首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and processing of virus-specific precursor polypeptides in NIH/3T3 cells infected at the permissive temperature (31 degrees C) with temperature-sensitive (ts) mutants of Rauscher murine leukemia virus was studied in pulse-chase experiments at the permissive and nonpermissive (39 degrees C) temperatures. The newly synthesized virus-specific polypeptides were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis after immunoprecipitation with polyvalent and monospecific antisera against Rauscher murine leukemia virus proteins. In cells infected with ts mutants defective in early replication steps (the early mutants ts17 and ts29), and ts mutants defective in postintegration steps (the late mutants ts25 and ts26), the processing of the primary gag gene product was impaired at the nonpermissive temperature. gag-pr75 of all four mutants was converted into gag-pr65; however, gag-pr65 accumulated at the nonpermissive temperature, and the main internal virion polypeptide p30 was not formed. Therefore, the proteolytic cleavage is blocked beyond gag-pr65. Concomitantly, the formation of the env gene-related polypeptide p12(E) of all four mutants was blocked at the restrictive temperature. In contrast, cells infected with the late mutant ts28, which produced noninfectious virions at 39 degrees C, showed a normal turnover of the gag and env precursor polypeptides.  相似文献   

2.
Biochemical transformation assays of herpes simplex virus type 1 temperature-sensitive (ts) mutants distinguished three groups of mutants with regard to their thymidine kinase (TK) transforming ability: those incapable of transferring the TK gene at either the permissive or restrictive temperatures (group I); those resembling the wild-type virus, and therefore able to transform at both the permissive and nonpermissive temperatures (group II); and those that failed to transform or exhibited very low transformation frequencies at the permissive temperature but were able to transform at the nonpermissive temperature (group III). Two mutants in group II exhibited greatly enhanced transformation efficiency at the permissive temperature. The ts lesions in the majority of the mutants tested map between 0.30 and 0.60 units on the viral genome. Mutants with TK-positive (TK+), but DNA-negative, phenotypes at the nonpermissive temperature produced no TK+ transformants at the permissive temperature and only unstable transformants at the nonpermissive temperature. This suggests that a function which is required for viral DNA synthesis is also required to obtain stable expression or to transfer the TK+ gene or both when transfer is mediated by the entire viral genome.  相似文献   

3.
Virions from Newcastle disease virus mutants in four temperature-sensitive RNA+ groups were grown in embryonated hen eggs at the permissive temperature, purified, and then analyzed for biological properties at both the permissive and nonpermissive temperatures. At the permissive temperature, virions of mutants in groups B, C, and BC (11 mutants) were all lower in specific (per milligram of protein) hemagglutination, neuraminidase, and hemolysis activities compared with the wild type. These deficiencies were related to decreased amounts of hemagglutinin-neuraminidase glycoprotein in the virions. Activities of these mutant virions at both the permissive and nonpermissive temperatures were similar, indicating that hemagglutinin-neuraminidase synthesized at the permissive temperature was not temperature sensitive in function. The three group D mutants displayed a different pattern. At the permissive temperature, they had wild-type hemagglutination and neuraminidase activities but were deficient compared with the wild type in hemolysis. Again, functions were similar at both temperatures. Most of the B, C, and BC mutants had specific infectivities similar to that of the wild type despite lower hemagglutination, neuraminidase, and hemolysis functions. However, the D mutants were all less infectious. This evidence is consistent with a shared hemagglutinin-neuraminidase defect in the B, C, and BC mutants and a defect in either the F glycoprotein or the M protein in the D mutants.  相似文献   

