首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The detailed mechanical properties of various layers of the coronary artery are important for understanding the function of the vessel. The present article is focused on the determination of the incremental modulus in different layers and directions in the neighborhood of the in vivo state. The incremental modulus can be defined for any material subjected to a large deformation if small perturbations in strain lead to small perturbations of stresses in a linear fashion. This analysis was applied to the porcine coronary artery, which was treated as a two-layered structure consisting of an inner intima-media layer and an outer adventitia layer. We adopted a theory based on small-perturbation experiments at homeostatic conditions for determination of incremental moduli in circumferential, axial, and cross directions in the two layers. The experiments were based on inflation and axial stretch. We demonstrate that under homeostatic conditions the incremental moduli are layer- and direction dependent. The incremental modulus is highest in the circumferential direction. Furthermore, in the circumferential direction, the media is stiffer than the whole wall, which is stiffer than the adventitia. In the axial direction, the adventitia is stiffer than the intact wall, which is stiffer than the media. Hence, the coronary artery must be treated as a composite, nonisotropic body. The data acquire physiological relevance in relation to coronary artery health and disease.  相似文献   

2.
The opened-up configuration of the artery wall has long been assumed to be stress-free. This is questionable in a microscopic level. The aortic media is made of concentric layers whose unit is called a lamellar unit, a pair of elastic lamina (EL) and a smooth muscle-rich layer (SML). Recently, we found that the EL was about 2.5 times stiffer than the SML. If the circumferential stress in the in vivo condition is the same between the two layers, residual stress of each layer should be different because the stress-strain relationships differ. Such residual stress is not released fully by radial cutting, but is released in the area close to the cut surface, causing hills and valleys on the surface due to residual stress. To check this hypothesis, we have developed a scanning micro indentation tester, a scaled-up version of the atomic force microscope, and measured the topography and the stiffness distribution of the cut surface. The surface of the section of porcine thoracic aortas shows hill and valley pattern corresponding with their histology. The hills were more than three times stiffer than the valleys, indicating that the hills are the ELs and the valleys the SMLs, and the ELs are compressed and the SMLs stretched in the lamellar unit. A finite element analysis showed that the residual stress in the EL and the SML is much higher than those estimated in the unloaded ring-like segments. Fairly large stress may still reside in the opened-up aortic wall.  相似文献   

3.
Passive biomechanical properties in term of the stress-strain relationship and the shear modulus were studied in separated muscle layer and mucosa-submucosa layer in the oesophagus of normal and STZ (streptozotocin)-induced diabetic rats. The mucosa-submucosa and muscle layers were separated using microsurgery and studied in vitro using a self-developed test machine. Stepwise elongation and inflation plus continuous twist were applied to the samples. A constitutive equation based on a strain energy function was used for the stress-strain analysis. Five material constants were obtained for both layers. The mucosa-submucosa layer was significantly stiffer than the muscle layer in longitudinal, circumferential and circumferential-longitudinal shear direction. The mechanical constants of the oesophagus show that the oesophageal wall was anisotropic, the stiffness in the longitudinal direction was higher than in the circumferential direction in the intact oesophagus (P < 0.001) and in the muscle layer (P < 0.05). Diabetes-induced pronounced increase in the outer perimeter, inner perimeter and lumen area in both the muscle and mucosa-submucosa layer. The growth of the mucosa-submucosa layer (P < 0.001) was more pronounced than the muscle layer (P < 0.05). Furthermore, the circumferential stiffness of the mucosa-submucosa layer increased 28 days after STZ treatment. In conclusion, the oesophagus is a non-homogeneous anisotropic tube. Thus, the mechanical properties differed between layers as well as in different directions. Morphological and biomechanical remodelling is prominent in the diabetic oesophagus.  相似文献   

