首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Efforts to elucidate the role of lipoprotein [a] (Lp[a]) in atherogenesis have been hampered by the lack of an animal model with high plasma Lp[a] levels. We produced two lines of transgenic mice expressing apolipoprotein [a] (apo[a]) in the liver and crossed them with mice expressing human apolipoprotein B-100 (apoB-100), generating two lines of Lp[a] mice. One had Lp[a] levels of approximately 700 mg/dl, well above the 30 mg/dl threshold associated with increased risk of atherosclerosis in humans; the other had levels of approximately 35 mg/dl. Most of the LDL in mice with high-level apo[a] expression was covalently bound to apo[a], but most of the LDL in the low-expressing line was free. Using an enzyme-linked sandwich assay with monoclonal antibody EO6, we found high levels of oxidized phospholipids in Lp[a] from high-expressing mice but not in LDL from low-expressing mice or in LDL from human apoB-100 transgenic mice (P <0.00001), even though all mice had similar plasma levels of human apoB-100. The increase in oxidized lipids specific to Lp[a] in high-level apo[a]-expressing mice suggests a mechanism by which increased circulating levels of Lp[a] could contribute to atherogenesis.  相似文献   

2.
The aim of this study was to assess the independent contributions of plasma levels of lipoprotein(a) (Lp(a)), Lp(a) cholesterol, and of apo(a) isoform size to prospective coronary heart disease (CHD) risk. Plasma Lp(a) and Lp(a) cholesterol levels, and apo(a) isoform size were measured at examination cycle 5 in subjects participating in the Framingham Offspring Study who were free of CHD. After a mean follow-up of 12.3 years, 98 men and 47 women developed new CHD events. In multivariate analysis, the hazard ratio of CHD was approximately two-fold greater in men in the upper tertile of plasma Lp(a) levels, relative to those in the bottom tertile (P < 0.002). The apo(a) isoform size contributed only modestly to the association between Lp(a) and CHD and was not an independent predictor of CHD. In multivariate analysis, Lp(a) cholesterol was not significantly associated with CHD risk in men. In women, no association between Lp(a) and CHD risk was observed. Elevated plasma Lp(a) levels are a significant and independent predictor of CHD risk in men. The assessment of apo(a) isoform size in this cohort does not add significant information about CHD risk. In addition, the cholesterol content in Lp(a) is not a significant predictor of CHD risk.  相似文献   

3.
Plasma Lp[a] levels and apo[a] isoform distribution among lipoproteins isolated by density gradient ultracentrifugation were studied in subjects with one-band or two-band apo[a] phenotypes as assessed by gradient gel electrophoresis before and after an oral fat load. There were no significant differences in the ultracentrifugal profile between fasting plasma and postprandial plasma that was freed of triglyceride-rich particles (TRP). One-band phenotypes exhibited a single symmetrical peak in the density gradient, whereas two-band phenotypes exhibited a multi-modal distribution. Low molecular weight apo[a] isoforms were preferentially associated with low density Lp[a] whereas high molecular weight apo[a] isoforms were found with high density Lp[a] particles. Feeding a high fat meal caused no significant increase in the total plasma level of Lp[a]. However, the isolated TRP contained the apoB-100-apo[a] complex in a quantity that represented only about 1% of its total amount in the fasting plasma. In all cases the apo[a] isoforms present in TRP were also present in the fasting plasma; however, in the two-band apo[a] phenotypes the ratio of the slow over the fast migrating band was in all cases about eightfold higher in TRP than in the fasting plasma. These observations indicate that postprandially a small percentage of apoB-100-apo[a] associates with TRP and suggest that this complex may derive from de novo synthesis rather than from a pre-existing Lp[a] plasma pool. The liver would be the source of the complex due to the presence in the latter of apoB-100.  相似文献   