4.
Maturation of the vesicular stomatitis virus (VSV) glycoprotein (G) to the cell surface is blocked at the nonpermissive temperature in cells infected with temperature-sensitive mutants in the structural gene encoding for G. We show here that these mutants fall into two discrete classes with respect to the stage of post-translational processing at which the block occurs. In all cases the mutant glycoproteins are inserted normally into the endoplasmic reticulum membrane, receive the two-high-mannose oligosaccharides, and apparently lose the NH2-terminal signal sequence of 16 amino acids. In cells infected with one class of mutants, no further processing of the glycoprotein occurs, and we conclude that the mutant protein is blocked at a pre-Golgi stage. In cells infected with ts L511(V), however, addition of the terminal sugars galactose and sialic acid occurs normally. Thus the maturation of G proceeds through several Golgi functions but is blocked before its appearance on the cell surface. The oligosaccharide chain of ts L511(V) G, accumulated at either the permissive (where surface maturation occurs) or the nonpermissive temperature, lacks one saccharide residue, probably fucose. In addition, no fatty acid residues are added to the ts L511(V) G protein at the nonpermissive temperature, although addition does occur under permissive conditions.  相似文献   

5.
Two temperature-sensitive (ts) mutants of mammalian cell lines (AF8 and cs4D3) that arrest in G1 at the nonpermissive temperature were fused with chick erythrocytes and the induction of DNA synthesis was studied in the resulting heterokaryons. While both AF8 and cs4D3 could induce DNA synthesis in chick nuclei at the permissive temperature, they both failed to do so when arrested in G1 at the nonpermissive temperature. When S phase AF8 cells were fused with chick erythrocytes, chick nuclei were reactivated even if the heterokaryons were incubated at the temperature nonpermissive for AF8. A third ts mutant, ts111, that is blocked in cytokinesis but continues to synthesize DNA, reactivated chick nuclei at both permissive and nonpermissive temperature. It is concluded that chick erythrocyte reactivation depends on the presence of S phase-specific factors.  相似文献   

6.
All Sindbis virus temperature-sensitive mutants defective in "late" functions were systematically surveyed by acrylamide-gel electrophoresis for similarities and differences in the intracellular pattern of virus-specific proteins synthesized at the permissive and nonpermissive temperatures. Only cells infected with mutants of complementation group C showed an altered pattern. At the nonpermissive temperature, these mutants failed to induce the synthesis of a polypeptide corresponding to the nucleocapsid protein and instead overproduced a protein of higher molecular weight than either viral structural protein. This defect was shown to be irreversible by the finding that (3)H-leucine incorporated at 41.5 C specifically failed to appear in the nucleocapsid of virions subsequently released at 29 C. Attempts to demonstrate a precursor protein in wild-type infections were inconclusive.  相似文献   

7.
  相似文献   

8.
Summary Temperature-sensitive mutants of Tetrahymena pyriformis which had previously been selected for their inability to grow at 38°C but which grew normally (or near normally) at 30°C were characterized with respect to their patterns of RNA and protein accumulation at both the permissive and nonpermissive temperatures. Out of 116 such mutants, the majority (72) acted like wild type for these accumulations during a 3 h labelling period although some of them stopped dividing during this time. The remainder exhibited a variety of altered phenotypes for the rate, extent, and timing of RNA and/or protein accumulation. Those mutants which exhibited selective inhibition of RNA accumulation, and were thus potential ribosomal RNA (rRNA) mutants, were further characterized by examining patterns of protein and RNA synthesis in cells starved at the permissive temperature, but re-fed at the permissive and non-permissive temperatures. At least five different types of mutants as defined by patterns of protein and RNA synthesis in refed cells were identified. Direct analysis of the RNA synthesized in cells from 2 of these types of mutants showed that in 5 out of 6 cases rRNA synthesis and/or processing was inhibited within 30 min after shifting to the non-permissive temperature. The other mutant examined was found to show a delayed inhibition of rRNA synthesis.  相似文献   