4.
Elastin and collagen fibers play important roles in the mechanical properties of aortic media. Because knowledge of local fiber structures is required for detailed analysis of blood vessel wall mechanics, we investigated 3D microstructures of elastin and collagen fibers in thoracic aortas and monitored changes during pressurization. Using multiphoton microscopy, autofluorescence images from elastin and second harmonic generation signals from collagen were acquired in media from rabbit thoracic aortas that were stretched biaxially to restore physiological dimensions. Both elastin and collagen fibers were observed in all longitudinal–circumferential plane images, whereas alternate bright and dark layers were observed along the radial direction and were recognized as elastic laminas (ELs) and smooth muscle-rich layers (SMLs), respectively. Elastin and collagen fibers are mainly oriented in the circumferential direction, and waviness of collagen fibers was significantly higher than that of elastin fibers. Collagen fibers were more undulated in longitudinal than in radial direction, whereas undulation of elastin fibers was equibiaxial. Changes in waviness of collagen fibers during pressurization were then evaluated using 2-dimensional fast Fourier transform in mouse aortas, and indices of waviness of collagen fibers decreased with increases in intraluminal pressure. These indices also showed that collagen fibers in SMLs became straight at lower intraluminal pressures than those in EL, indicating that SMLs stretched more than ELs. These results indicate that deformation of the aorta due to pressurization is complicated because of the heterogeneity of tissue layers and differences in elastic properties of ELs, SMLs, and surrounding collagen and elastin.  相似文献   

5.
The mechanical properties of pullulan films prepared at various temperatures were investigated. The films prepared at high temperatures (40 degrees C and 60 degrees C; H-films) did not show any clear plastic deformation in tensile test, indicating that they were brittle. In contrast, those prepared at low temperatures (4 degrees C, 13 degrees C, and 25 degrees C; L-films) showed such deformation. The latter films had higher values for both tensile strength and elastic modulus than the former, indicating that the L-films were stiffer and more flexible than the H-films. Stretching the L-films clearly showed a shear deformation band inclined at 45 degrees to the stretching direction, indicating that they were amorphous.  相似文献   

6.
Folding of the airway mucosal membrane provides a mechanical load that impedes airway smooth muscle contraction. Mechanical testing of rabbit tracheal mucosal membrane showed that the membrane is stiffer in the longitudinal than in the circumferential direction of the airway. To explain this difference in the mechanical properties, we studied the morphological structure of the rabbit tracheal mucosal membrane in both longitudinal and circumferential directions. The collagen fibers were found to form a random meshwork, which would not account for differences in stiffness in the longitudinal and circumferential directions. The volume fraction of the elastic fibers was measured using a point-counting technique. The orientation of the elastic fibers in the tissue samples was measured using a new method based on simple geometry and probability. The results showed that the volume fraction of the elastic fibers in the rabbit tracheal mucosal membrane was approximately 5% and that the elastic fibers were mainly oriented in the longitudinal direction. Age had no statistically significant effect on either the volume fraction or the orientation of the elastic fibers. Linear correlations were found between the steady-state stiffness and the quantity of the elastic fibers oriented in the direction of testing.  相似文献   

7.
Atomic force microscopy (AFM) is used to study mechanical properties of biological materials at submicron length scales. However, such samples are often structurally heterogeneous even at the local level, with different regions having distinct mechanical properties. Physical or chemical disruption can isolate individual structural elements but may alter the properties being measured. Therefore, to determine the micromechanical properties of intact heterogeneous multilayered samples indented by AFM, we propose the Hybrid Eshelby Decomposition (HED) analysis, which combines a modified homogenization theory and finite element modeling to extract layer-specific elastic moduli of composite structures from single indentations, utilizing knowledge of the component distribution to achieve solution uniqueness. Using finite element model-simulated indentation of layered samples with micron-scale thickness dimensions, biologically relevant elastic properties for incompressible soft tissues, and layer-specific heterogeneity of an order of magnitude or less, HED analysis recovered the prescribed modulus values typically within 10% error. Experimental validation using bilayer spin-coated polydimethylsiloxane samples also yielded self-consistent layer-specific modulus values whether arranged as stiff layer on soft substrate or soft layer on stiff substrate. We further examined a biophysical application by characterizing layer-specific microelastic properties of full-thickness mouse aortic wall tissue, demonstrating that the HED-extracted modulus of the tunica media was more than fivefold stiffer than the intima and not significantly different from direct indentation of exposed media tissue. Our results show that the elastic properties of surface and subsurface layers of microscale synthetic and biological samples can be simultaneously extracted from the composite material response to AFM indentation. HED analysis offers a robust approach to studying regional micromechanics of heterogeneous multilayered samples without destructively separating individual components before testing.  相似文献   