4.
Patients with autosomal recessive abetalipoproteinemia (ABL) lack in their plasma all lipoproteins containing apolipoprotein (apo)B-100 or B-48. Previous studies have suggested that this is due to the complete absence of apoB. We have investigated whether such patients (n = 10) are able to secrete the lipoprotein(a) (Lp(a] glycoprotein (apo(a] which, in normal plasma, exists as a complex with low density lipoproteins containing apoB-100 (Lp(a) lipoprotein). All 10 patients had reduced but detectable apo(a) levels in plasma (mean, 0.49 mg/dl; range, 0.2-2.03 mg/dl) but no Lp(a) lipoprotein. However, we also detected small amounts (0.2-2.8 mg/dl) of apoB in all patients with ABL. The apoB in the ABL patients had the size of apoB-100 and occurred as a lipid-poor complex with the Lp(a) glycoprotein in a fraction of density 1.22 g/ml. This material may represent partially assembled Lp(a) lipoprotein. There was also uncomplexed apo(a) and apoB-100 in the ABL plasma. The distribution and relative concentration of both proteins in the density fraction greater than 1.06 g/ml varied among patients. The data suggest that in ABL, the assembly of apoB-containing lipoproteins is defective and that apoB-100 may be secreted without its full lipid complement when complexed with apo(a).  相似文献   

5.
Lipoprotein[a] (Lp[a]) is assembled by a two-step process involving an initial lysine-dependent binding between apolipoprotein B-100 (apoB-100) and apolipoprotein[a] (apo[a]) that facilitates the formation of a disulphide bond between apoB-100Cys4,326 and apo[a]Cys4,057. Previous studies of transgenic mice expressing apoB-95 (4,330 amino acids) and apoB-97 (4,397 amino acids) have shown that apoB-100 amino acids 4,330-4,397 are important for the initial binding to apo[a]. Furthermore, a lysine-rich peptide spanning apoB-100 amino acids 4,372-4,392 has recently been shown to bind apo[a] and inhibit Lp[a] assembly in vitro. This suggests that a putative apo[a] binding site exists in the apoB-4,372-4,392 region. The aim of our study was to establish whether the apoB-4,372-4,392 sequence was important for Lp[a] assembly in the context of the full-length apoB-100. Transgenic mice were created that expressed a mutant human apoB-100, apoB-100K4-->S4, in which all four lysine residues in the 4,372-4,392 sequence were mutated to serines. The apoB-100K4-->S4 mutant showed a reduced capacity to form Lp[a] in vitro compared with wild-type human apoB-100. Double transgenic mice expressing both apoB-100K4-->S4 and apo[a] contained significant amounts of free apo[a] in the plasma, indicating a less-efficient assembly of Lp[a] in vivo. Taken together, these results clearly show that the apoB-4,372-4,392 sequence plays a role in Lp[a] assembly.  相似文献   

6.
We have undertaken studies aimed at elucidating the interrelationships existing between the seasonal modifications in endocrine status (already demonstrated by Saboureau, M., and J. Boissin. 1978. C.R. Acad. Sci. (Paris) 286D: 1479-1482) and plasma lipoprotein metabolism in the male hedgehog. During the course of these studies, we discovered that a lipoprotein comparable to human Lp[a] was a prominent component of the plasma lipoprotein spectrum in the hedgehog. This lipoprotein was present in the 1.040-1.100 g/ml density range (approximately), exhibited pre beta mobility upon agarose gel electrophoresis, and its Stokes diameter was 275 A. Its apolipoprotein moiety consisted of two proteins with molecular weights and amino acid compositions similar to those of human apoB-100 and apo[a], respectively. These two apolipoproteins were present in hedgehog Lp[a] as a complex that could be dissociated using dithiothreitol and whose stoichiometry could be 1:1. Lp[a] polymorphism due to size heterogeneity of apo[a] appeared to be present in the hedgehog as in man. The chemical composition of hedgehog Lp[a], obtained from animals bled during spring and summer, differed from that of its human counterpart in that the proportion of triglycerides was approximately three times higher in the hedgehog particle (13% vs. 4%), to the detriment of cholesteryl esters. Dissociation of the apoB:apo[a] complex has allowed us to obtain Lp[a] devoid of its specific polypeptide (Lp[a-]), a particle that retained the characteristics of Lp[a] as regards its lipid composition but whose Stokes diameter decreased by 30 to 40 A. The plasma concentration of LDL particles, defined as lipoproteins containing apoB-100 as their sole apolipoprotein constituent, was considerably lower than that of Lp[a]. These findings suggest that the hedgehog could be a unique animal model for studies regarding Lp[a] metabolism.  相似文献   