9.
T Watanabe  S Hayashi    H C Wu 《Journal of bacteriology》1988,170(9):4001-4007
Export of the outer membrane lipoprotein in Escherichia coli was examined in conditionally lethal mutants that were defective in protein export in general, including secA, secB, secC, and secD. Lipoprotein export was affected in a secA(Ts) mutant of E. coli at the nonpermissive temperature; it was also affected in a secA(Am) mutant of E. coli at the permissive temperature, but not at the nonpermissive temperature. The export of lipoprotein occurred normally in E. coli carrying a null secB::Tn5 mutation; on the other hand, the export of an OmpF::Lpp hybrid protein, consisting of the signal sequence plus 11 amino acid residues of mature OmpF and mature lipoprotein, was affected by the secB mutation. The synthesis of lipoprotein was reduced in the secC mutant at the nonpermissive temperature, as was the case for synthesis of the maltose-binding protein, while the synthesis of OmpA was not affected. Lipoprotein export was found to be slightly affected in secD(Cs) mutants at the nonpermissive temperature. These results taken together indicate that the export of lipoprotein shares the common requirements for functional SecA and SecD proteins with other exported proteins, but does not require a functional SecB protein. SecC protein (ribosomal protein S15) is required for the optimal synthesis of lipoprotein.  相似文献   

10.
11.
12.
Fourteen temperature-sensitive mutants of human adenovirus type2, which differed in their plaquing efficiencies at at the permissive and nonpermissive temperatures by 4 to 5 orders of magnitude, were isolated. These mutants, which could be assigned to seven complementation groups, were tested for their capacity to synthesize adenovirus DNA at the nonpermissive temperature. Three mutants in three different complementation groups proved deficient in viral DNA synthesis. The DNA-negative mutant H2ts206 complemented the DNA-negative mutants H5ts36 and H5ts125, whereas mutant H2ts201 complemented H5ts36 only. Among the DNA-negative mutants, H2ts206 synthesized the smallest amount of viral DNA at the nonpermissive temperature (39.5 C). Data obtained in temperature shift experiments indicated that a very early function was involved in temperature sensitivity. In keeping with this observation, early virus-specific mRNA was not detected in cells infected with H2ts206 and maintained at 39.5 C. Prolonged (52 h) incubation of cells infected with H2ts206 at the nonpermissive temperature led to the synthesis of a high-molecular-weight form of viral DNA.  相似文献   

13.
By marker rescue with cloned herpes simplex virus 2 DNA fragments, we have mapped the temperature-sensitive mutations of a series of herpes simplex virus 2 mutants to a region of the herpes simplex virus 2 genome that lies within or near the coding sequences for the major DNA-binding protein, ICP8. In cells infected with certain of these mutants at the nonpermissive temperature, the association of the major DNA-binding protein with the cell nucleus was defective. In these cells, the DNA-binding protein accumulated in the cytoplasmic and the crude nuclear detergent wash fractions. At the permissive temperature, the maturation of the mutant ICP8 was similar to that of the wild-type viral protein. With the remainder of the mutants, the nuclear maturation of ICP8 was similar to that encoded by the wild-type virus at the nonpermissive and permissive temperatures as assayed by cell fractionation.  相似文献   

14.
A crude replication complex prepared from enterovirus 70-infected cells was used to study the temperature-sensitive characteristic of the virus. The complex showed a temperature sensitivity in the in vitro incorporation of radiolabeled ribonucleoside triphosphate. The endonuclease itself did not account for the restricted RNA synthesis at the nonpermissive temperature. Analyses of the in vitro products by both gel electrophoresis and sucrose density gradient centrifugation showed that the complex synthesized three types of viral RNA only when incubated for a short period of time at the nonpermissive temperature. When the replication complex was treated with a detergent (deoxycholic acid), incorporation of ribonucleoside triphosphate into RNA at the permissive temperature was reduced to the level of that at the nonpermissive temperature. In addition, the in vitro RNA synthesis by the enterovirus 70 replication complex at the permissive temperature required a higher concentration of ATP than of other ribonucleoside triphosphates, whereas such a preference for ATP was not found in the reaction at the nonpermissive temperature. The results indicate that the initiation step of RNA synthesis by the complex is blocked at the nonpermissive temperature. The possible implications of these findings are discussed.  相似文献   