8.
Intestinal stress-strain distributions are important determinants of intestinal function and are determined by the mechanical properties of the intestinal wall, the physiological loading conditions and the zero-stress state of the intestine. In this study the distribution of morphometric measures, residual circumferential strains and stress-strain relationships along the rat large intestine were determined in vitro. Segments from four parts of the large intestine were excised, closed at both ends, and inflated with pressures up to 2kPa. The outer diameter and length were measured. The zero-stress state was obtained by cutting rings of large intestine radially. The geometric configuration at the zero-stress state is of fundamental importance because it is the basic state with respect to which the physical stresses and strains are defined. The outer and inner circumferences, wall thickness and opening angle were measured from digitised images. Subsequently, residual strain and stress-strain distributions were calculated. The wall thickness and wall thickness-to-circumference ratio increased in the distal direction. The opening angle varied between approximately 40 and approximately 125 degrees with the highest values in the beginning of proximal colon (F=1.739, P<0.05). The residual strain at the inner surface was negative indicating that the mucosa-submucosal layers of the large intestine in no-load state are in compression. The four segments showed stress-strain distributions that were exponential. All segments were stiffer in longitudinal direction than in the circumferential direction (P<0.05). The transverse colon seemed stiffest both in the circumferential and longitudinal directions. In conclusion, significant variations were found in morphometric and biomechanical properties along the large intestine. The circumferential residual strains and passive elastic properties must be taken into account in studies of physiological problems in which the stress and strain are important, e.g. large intestinal bolus transport function.  相似文献   

9.
Material properties and their variations in individual bone organs are important for understanding bone adaptation and quality at a tissue level, and are essential for accurate mechanical models. Yet material property variations have received little systematic study. Like all other material property studies in individual bone organs, studies of the human mandible are limited by a low number of both specimens and sampled regions. The aims of this study were to determine: 1) regional variability in mandibular material properties, 2) the effect of this variability on the modeling of mandibular function, and 3) the relationship of this variability to mandibular structure and function. We removed 31 samples on both facial and lingual cortices of 10 fresh adult dentate mandibles, measured cortical thickness and density, determined the directions of maximum stiffness with a pulse transmission ultrasonic technique, and calculated elastic properties from measured ultrasonic velocities. Results showed that each of these elastic properties in the dentate human mandible demonstrates unique regional variation. The direction of maximum stiffness was near parallel to the occlusal plane within the corpus. On the facial ramus, the direction of maximum stiffness was more vertically oriented. Several sites in the mandible did not show a consistent direction of maximum stiffness among specimens, although all specimens exhibited significant orthotropy. Mandibular cortical thickness varied significantly (P < 0.001) between sites, and decreased from 3.7 mm (SD = 0.9) anteriorly to 1.4 mm posteriorly (SD = 0.1). The cortical plate was also significantly thicker (P < 0.003) on the facial side than on the lingual side. Bone was 50-100% stiffer in the longitudinal direction (E(3), 20-30 GPa) than in the circumferential or tangential directions (E(2) or E(1); P < 0.001). The results suggest that material properties and directional variations have an important impact on mandibular mechanics. The accuracy of stresses calculated from strains and average material properties varies regionally, depending on variations in the direction of maximum stiffness and anisotropy. Stresses in some parts of the mandible can be more accurately calculated than in other regions. Limited evidence suggests that the orientations and anisotropies of cortical elastic properties correspond with features of cortical bone microstructure, although the relationship with functional stresses and strains is not clear.  相似文献   

10.
Thoracic aortic dissections involving the ascending aorta represent one of the most dramatic and lethal emergencies in cardiovascular surgery. It is therefore critical to identify the mechanisms driving them and biomechanical analyses hold great clinical promise, since rupture/dissection occur when aortic wall strength is unable to withstand hemodynamic stresses. Although several studies have been done on the biomechanical properties of thoracic aortic aneurysms, few data are available about thoracic aortic dissections. Detailed mechanical tests with measurement of tissue thickness and failure properties were performed with a tensile-testing device on 445 standardized specimens, corresponding to 19 measurement sites per inner (intima with most of media)/outer layer (leftover media with adventitia); harvested from twelve patients undergoing emergent surgical repair for type A dissection. Our data suggested inherent differences in tissue properties between the origin of dissection and distal locations, i.e. thinner and stiffer inner layers that might render them more vulnerable to tearing despite their increased strength. The strength of tissue circumferentially was greater than that longitudinally, likely determining the direction of tear. The relative strengths of the inner: ∼{65,40}N/cm2 and outer layer: ∼{350,270}N/cm2 in the two principal directions of dissected tissue were differentiated from the intima: ∼{100,75}N/cm2, media: ∼{150,55}N/cm2, and adventitia: ∼{270,190}N/cm2 of non-dissected ascending aortic aneurysms (Sokolis et al., 2012), in favor of weaker inner and stronger outer layers, allowing an explanation as to why the presently-studied tissue suffered dissection, i.e. tear of the inner layers, and not rupture, i.e. full tearing across the entire wall thickness.  相似文献   