7.
Oxidized phospholipids (OxPLs) on apolipoprotein B-100 (apoB-100) particles are strongly associated with lipoprotein [a] (Lp[a]). In this study, we evaluated whether Lp[a] is preferentially the carrier of OxPL in human plasma. The content of OxPL on apoB-100 particles was measured with monoclonal antibody E06, which recognizes the phosphocholine (PC) headgroup of oxidized but not native phospholipids. To assess whether OxPLs were preferentially bound by Lp[a] as opposed to other lipoproteins, immunoprecipitation and ultracentrifugation experiments, in vitro transfer studies, and chemiluminescent ELISAs were performed. Immunoprecipitation of Lp[a] from human plasma with an apolipoprotein [a] (apo[a])-specific antibody demonstrated that more than 85% of E06 reactivity (i.e., OxPL) coimmunoprecipitated with Lp[a]. Ultracentrifugation experiments showed that nearly all OxPLs were found in fractions containing apo[a], as opposed to other apolipoproteins. In vitro transfer studies showed that oxidized LDL preferentially donates OxPLs to Lp[a], as opposed to LDL, in a time- and temperature-dependent manner, even in aqueous buffer. Approximately 50% of E06 immunoreactivity could be extracted from isolated Lp[a] following exposure of plasma to various lipid solvents. These data demonstrate that Lp[a] is the preferential carrier of PC-containing OxPL in human plasma. This unique property of Lp[a] suggests novel insights into its physiological function and mechanisms of atherogenicity.  相似文献   

8.
The assembly of lipoprotein(a) (Lp(a)) is a two-step process which involves the interaction of kringle-4 (K-IV) domains in apolipoprotein(a) (apo(a)) with Lys groups in apoB-100. Lys analogues such as tranexamic acid (TXA) or delta-aminovaleric acid (delta-AVA) proved to prevent the Lp(a) assembly in vitro. In order to study the in vivo effect of Lys analogues, transgenic apo(a) or Lp(a) mice were treated with TXA or delta-AVA and plasma levels of free and low density lipoprotein bound apo(a) were measured. In parallel experiments, McA-RH 7777 cells, stably transfected with apo(a), were also treated with these substances and apo(a) secretion was followed. Treatment of transgenic mice with Lys analogues caused a doubling of plasma Lp(a) levels, while the ratio of free:apoB-100 bound apo(a) remained unchanged. In transgenic apo(a) mice a 1. 5-fold increase in plasma apo(a) levels was noticed. TXA significantly increased Lp(a) half-life from 6 h to 8 h. Incubation of McA-RH 7777 cells with Lys analogues resulted in an up to 1. 4-fold increase in apo(a) in the medium. The amount of intracellular low molecular weight apo(a) precursor remained unchanged. We hypothesize that Lys analogues increase plasma Lp(a) levels by increasing the dissociation of cell bound apo(a) in combination with reducing Lp(a) catabolism.  相似文献   

9.
The assembly of lipoprotein(a) (Lp(a)) is a two-step process which involves the interaction of kringle-4 (K-IV) domains in apolipoprotein(a) (apo(a)) with Lys groups in apoB-100. Lys analogues such as tranexamic acid (TXA) or δ-aminovaleric acid (δ-AVA) proved to prevent the Lp(a) assembly in vitro. In order to study the in vivo effect of Lys analogues, transgenic apo(a) or Lp(a) mice were treated with TXA or δ-AVA and plasma levels of free and low density lipoprotein bound apo(a) were measured. In parallel experiments, McA-RH 7777 cells, stably transfected with apo(a), were also treated with these substances and apo(a) secretion was followed. Treatment of transgenic mice with Lys analogues caused a doubling of plasma Lp(a) levels, while the ratio of free:apoB-100 bound apo(a) remained unchanged. In transgenic apo(a) mice a 1.5-fold increase in plasma apo(a) levels was noticed. TXA significantly increased Lp(a) half-life from 6 h to 8 h. Incubation of McA-RH 7777 cells with Lys analogues resulted in an up to 1.4-fold increase in apo(a) in the medium. The amount of intracellular low molecular weight apo(a) precursor remained unchanged. We hypothesize that Lys analogues increase plasma Lp(a) levels by increasing the dissociation of cell bound apo(a) in combination with reducing Lp(a) catabolism.  相似文献   