15.
The physiological effects of incubation at nonpermissive temperatures of Escherichia coli mutants that carry a temperature-sensitive dnaZ allele [dnaZ(Ts)2016] were examined. The temperature at which the dnaZ(Ts) protein becomes inactivated in vivo was investigated by measurements of deoxyribonucleic acid (DNA) synthesis at temperatures intermediate between permissive and nonpermissive. DNA synthesis inhibition was reversible by reducing the temperature of cultures from 42 to 30 degrees C; DNA synthesis resumed immediately after temperature reduction and occurred even in the presence of chloramphenicol. Inasmuch as DNA synthesis could be resumed in the absence of protein synthesis, we concluded that the protein product of the dnaZ allele (Ts)2016 is renaturable. Cell division, also inhibited by 42 degrees C incubation, resumed after temperature reduction, but the length of time required for resumption depended on the duration of the period at 42 degrees C. Replicative synthesis of cellular DNA, examined in vitro in toluene-permeabilized cells, was temperature sensitive. Excision repair of ultraviolet light-induced DNA lesions was partially inhibited in dnaZ(Ts) cells at 42 degrees C. The dnaZ(+) product participated in the synthesis of both Okazaki piece (8-12S) and high-molecular-weight DNA. During incubation of dnaZ(Ts)(lambda) lysogens at 42 degrees C, prophage induction occurred, and progeny phage were produced during subsequent incubation at 30 degrees C. The temperature sensitivity of both DNA synthesis and cell division in the dnaZ(Ts)2016 mutant was suppressed by high concentrations of sucrose, lactose, or NaCl. Incubation at 42 degrees C was neither mutagenic nor antimutagenic for the dnaZ(Ts) mutant.  相似文献   

16.
Cells transformed by tsA mutants of simian virus 40 (SV40) are temperature sensitive for the maintenance of the transformed phenotype. The kinetics of induction of DNA synthesis were determined for hamster cell transformants shifted to the permissive temperature after a 48-h serum arrest at the nonpermissive temperature. DNAsynthesis was initiated in the tsA transformants by 8 h after shiftdown was maximal by 12 h. The presence or absence of fetal bovine serum at the time of temperature shift had no effect on the kinetics of initiation of DNA synthesis. Analysis of TTP in tsA transformants revealed similar levels of incorporation of [3H]thymidine into TTP at both permissive and nonpermissive temperatures. Autoradiography revealed that by 12 h after a shift to the permissive temperature, approximately 50% of the cells exhibited labeled nuclei after a 60-min pulse with [3H]thymidine, indicating that a majority of the cells were actively synthesizing DNA. By 8 to 12 h after a shiftup of confluent tsA transformants to the nonpermissive temperature, the number of labeled nuclei was reduced to approximately 16%, regardless of serum concentration. These data indicate that the SV40 gene A product, either directly or indirectly, regulates cellular DNA synthesis in transformed cells.  相似文献   

17.
The ch4 mutant of sweetclover (Melilotus alba) has previously been demonstrated to be partially deficient in chlorophyll and to have a higher ratio of chlorophyll a to b than normal plants. We were able to substantiate these findings when plants were grown at 23°C and lower (permissive temperatures). However, when grown at 26°C (nonpermissive temperature) the plants produced small yellow leaves which exhibited one-twentieth the chlorophyll content of normal plants. Affected leaves did not increase their chlorophyll content when plants were incubated at permissive temperatures, but leaves which developed at the lower temperature contained increased amounts of chlorophyll. Similarly, only new leaves, not previously grown leaves, exhibited the yellow phenotype when the mutant plant was shifted from the permissive temperature to the nonpermissive temperature. Ribulose 1,5-bisphosphate carboxylase activity was decreased by half, relative to normal plants, in the mutant plants grown at the nonpermissive temperature, indicating that general protein synthesis was not greatly impaired and that the effect of the mutation was perhaps specific for chlorophyll content. HPLC analysis indicated that carotenoid content was not diminished to the same extent as chlorophyll and we have determined that the thylakoid protein kinase is not altered, as is the case for other chlorophyll b-deficient mutants. Experiments suggest that changes in photoperiod may be able to modulate the effect of temperature.  相似文献   

