant, rad12-K547I, which presumably eliminates helicase activity, also suppresses the lethality of top3 mutants, demonstrating that the lethality seen in top3 (-)cells is most likely caused by the helicase activity of Rad12. This double mutant grows very slowly and has much lower viability compared to rad12-hd top3 :: kan (R)cells, implying that the helicase activity of Rad12 is not the only cause of top3 (-)lethality. The low viability of rad12 (-) top3 (-)mutants compared with rad12 single mutants suggests that Top3 also functions independently of Rad12.  相似文献   

10.
BIN2, a new brassinosteroid-insensitive locus in Arabidopsis   总被引:9,自引:0,他引:9  
Brassinosteroids (BRs) play important roles throughout plant development. Although many genes have been identified that are involved in BR biosynthesis, genetic approaches in Arabidopsis have led to the identification of only one gene, BRI1, that encodes a membrane receptor for BRs. To expand our knowledge of the molecular mechanism(s) of plant steroid signaling, we analyzed many dwarf and semidwarf mutants collected from our previous genetic screens and identified a semidwarf mutant that showed little response to exogenous BR treatments. Genetic analysis of the bin2 (BR-INSENSITIVE 2) mutant indicated that the BR-insensitive dwarf phenotype was due to a semidominant mutation in the BIN2 gene that mapped to the middle of chromosome IV between the markers CH42 and AG. A direct screening for similar semidwarf mutants resulted in the identification of a second allele of the BIN2 gene. Despite some novel phenotypes observed with the bin2/+ mutants, the homozygous bin2 mutants were almost identical to the well-characterized bri1 mutants that are defective in BR perception. In addition to the BR-insensitive dwarf phenotype, bin2 mutants exhibited BR insensitivity when assayed for root growth inhibition and feedback inhibition of CPD gene expression. Furthermore, bin2 mutants displayed an abscisic acid-hypersensitive phenotype that is shared by the bri1 and BR-deficient mutants. A gene dosage experiment using triploid plants suggested that the bin2 phenotypes were likely caused by either neomorphic or hypermorphic gain-of-function mutations in the BIN2 gene. Thus, the two bin2 mutations define a novel genetic locus whose gene product might play a role in BR signaling.  相似文献   

11.
A new mutant that has neither male nor female secondary sex characters was found in the medaka, Oryzias latipes. Both XX and XY mature mutants had gonads with many spermatozoa, but spawning did not occur when the mutants were paired with normal males or normal females. F1 progeny were successfully obtained by artificial insemination using unfertilized eggs from wild-type females and spermatozoa of the XY mutant. The mutant phenotype did not occur in the F1 progeny from this cross. Incrossing among the F1 progeny produced 17 mutant offspring out of 68 progeny (25%), demonstrating that the mutant phenotype is caused by a single recessive mutation. This mutant was named scl (sex character-less). Because papillary processes, a male secondary sex character, were induced in the XY mutants by androgen administration, it seems that the androgen receptor is functioning normally. We found a loss-of-function type mutation in the P450c17 gene of the mutant; this gene encodes a steroidogenic enzyme required for the production of estrogen and androgen. The scl phenotype was completely linked to the mutant genotype of P450c17, strongly suggesting that mutation at the P450c17 locus is responsible for the scl mutant phenotype.  相似文献   

12.
The murine beige mutant phenotype and the human Chediak-Higashi syndrome are caused by mutations in the murine Lyst (lysosomal trafficking regulator) gene and the human CHS gene, respectively. In this report we have analyzed a novel murine mutant Lyst allele, called Lyst(bg-grey), that had been found in an ENU mutation screen and named grey because of the grey coat color of affected mice. The phenotype caused by the Lyst(bg-grey) mutation was inherited in a recessive fashion. Melanosomes of melanocytes associated with hair follicles and the choroid layer of the eye, as well as melanosomes in the neural tube-derived pigment epithelium of the retina, were larger and irregularly shaped in homozygous mutants compared with those of wild-type controls. Secretory vesicles in dermal mast cells of the mutant skin were enlarged as well. Test crosses with beige homozygous mutant mice (Lyst(bg)) showed that double heterozygotes (Lyst(bg)/Lyst(bg-grey)) were phenotypically indistinguishable from either homozygous parent, demonstrating that the ENU mutation was an allele of the murine Lyst gene. RT-PCR analyses revealed the skipping of exon 25 in Lyst(bg-grey) mutants, which is predicted to cause a missense D2399E mutation and the loss of the following 77 amino acids encoded by exon 25 but leave the C-terminal end of the protein intact. Analysis of the genomic Lyst locus around exon 25 showed that the splice donor at the end of exon 25 showed a T-to-C transition point mutation. Western blot analysis suggests that the Lyst(bg-grey) mutation causes instability of the LYST protein. Because the phenotype of Lyst(bg) and Lyst(bg-grey) mutants is indistinguishable, at least with respect to melanosomes and secretory granules in mast cells, the Lyst(bg-grey) mutation defines a critical region for the stability of the murine LYST protein.  相似文献   