10.
Quantification of apo[a] and apoB in human atherosclerotic lesions.   总被引:6,自引:0,他引:6  
Lipoprotein[a] or Lp[a] is a cholesterol-rich plasma lipoprotein that is associated with increased risk for cardiovascular disease. To better understand this association we determined the amount of apo[a] and apoB as possible estimates for Lp[a] and low density lipoprotein (LDL) accumulation in atherosclerotic lesions and in plasma, from patients undergoing vascular surgery, using specific radioimmunoassays for apolipoprotein[a] and apolipoprotein B. Apo[a] and apoB were operationally divided into a loosely bound fraction obtained by extracting minced samples of plaque with phosphate-buffered saline (PBS), and a tightly bound fraction obtained by extracting the residual tissue with 6 M guanidine-HCl (GuHCl). We found that 83% of all apo[a] but only 32% of all apoB in lesions was in the tightly bound fraction. When normalized for corresponding plasma levels, apo[a] accumulation in plaques was more than twice that of apoB. All fractions of tissue apo[a], loosely bound, tightly bound, and total, correlated significantly with plasma apo[a]. However, no significant correlations were found between any of the tissue fractions and plasma apoB. If all apo[a] and apoB had been associated with intact Lp[a] or LDL particles, the calculated mass of tightly bound Lp[a] would actually have exceeded that of tightly bound LDL in five cases with plasma Lp[a] levels above 5 mg apo[a] protein/dl. When PBS and GuHCl extracts of lesions were subjected to one-dimensional electrophoresis, the major band stained for lipid and immunoblotted positively for apo[a] and apoB, suggesting the presence of some intact Lp[a] in these extracts. These results suggest that Lp[a] accumulates preferentially to LDL in plaques, and that plaque apo[a] is directly associated with plasma apo[a] levels and is in a form that is less easily removable than most of the apoB. This preferential accumulation of apo[a] as a tightly bound fraction in lesions, could be responsible for the independent association of Lp[a] with cardiovascular disease in humans.  相似文献   

11.
Apolipoprotein E (apo E), a genetic determinant of plasma lipid levels and coronary heart disease (CHD) needs to be investigated in Asian Indians since they have a propensity to develop dyslipidemia and accelerated atherosclerosis. We studied apo E phenotypes and plasma lipid levels in 52 Northern Indian male patients (aged 38–71 years) with angiographically proven CHD, and compared them to 50 healthy blood donors taken as the control group. High levels of Lp(a), (p < 0.05), and a definite trend towards lower levels of HDL-C (p < 0.05), was observed in the CHD patients as compared to the control subjects. The frequency of apo E allele 3 was 0.86 and 0.862, and 4 allele was 0.12 and 0.08 in the patients and controls, respectively. However, a lower frequency of the E2 allele was observed in the patient group (2 = 0.02) as compared to the controls (2 = 0.06) (p = ns). In individuals with apo E3/E3 phenotype, significantly lower HDL-C levels was observed in the CHD patients as compared to the control subjects (p < 0.05). A positive correlation was observed between apo E phenotypes and Lp(a) levels in the CHD subjects as compared to the controls (p < 0.05), the level being significantly high in CHD subjects with at least one E4 allele. To conclude, in this sample of Northern Indian subjects with CHD, there is a significant correlation between apo E3/E3 phenotype and low levels of HDL-C as compared to the control subjects. Further, apo E phenotype is positively correlated with high Lp(a) levels in the CHD subjects having at least one E4 allele. However, these relationships need to be explored in a larger sample of subjects.  相似文献   