11.
Hyperhomocysteinemia is a risk factor for arterial diseases, and the deterioration of the arterial elastic structures is one of the possible mechanisms underlying this epidemiological association. The aim of this paper is to quantitively characterize such structural alterations and to explore their causes in a previous model of dietary induced mild hyperhomocysteinemia in minipigs. After four months, both a morphodensitometrical analysis of the elastic structure and a biochemical analysis of elastin and elastase activities were performed on the infrarenal abdominal aorta (IRAA) and the proximal left interventricular coronary artery (LIVCA) of control (C), hyperhomocysteinemic (H) and captopril-hydrochlorothiazide (Cp-Htz, 25 + 12.5 mg/d)-treated (H+Cp) minipigs (n = 8/group).Hyperhomocysteinemia was found to induce an increase in parietal elastolytic metalloproteinase activities. It resulted in opening and enlargement of fenestrae through the medial elastic laminae and in a decrease in medial elastin content (p < 10−3), expressed as well as volume density (%) as weight concentration (μg elastin/mg dry tissue). The thickness of the media and its basic lamellar organization was unchanged. The reduction in volume density was more dramatic in LIVCA (H: 4.7 ± 0.9 vs C: 8.8 ±2.4), where it was evenly distributed within media, than in IRAA (H: 6.7 ± 1.1 vs C: 9.3± 1.2), where the deep media layers were less affected. Cp-Htz partly prevented the hyperhomocysteinemia-induced reduction of the medial elastin content LIVCA (5.7 ± 1.2) and IRAA (7.9 ± 1.4). This effect, occurring in the subintimal layers of the media in both arteries but not in the deeper layers, resulted in a less beneficial effect in LIVCA than in IRAA. This result parallels the moderate beneficial therapeutic effect of ACE inhibitors against coronary atherosclerosis in humans.  相似文献   

12.
Information on the passive biomechanical properties of two-layered esophagus is still limited, although this would enhance our understanding of its physiology/pathophysiology and help to address problems in surgery, medical-device applications, and for the optimal design of prostheses. In this study, rabbit esophagi were excised and dissected into mucosa–submucosa and muscle layers that were submitted to histological quantification of elastin and collagen content and orientation, as well as to inflation-extension testing and geometrical analysis, i.e. delineation of the zero-stress state serving as a reference configuration for biomechanical analysis. The pressure–radius data of both layers displayed a monotonically rising slope with inflating pressure, unlike the sigma shape characterizing elastin-rich tissues, for which biphasic constitutive models were initially postulated. Three phenomenological expressions of strain-energy function (SEF), commonly appearing in soft-tissue biomechanics literature, were used in an attempt to model the pseudoelastic response of esophageal tissue, namely the exponential Fung-type SEF, and the combined neo-Hookean (isotropic) or quadratic (anisotropic) and exponential Fung-type SEF. Accurate fits were attained for the pressure–radius–force data, spanning a wide range of longitudinal stretch ratios, when using the exponential form; the biphasic SEFs failed to generate improved fits, being also over-parameterized. According to the calculated material parameters, mucosa–submucosa was stiffer than muscle in both directions, justified by our histological observation of increased collagen content in that layer, and tissue was stiffer longitudinally, substantiated by the increased elastin and collagen contents and their preferential alignment towards that direction. Our results demonstrate that the passive response of esophagus is best modeled with an exponential Fung-type SEF.  相似文献   

13.
Temporary orthodontic mini implants serve as anchorage devices in orthodontic treatments. Often, they are inserted in the jaw bones, between the roots of the teeth. The stability of the mini implants within the bone is one of the major factors affecting their success and, consequently, that of the orthodontic treatment. Bone mechanical properties are important for implant stability. The aim of this study was to determine the tensile properties of the alveolar and basal mandible bones in a swine model. The diametral compression test was employed to study the properties in two orthogonal directions: mesio-distal and occluso-gingival. Small cylindrical cortical bone specimens (2.6 mm diameter, 1.5 mm thickness) were obtained from 7 mandibles using a trephine drill. The sites included different locations (anterior and posterior) and aspects (buccal and lingual) for a total of 16 specimens from each mandible. The load-displacement curves were continuously monitored while loading half of the specimens in the oclluso-gingival direction and half in the mesio-distal direction. The stiffness was calculated from the linear portion of the curve. The mesio-distal direction was 31% stiffer than the occluso-gingival direction. The basal bone was 40% stiffer than the alveolar bone. The posterior zone was 46% stiffer than the anterior zone. The lingual aspect was stiffer than the buccal aspect. Although bone specimens do not behave as brittle materials, the diametral compression test can be adequately used for determining tensile behavior when only small bone specimens can be obtained. In conclusion, to obtain maximal orthodontic mini implant stability, the force components on the implants should be oriented mostly in the mesio-distal direction.  相似文献   