18.
The gene pth, encoding peptidyl-tRNA hydrolase (Pth), is essential for protein synthesis and viability of Escherichia coli. Two pth mutants have been studied in depth: a pth(Ts) mutant isolated as temperature sensitive and a pth(rap) mutant selected as nonpermissive for bacteriophage lambda vegetative growth. Here we show that each mutant protein is defective in a different way. The Pth(Ts) protein was very unstable in vivo, both at 43 degrees C and at permissive temperatures, but its specific activity was comparable to that of the wild-type enzyme, Pth(wt). Conversely, the mutant Pth(rap) protein had the same stability as Pth(wt), but its specific activity was low. The thermosensitivity of the pth(Ts) mutant, presumably, ensues after Pth(Ts) protein levels are reduced at 43 degrees C. Conditions that increased the cellular Pth(Ts) concentration, a rise in gene copy number or diminished protein degradation, allowed cell growth at a nonpermissive temperature. Antibiotic-mediated inhibition of mRNA and protein synthesis, but not of peptidyl-tRNA drop-off, reduced pth(Ts) cell viability even at a permissive temperature. Based on these results, we suggest that Pth(Ts) protein, being unstable in vivo, supports cell viability only if its concentration is maintained above a threshold that allows general protein synthesis.  相似文献   

19.
Carolyn Herz  Bernard Roizman 《Cell》1983,33(1):145-151
Human TK? 143 cells were converted to TK+ phenotype with a plasmid containing the native herpes simplex virus 1 (HSV-1), thymidine kinase, a β gene, and a chimeric ovalbumin gene consisting of the coding sequences of the ovalbumin gene linked to the promoter-regulatory region of the HSV-1 α 4 gene. Comparison of the synthesis of ovalbumin and the α 4 gene product in the converted cells infected with ts mutants in α 4 gene and incubated at the permissive (33°C) and nonpermissive (39°C) temperatures revealed the following. (i) The synthesis of both ovalbumin and α 4 gene product was transiently induced at the permissive temperature but continued at elevated levels for many hours at the nonpermissive temperature. (ii) The synthesis of both ovalbumin and α 4 gene products resumed when the infected cells were shifted from permissive to nonpermissive temperature after the shut-off of α protein synthesis. (iii) Although both the β-TK and α 4-ovalbumin chimeric genes were covalently linked on the same plasmid, each was regulated independently. We conclude that α gene regulation is determined solely by (a) the inducer and (b) the induction sequence contained in the promoter-regulatory region and not by the location or the higher order structure of the immediate environment of the gene.  相似文献   

20.
Fifteen low-temperature conditional division mutants of Escherichia coli K-12 was isolated. They grew normally at 39 degrees C but formed filaments at 30 degrees C. All exhibited a coordinated burst of cell division when the filaments were shifted to the permissive temperature (39 degrees C). None of the various agents that stimulate cell division in other mutant systems (salt, sucrose, ethanol, and chloramphenicol) was very effective in restoring colony-forming ability at 25 degrees C or in stimulating cell division in broth. One of these mutants, strain JS10, was found to have an altered cell envelope as evidenced by increased sensitivity to deoxycholate and antibiotics, as well as leakage of ribonulcease I, a periplasmic enzyme. This mutant had normal rates of DNA synthesis, RNA synthesis, and phospholipid synthesis at both the nonpermissive and permissive temperatures. However, strain JS10 required new protein synthesis in the apparent absence of new RNA synthesis for division of filaments at the permissive temperature. The division of lesion in strain JS10 is cotransducible with malA, aroB, and glpD and maps within min 72 to 75 on the E. coli chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号