12.
The objective of this study was to compare the long-term effects of oleic (cis 18:1), elaidic (trans 18:1), and palmitic (16:0) acids on hepatic lipoprotein production, using HepG2 cells as an experimental model. The net accumulation in the medium of apolipoprotein A-I (apoA-I) was not significantly altered by fatty acids, whereas that of apoB was increased with oleic and elaidic acids. Oleic acid, and to a lesser extent elaidic and palmitic acids, increased the mass of triglycerides in the medium and the incorporation of [(3)H]glycerol into secreted triglycerides. The incorporation of [(14)C]acetate into cellular and secreted total cholesterol was stimulated by 96% and 83%, respectively, with elaidic acid but was not significantly modified by oleic or palmitic acid. Relative to oleic acid, the secretion of (14)C-labeled phospholipids and triglycerides was decreased 28% to 31% with elaidic and palmitic acids whereas that of free cholesterol and cholesteryl esters was enhanced 93% and 73%, respectively, with elaidic acid but remained unchanged with palmitic acid. Compared with oleic acid, elaidic acid stimulated the secretion of very low density lipoprotein cholesterol (VLDL-Chol), low density lipoprotein cholesterol (LDL-Chol), and high density lipoprotein cholesterol (HDL-Chol) by 43%, 70%, and 34%, respectively, whereas palmitic acid decreased VLDL-Chol but had no significant effect on LDL-Chol and HDL-Chol. The ratios of total cholesterol to HDL-Chol were 3.17, 3.60, and 3.25 with oleic, elaidic, and palmitic acids, respectively; the corresponding ratios of LDL-Chol to HDL-Chol were 0.87, 1.10, and 0.93, respectively. Compared with oleic and palmitic acids, the LDL and HDL particles secreted in the presence of elaidic acid contained higher levels of free cholesterol and cholesteryl esters and a lower content of phospholipids. The phospholipid-to-total cholesterol ratios of HDL were 1.05, 0.40, and 0.76 with oleic, elaidic, and palmitic acids, respectively.Our results indicate that in comparison with cis monounsaturated and saturated fatty acids, trans fatty acids have more adverse effects on the concentration and composition of lipoproteins secreted by HepG2 cells.  相似文献   

13.
In this study, we created LDL receptor (LDLr) defective (WHHL) transgenic rabbits expressing human apo[a] to examine whether LDLr mediates the Lp[a] clearance from the plasma. By crossbreeding WHHL rabbits with human apo[a] transgenic rabbits, we obtained two groups of human apo[a] transgenic rabbits with defective LDLr functions: apo[a](1/0) WHHL heterozygous (LDLr(+/-) and apo[a](+/0) WHHL homozygous (LDLr(-/-) rabbits. The lipid and lipoprotein levels of human apo[a] WHHL rabbits were compared to those of human apo[a] transgenic rabbits with normal LDLr functions (LDLr(+/+). The apo[a] production rate was evaluated by analyzing apo[a] mRNA expression in the liver, the major site for apo[a] synthesis in transgenic rabbits. We found that pre-beta lipoproteins were markedly increased accompanied by a 2-fold increase in the plasma Lp[a] in apo[a](+/0)/LDLr(+/-) rabbits and a 4.2-fold increase in apo[a](+/0)/LDLr(-/-) rabbits compared with that in apo[a](+/0) rabbits with normal LDLr function. In apo[a](+/0)/LDLr(-/-) rabbits, there was a marked increase in plasma total cholesterol and triglycerides, as was found in their counterpart non-transgenic WHHL rabbits. Northern blot analysis revealed that hepatic apo[a] expression in WHHL transgenic rabbits was similar to that in LDLr(+/+) transgenic rabbits, suggesting the accumulation of plasma Lp[a] in WHHL transgenic rabbits was not due to increased apo[a] synthesis.In conclusion, absence of a functional LDLr leads to a marked accumulation of plasma Lp[a] in human apo[a] transgenic WHHL rabbits and LDLr may participate in the catabolism of Lp[a] in rabbits.  相似文献   