14.
The stomach is as other parts of the gastrointestinal tract functionally subjected to dimensional change. Hence, the biomechanical properties are of functional importance. Our group has previously demonstrated that the stress–strain properties of the rat and rabbit stomach wall were species-, location- and direction-dependent. We further wanted to study the anisotropic biomechanical properties of the stomach wall in pigs. Furthermore, we made an in-depth biomechanical test on the layered wall of the stomach in different regions. Two stomach strips were cut both in longitudinal direction (parallel with the greater curvature) and circumferential direction (perpendicular to the greater curvature) from the gastric fundus, corpus and antrum. One strip was used for the non-separated (intact) wall test and the other one was separated for the test on the mucosa–submucosa and muscle layers individually. The length, thickness and width of each strip were measured from digital images. The uni-axial stress and strain were computed from the force generation and the tissue strip deformation during stretching. The muscle layer was the thickest in the antrum whereas the mucosal–submucosal layer was the thickest in the corpus of the stomach (P<0.01). The strips from the corpus were stiffest among the three regions in both longitudinal and circumferential directions (P<0.001). The longitudinal strips was stiffer than the circumferential strips in all three regions (P<0.001) and the mucosa–submucosa strips was stiffer than the intact wall and the muscle layer in both directions for the fundus and the corpus (P<0.001). The constant a of the intact wall and mucosa–submucosa layer was in both directions linearly associated with the mucosa–submucosa thickness. In conclusion, the uni-axial stress–strain curves of pig stomach were location-, direction- and layer-dependent. The stiffer wall in the corpus is likely due to its thicker mucosa, i.e., the stiffness of the mucosa–submucosa layer seems can explain the intact wall stiffness. Since the structure and function of the pig stomach are similar to the human stomach, we believe that the data obtained from this study can be extended to humans. Detailed biomechanical mapping of the stomach will likely help us to understand physiological functions of the different parts of the human stomach, such as gastric accommodation and mechanosensation.  相似文献   

15.
Mechanical Properties of the Frog Sarcolemma   总被引:2,自引:0,他引:2       下载免费PDF全文
The elastic properties of cylindrical segments of sarcolemma were studied in single striated fibers of the frog semitendinosus muscle. All measurements were made on membranes of retraction zones, cell segments from which the sarcoplasm had retracted. Quantitative morphological studies indicated that three deforming forces interact with the intrinsic elastic properties of the sarcolemma to determine membrane configuration in retraction zone segments. The three deforming forces, namely intrazone pressure, axial fiber loads, and radial stresses introduced by retracted cell contents, could all be experimentally removed, permitting determination of the “undeformed” configuration of the sarcolemma. Analysis of these results indicated that membrane of intact fibers at rest length is about four times as wide and two-thirds as long as undeformed membrane. Membrane geometry was also studied as a function of internal hydrostatic pressure and axial loading to permit calculation of the circumferential and longitudinal tension-strain (T-S) diagrams. The sarcolemma exhibited nonlinear T-S properties concave to the tension axis in both directions. Circumferential T-S slopes (measures of membrane stiffness) ranged from 1500 to greater than 50,000 dynes/cm over the range of deformations investigated, while longitudinal T-S slopes varied from 23,000 to 225,000 dynes/cm. Thus, the membrane is anisotropic, being much stiffer in the longitudinal direction. Certain ramifications of the present results are discussed in relation to previous biomechanical studies of the sarcolemma and of other tissues.  相似文献   