13.
Stenchuk NN  Kapustiak KE 《Genetika》2003,39(8):1026-1032
A method of positive selection of mutants with impaired regulation of flavinogenesis and metal homeostasis in yeast Pichia guilliermondii was developed. This positive selection system was based on the isolation of pseudo-wild-type revertants (the Rib+ phenotype) in riboflavin-dependent rib1-86 mutant (the Rib- phenotype) of yeast P. guilliermondii. Mutation rib1-86 blocks activity of the GTP cyclohydrolase II catalyzing the first step in riboflavin (RF) biosynthesis. Study of a collection of spontaneous Rib+ revertants allowed the identification of a considerably large number of genetic loci responsible for the suppression of rib1-86, which include both previously identified three loci (rib80, rib81, and hit1) and six new loci designated red1-red6 (reduction). A comparative analysis of the wild-type strain and red mutants revealed that these mutants had higher activity levels of GTP cyclohydrolase and RF-synthase, elevated levels of RF biosynthesis, enhanced Fe/Cu reductase activity and higher total iron content in cells and that they are characterized by enhanced sensitivity to transition metals (Fe(III), Cu(II), Cd(II), Co(II), Zn(II), Ag(I), and to H2O2. The metal hypersensitivity of mutant cells can be prevented by an increased amount of extracellular iron ions. Mutations red1 and red6 synergistically interact with the locus rib81 in the course of RF biosynthesis. Obviously, each RED gene plays an important role in the regulation of both flavinogenesis and metal homeostasis in P. guilliermondii cells.  相似文献   

14.
Myxococcus xanthus is a gram-negative bacterium which has a complex life cycle that includes multicellular fruiting body formation. Frizzy mutants are characterized by the formation of tangled filaments instead of hemispherical fruiting bodies on fruiting agar. Mutations in the frz genes have been shown to cause defects in directed motility, which is essential for both vegetative swarming and fruiting body formation. In this paper, we report the discovery of a new gene, called frgA (for frz-related gene), which confers a subset of the frizzy phenotype when mutated. The frgA null mutant showed reduced swarming and the formation of frizzy aggregates on fruiting agar. However, this mutant still displayed directed motility in a spatial chemotaxis assay, whereas the majority of frz mutants fail to show directed movements in this assay. Furthermore, the frizzy phenotype of the frgA mutant could be complemented extracellularly by wild-type cells or strains carrying non-frz mutations. The phenotype of the frgA mutant is similar to that of the abcA mutant and suggests that both of these mutants could be defective in the production or export of extracellular signals required for fruiting body formation rather than in the sensing of such extracellular signals. The frgA gene encodes a large protein of 883 amino acids which lacks homologues in the databases. The frgA gene is part of an operon which includes two additional genes, frgB and frgC. The frgB gene encodes a putative histidine protein kinase, and the frgC gene encodes a putative response regulator. The frgB and frgC null mutants, however, formed wild-type fruiting bodies.  相似文献   

15.
X-linked sideroblastic anemia is a genetic disorder characterized by a hypochromic microcytic anemia of variable intensity with the presence of ring sideroblasts in the bone marrow of the patients. Two different mutations have been reported in the ALAS2 gene in patients with this diseae. We have studied a large kindred with a pyridoxine-sensitive form of X-linked sideroblastic anemia. Sequencing amplified cDNA of the proband revealed a guanine-to-adenine change at nucleotide 871 of the coding sequence (exon 7 of the gene). This results in a glycine to serine substitution that is responsible for a marked decrease in the enzymatic activity of the mutated protein. A polymerase chain reaction assay demonstrated the presence of the same mutation in three affected males and two female carriers in the kindred. The carrier status was excluded in eight females at risk. Early detection of the mutant allele in family members may thus be important for the prevention of anemia in males and of iron overload both in affected males and carrier females.  相似文献   