14.
BACKGROUND/AIM: The cardiovascular effects of postmenopausal hormone replacement are controversially discussed. We investigated the effects of 12 months of treatment with conjugated equine estrogen and medroxyprogesterone acetate on lipoprotein(a) [Lp(a)] and other lipoproteins in Japanese postmenopausal women (PMW) with and without dyslipidemia. METHODS: Forty-three normolipidemic and 17 dyslipidemic PMW [total cholesterol (TC) >/=220 mg/dl or triglyceride (TG) >/=150 mg/dl] received conjugated equine estrogen (0.625 mg) plus medroxyprogesterone acetate (2.5 mg) daily for 12 months, and the results were compared with those of 26 normolipidemic and 14 dyslipidemic subjects declining this treatment as controls. The fasting serum levels of Lp(a), TC, TG, high-density lipoprotein cholesterol, low- density lipoprotein cholesterol, apolipoprotein (Apo) AI, Apo AII, Apo B, Apo CII, and Apo E were measured in each subject at baseline and 12 months after this treatment initiation. RESULTS: The treatment decreased Lp(a) similarly in normolipidemic and dyslipidemic PMW and decreased TC, low-density lipoprotein cholesterol, Apo CII, and Apo E and increased high-density lipoprotein cholesterol, Apo AI, and Apo AII in both groups. The therapy also significantly increased TG in normolipidemic but not dyslipidemic subjects. In controls, the levels of Lp(a) and other lipoproteins were unaltered. CONCLUSIONS: In PMW with or without dyslipidemia, improvement in Lp(a) and other lipoproteins may represent cardiovascular benefits of hormone replacement therapy. However, an elevation of the TG levels seen with the therapy warrants caution, especially in PMW without dyslipidemia.  相似文献   

15.
Lipoprotein (a) [Lp(a)] is a heterodimer of apolipoprotein (a) [apo(a)] and apolipoprotein B-100 (apoB-100) of low density lipoprotein linked by a disulfide bond. Apo(a) and apoB-100 are synthesized by the liver and covalently associate or couple to form Lp(a) extracellularly. Elevated plasma Lp(a) is an independent risk factor for vascular injury disorders such as restenosis after balloon angioplasty and accelerated graft atherosclerosis following heart transplantation. Lp(a) is not expressed in laboratory animals making studies of its pathophysiology difficult. To overcome this problem, we explored the possibility of generating Lp(a) in rabbit plasma using replication-deficient adenovirus vector mediated gene delivery. Rabbits were chosen because of their large vessels and unlike mouse or rat, rabbit apoB-100 could interact with apo(a) to generate Lp(a). The recombinant (r) adenovirus vector construct used encoded a 200 kDa apo(a) [Ad-apo(a)]. Ad-apo(a) injection into the rabbit marginal vein caused the appearance of plasma rLp(a). Injection of a r adenovirus vector expressing the bacterial LacZ gene (Ad-LacZ) or PBS (vehicle) did not result in detectable plasma rLp(a). These are the first results to demonstrate plasma expression of rLp(a) in rabbits using adenovirus vector mediated gene transfer. Therefore, this system may be suitable for investigating Lp(a)'s role in the development of vascular injury diseases in a rabbit model.  相似文献   