16.
Durotaxis as an elastic stability phenomenon   总被引:1,自引:0,他引:1  
It is well documented that directed motion of cells is influenced by substrate stiffness. When cells are cultured on a substrate of graded stiffness, they tend to move from softer to stiffer regions--a process known as durotaxis. In this study, we propose a mathematical model of durotaxis described as an elastic stability phenomenon. We model the cytoskeleton (CSK) as a planar system of prestressed elastic line elements representing actin stress fibers (SFs), which are anchored via focal adhesions (FAs) at their end points to an elastic substrate of variable stiffness. The prestress in the SFs exerts a pulling force on FAs reducing thereby their chemical potential. Using Maxwell's global stability criterion, we obtain that the model stability increases as it is moved from a softer towards a stiffer region of the substrate. Numerical simulations reveal that elastic stability of SFs has a predominantly stabilizing effect, greater than the stabilizing effect of decreasing chemical potential of FAs. This is a novel finding which indicates that elasticity of the CSK plays an important role in cell migration and mechanosensing in general.  相似文献   

17.
The elastic response of aortic valve cusps is a summation of its fibrous components. To investigate the micromechanical function of valve leaflet constituents, we separated the fibrosa and the ventricularis from fresh and glutaraldehyde-fixed leaflets and tested them individually. The ventricularis was stiffer circumferentially than radially (7.41 kPa vs 3.68 kPa, p less than 0.00001) and was more extensible radially (62.7% vs 21.8% strain to high modulus phase, p less than 0.00001). The fibrosa was also stiffer circumferentially than radially (13.02 kPa vs 4.65 kPa, p less than 0.0008), but had uniform extensibility. Glutaraldehyde fixation did not affect the circumferential elastic modulus of the fibrosa, but reduced its radial modulus from 4.65 kPa to 2.32 kPa (p less than 0.0078). The elastic modulus of the ventricularis remained unchanged. Fixation also reduced the extensibility of the ventricularis circumferentially (from 21.8% to 15.2% strain, p less than 0.018), but not radially, and increased the radial extensibility of the fibrosa from 27.7% to 46.1% (p less than 0.0048). These data show that while the ventricularis contains a large amount of elastin, the amount of radially oriented collagen is similar to that of the fibrosa. The fibrosa, by itself, has the same extensibility in both directions (about 23% strain), but can extend much more radially when connected to the rest of the leaflet because it is attached to the ventricularis in a highly folded configuration. The two layers therefore complement each other during aortic valve function, and become detrimentally altered by fixation in glutaraldehyde.  相似文献   

18.
Elastic constants, including the elastic modulus, the shear modulus, and Poisson's ratio, were measured on human craniofacial bone specimens obtained from the supraorbital region and the buccal surfaces of the mandibles of unembalmed cadavers. Constants were determined using an ultrasonic wave technique in three directions relative to the surface of each sample: 1) normal, 2) tangential, and 3) longitudinal. Statistical analysis of these elastic constants indicated that significant differences in the relative proportions of elastic properties existed between the regions. Bone from the mandible along its longitudinal axis was stiffer than bone from the supraorbital region. Directional differences in both locations demonstrated that cranial bone was not elastically isotropic. It is suggested that differences in elastic properties correspond to regional differences in function. © 1993 Wiley-Liss, Inc.  相似文献   

19.
Assuming a spherical geometry for the left ventricle, passive elastic stiffness-stress relations have been obtained on the basis of linear elasticity theory and large deformation theory. Employing pressure-volume aata taken from rat hearts of various age groups, it is shown that young rat heart muscle (1 month) is stiffer than either adult (7 months) or old rat heart muscle (17 months). Although the qualitative results are similar for both elasticity theories, the large deformation theory gave results in closer agreement with those obtained from papillary muscle studies. These results imply that stiffness of muscleper se can be assessed from left ventricular pressure-volume data.  相似文献   

20.
The objective of the present study was (1) to test the hypothesis that the elastic and failure properties of the cancellous bone of the mandibular condyle depend on the loading direction, and (2) to relate these properties to bone density parameters. Uniaxial compression tests were performed on cylindrical specimens (n=47) obtained from the condyles of 24 embalmed cadavers. Two loading directions were examined, i.e., a direction coinciding with the predominant orientation of the plate-like trabeculae (axial loading) and a direction perpendicular to the plate-like trabeculae (transverse loading). Archimedes' principle was applied to determine bone density parameters. The cancellous bone was in axial loading 3.4 times stiffer and 2.8 times stronger upon failure than in transverse loading. High coefficients of correlation were found among the various mechanical properties and between them and the apparent density and volume fraction. The anisotropic mechanical properties can possibly be considered as a mechanical adaptation to the loading of the condyle in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号