16.
OVCA1 is a tumor suppressor identified by positional cloning from chromosome 17p13.3, a hot spot for chromosomal aberration in breast and ovarian cancers. It has been shown that expression of OVCA1 is reduced in some tumors and that it regulates cell proliferation, embryonic development, and tumorigenesis. However, the biochemical function of OVCA1 has remained unknown. Recently, we isolated a novel mutant resistant to diphtheria toxin and Pseudomonas exotoxin A from the gene trap insertional mutants library of Chinese hamster ovary cells. In this mutant, the Ovca1 gene was disrupted by gene trap mutagenesis, and this disruption well correlated with the toxin-resistant phenotype. We demonstrated direct evidence that the tumor suppressor OVCA1 is a component of the biosynthetic pathway of diphthamide on elongation factor 2, the target of bacterial ADP-ribosylating toxins. A functional genetic approach utilizing the random gene trap mutants library of mammalian cells should become a useful strategy to identify the genes responsible for specific phenotypes.  相似文献   

17.
The Aspergillus nidulans brlA gene is a primary regulator of development-specific gene expression during conidiation. Forced activation of brlA in vegetative cells leads to inappropriate induction of conidiophore formation and causes growth to stop. In fact, when conidia containing a nutritionally inducible brlA gene fusion are placed on inducing medium, they fail to germinate. We used this phenotype to select 174 mutants that continue growing following such forced brlA activation. Forty-six of these mutants also produced abnormal developmental structures during air-induced conidiation as expected if the mutations resulted in an altered response to BrlA (designated sbr mutants for suppressors of brlA response). The predominant mutant class identified was defective in a known developmental regulatory gene, abaA. We also identified mutants with defects in the previously characterized early acting developmental regulatory genes flbB and flbD and in four previously undescribed loci designated sbrA-D. sbrA mutants represent the second largest group and are characterized by production of conidiophore stalks that lack a normal vesicle and form branching sterigmata that rarely make spores. Because abaA expression could not be detected in sbrA mutants following brlA activation we propose that sbrA functions as a developmental modifier, participating in brlA-dependent activation of other developmental regulators.  相似文献   

18.
19.
We have identified a novel petunia MADS box gene, PETUNIA FLOWERING GENE (PFG), which is involved in the transition from vegetative to reproductive development. PFG is expressed in the entire plant except stamens, roots and seedlings. Highest expression levels of PFG are found in vegetative and inflorescence meristems. Inhibition of PFG expression in transgenic plants, using a cosuppression strategy, resulted in a unique nonflowering phenotype. Homozygous pfg cosuppression plants are blocked in the formation of inflorescences and maintain vegetative growth. In these mutants, the expression of both PFG and the MADS box gene FLORAL BINDING PROTEIN26 (FBP26), the putative petunia homolog of SQUAMOSA from Antirrhinum, are down-regulated. In hemizygous pfg cosuppression plants initially a few flowers are formed, after which the meristem reverts to the vegetative phase. This reverted phenotype suggests that PFG, besides being required for floral transition, is also required to maintain the reproductive identity after this transition. The position of PFG in the hierarchy of genes controlling floral meristem development was investigated using a double mutant of the floral meristem identity mutant aberrant leaf and flower (alf) and the pfg cosuppression mutant. This analysis revealed that the pfg cosuppression phenotype is epistatic to the alf mutant phenotype, indicating that PFG acts early in the transition to flowering. These results suggest that the petunia MADS box gene, PFG, functions as an inflorescence meristem identity gene required for the transition of the vegetative shoot apex to the reproductive phase and the maintenance of reproductive identity.  相似文献   

20.
Defects in iron absorption and utilization lead to iron deficiency and anemia. While iron transport by transferrin receptor-mediated endocytosis is well understood, it is not completely clear how iron is transported from the endosome to the mitochondria where heme is synthesized. We undertook a positional cloning project to identify the causative mutation for the hemoglobin-deficit (hbd) mouse mutant, which suffers from a microcytic, hypochromic anemia apparently due to defective iron transport in the endocytosis cycle. As shown by previous studies, reticulocyte iron accumulation in homozygous hbd/hbd mice is deficient despite normal binding of transferrin to its receptor and normal transferrin uptake in the cell. We have identified a strong candidate gene for hbd, Sec15l1, a homologue to yeast SEC15, which encodes a key protein in vesicle docking. The hbd mice have an exon deletion in Sec15l1, which is the first known mutation of a SEC gene homologue in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号