16.
A selective bi-site ELISA assay procedure for quantification of Lp[a] lipoprotein in human plasma based on linkage of apo[a] to apoB is described. The lipoproteins referred to as apo[a]:B were captured by a mixture of two anti-apo[a] monoclonal antibodies (K07, K09) and were revealed by a mixture of six anti-apoB monoclonal antibodies coupled to peroxidase. Since apo[a] and plasminogen have striking similarities in protein structure, the selective binding of Lp[a]:B in our assay depended upon the marked difference in affinity of the K07 and K09 mixture for Lp[a]:B (Kd = 0.32 x 10(-10) M) versus plasminogen (Kd = 0.47 x 10(-7)M). The high sensitivity (the Lp[a]:B working range 0.06-0.40 micrograms/ml) and the use of anti-apoB as antibody tracer added to the selectivity of the assay. The expression of K07 and K09 epitopes determined by competitive inhibition method and the reactivity of Lp[a]:B particles measured by bi-site ELISA were similar on individual lipoproteins, independent to their plasma levels. The assay is precise, and intra- and interassay coefficients of variation were 4.7% and 9.6%, respectively. It yields quantitative Lp[a]:B values that correlate highly with Lp[a] levels obtained by electroimmunoassay with polyclonal antibody (r = 0.73) or with Lp[a] levels measured by the other bi-site ELISA using only K07 and K09 antibodies (r = 0.96). However, upon analyzing each individual plasma with an arbitrary Lp[a]-cut off of 15 mg/dl, evidence of the qualitative aspect of the lipoprotein was obtained. The group with Lp[a] less than 15 mg/dl had higher frequency of subjects (65%) with the ratio Lp[a]/Lp[a]:B above 1.5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Lipoprotein [a] (Lp[a]) contains equimolar amounts of apoB-100 and apolipoprotein [a] (apo[a]). Both proteins are amenable to degradation in vivo by mechanisms yet to be clearly defined. In this study, we examined the in vitro susceptibility of LDL and Lp[a], obtained from the same donor, to oxidation by either Cu(2)+ or the combined Crotalus adamanteus phospholipase A2 and soybean lipoxygenase system, monitoring the course of the reaction by the generation of conjugated dienes and fatty acids. In some experiments, treatment with leukocyte elastase (LE) or matrix metalloproteinase 12 (MMP-12) was administered before and after the oxidative step. In the case of Lp[a] we found that with both oxidizing systems, conditions that caused the breakdown of apoB-100 did not degrade apo[a] although oxidation-mediated changes were detected in the latter by intrinsic tryptophan fluorescence spectroscopy. Similar results were obtained with a reassembled Lp[a] obtained by incubating free apo[a] with LDL. Both apo[a] and apoB-100 were cleaved by LE and MMP-12 but the enzymatic cleavage was more marked when the preoxidized proteins were used as a substrate. Taken together, our in vitro studies indicate that apo[a] but not apoB-100 resists oxidative fragmentation, whereas both proteins are cleaved by enzymes of the serine and metalloproteinase families. We speculate that the fragments of apo[a] observed in vivo may be preferentially generated by proteolytic rather than oxidative events, whereas apoB-100 can be degraded by both mechanisms.  相似文献   

18.
Enzyme-linked immunoassay for Lp[a]   总被引:8,自引:0,他引:8  
Based on our findings that rabbit antisera raised against human Lp[a] or apo[a] have the potential to cross-react with plasminogen, and in some cases have nearly equal affinities for plasminogen and Lp[a], we have developed an assay for plasma Lp[a] based on a "sandwich" ELISA that is insensitive to the presence of plasminogen. This was accomplished through the use of anti-apo[a] as a capture antibody and quantitation of the bound Lp[a], i.e., the apoB-100-apo[a] complex, with an anti-apoB antibody. Although apo[a] is heterogeneous in size, all Lp[a] particles tested, either in pure form or contained in whole plasma, gave parallel dose-response curves and were immunologically equivalent. However, when purified Lp[a] particles with different apo[a] isoforms were studied, those having larger isoforms were, on a weight basis, less reactive than those having a smaller size. Nearly equivalent reactivity was observed when protein concentration was expressed on a molar basis. The distribution of Lp[a] in a population of 84 subjects was skewed with one-third of the individuals having less than 1 mg/dl Lp[a] protein. All subjects tested had measurable concentrations of Lp[a] with a lower limit of detection of 0.030 mg/dl Lp[a] protein. The mean level was 3.2 mg/dl with a range of 0.045 to 13.3 mg/dl. These studies demonstrate the successful development of an ELISA for Lp[a] protein that is insensitive to the presence of plasminogen; that heterogeneity of Lp[a] and apo[a] are an important source of variation in the assay; and the need for an appropriate Lp[a] standard in order to minimize this variation.  相似文献   

19.
Although elevated plasma concentrations of lipoprotein [a] (Lp[a]) are considered to be a risk factor for atherosclerosis, the mechanisms by which Lp[a] mediates its pathogenic effects have not been conclusively determined. The apolipoprotein [a] (apo[a]) component of Lp[a] confers unique structural properties to this lipoprotein, including the ability to bind to lysine residues in biological substrates. It has been shown, however, that only a fraction of plasma Lp[a] (Lp[a]-Lys(+)) binds to lysine-Sepharose in vitro. The nature of the non-lysine-binding Lp[a] fraction in plasma (Lp[a]-Lys(-)) is currently unknown. In the present study, the Lp[a]-Lys(+) fraction was determined in the plasma of six unrelated individuals; the Lp[a]-Lys(+) fraction in these plasma samples ranged from approximately 37 to approximately 48%. Interestingly, purification of the Lp[a] by density gradient ultracentrifugation followed by gel filtration and ion-exchange chromatography resulted in progressive increases in the Lp[a]-Lys(+) fraction. Addition of either purified low density lipoprotein (LDL) or fibronectin to the purified Lp[a] at a 1:1 molar ratio reduced the Lp[a]-Lys(+) fraction (maximal decrease of 34 and 20%, respectively) whereas addition of both fibronectin and LDL to the purified Lp[a] resulted in a further decrease (45% maximally) in this fraction. Similar results were obtained by using a recombinant expression system for apo[a]: addition of a 4-fold molar excess of either LDL or fibronectin to conditioned medium containing metabolically labeled recombinant apo[a] reduced the Lys(+) fraction by 49 and 23%, respectively.Taken together, our data suggest that the lysine-binding heterogeneity of plasma Lp[a] is not primarily an intrinsic property of the lipoprotein, but rather results in large part from its ability to noncovalently associate with abundant plasma components such as LDL and fibronectin. These interactions appear to mask the lysine-binding site in apo[a] kringle IV type 10, which mediates the interaction of Lp[a] with lysine-Sepharose. The contribution of these interactions to the function of Lp[a] in vivo remains to be investigated.  相似文献   

20.
Lipoprotein [a] (Lp[a]) is a cholesterol-rich lipoprotein resembling LDL to which a large polymorphic glycoprotein, apolipoprotein [a] (apo[a]), is covalently coupled. Lp[a] usually exists as a free-standing particle in normolipidemic subjects; however, it can associate noncovalently with triglyceride-rich lipoproteins in hypertriglyceridemic (HTG) subjects. In this study, 10-78% of the Lp[a] present in five HTG subjects was found in the triglyceride-rich lipoprotein (TRL) fraction. The Lp[a]-TRL complex was resistant to dissociation by ultracentrifugation (UCF) alone, but was quantitatively dissociated by UCF in the presence of 100 mM proline. Of this dissociated Lp[a], 70-88% was in the form of a lipoprotein resembling conventional Lp[a]. Incubation of Lp[a]-depleted TRL with native Lp[a] resulted in a reconstituted Lp[a]-TRL complex that closely resembled the native isolates in all examined properties. Complex formation was inhibited by several compounds in the order proline > tranexamate > epsilon-aminocaproate > arginine > lysine. Neither plasminogen nor LDL inhibited binding of Lp[a] to TRL. We observed the preferential binding of Lp[a] containing higher apparent molecular weight apo[a] polymorphs to TRL both in native and reconstituted Lp[a]-TRL complexes. A disproportionate amount of Lp[a] was bound to the larger TRL particles. Although most apo[a] bound to TRL was in the form of conventional Lp[a] particles, lipid-free recombinant apo[a] was observed to bind TRL.These results provide unequivocal evidence of the existence of an Lp[a]-TRL complex under pathophysiologic conditions. The metabolic fate of the Lp[a]-TRL complex, which is more abundant in hypertriglyceridemia, may be different from that of conventional Lp[a], and may contribute uniquely to the progression or severity of cardiovascular disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号