首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C. granulata is a semiterrestrial crab that lives in the mesolittoral and the supralittoral zones of estuaries and faces hypoxia and anoxia when exposed to atmospheric air. The carbohydrate or protein content of the diets administered to the crabs induced different metabolic adjustments during anoxia and post-anoxia recovery period. During the first hour in anoxia a marked increase in L-lactate concentration in hemolymph was induced, followed by a reduction in its levels accompanied by two peaks in hepatopancreas gluconeogenic capacity. Anoxia exposure did not induce a reduction in the hepatopancreas phosphoenolpyruvate carboxykinase activity in either dietary group. Our results suggest that in anaerobiosis this crab uses the conversion of lactate to glucose in hepatopancreas to maintain the acid-base balance and the glucose supply. In post-anoxia recovery, the fate of L-lactate is the hepatopancreas gluconeogenesis in high protein maintained crabs. On the other hand, in the crabs maintained on carbohydrate-rich diet the L-lactate levels decreased gradually in the hemolymph during the post-anoxia recovery; however, the hepatopancreas gluconeogenesis did not increase. In both dietary groups, an increase in the gluconeogenic capacity of hepatopancreas occurred at 30 h of post-anoxia recovery.  相似文献   

2.
Anoxia-tolerant animal models are crucial to understand protective mechanisms during low oxygen excursions. As glycogen is the main fermentable fuel supporting energy production during oxygen tension reduction, understanding glycogen metabolism can provide important insights about processes involved in anoxia survival. In this report we studied carbohydrate metabolism regulation in the central nervous system (CNS) of an anoxia-tolerant land snail during experimental anoxia exposure and subsequent reoxygenation. Glucose uptake, glycogen synthesis from glucose, and the key enzymes of glycogen metabolism, glycogen synthase (GS) and glycogen phosphorylase (GP), were analyzed. When exposed to anoxia, the nervous ganglia of the snail achieved a sustained glucose uptake and glycogen synthesis levels, which seems important to maintain neural homeostasis. However, the activities of GS and GP were reduced, indicating a possible metabolic depression in the CNS. During the aerobic recovery period, the enzyme activities returned to basal values. The possible strategies used by Megalobulimus abbreviatus CNS to survive anoxia are discussed.  相似文献   

3.
4.
Abstract. Mitochondrial ultrastructure in the cells of coleoptiles of 4 d seedlings was investigated under conditions of a 1.5, 3, and 36 h anoxia and with subsequent transfer of the seedlings, after a 1.5 h anoxia, from the anaerobic into an aerobic medium. Even with short-term anoxia (1.5 h) destructive changes take place in the ultrastructure of mitochondria, which are reversible not only following the transfer of these seedlings from the anaerobic into aerobic conditions, but also with their continued maintenance under strict anoxia. Irreversible changes in the ultrastructure of mitochondria were seen only with a more prologed (36 h and longer) anoxia. The observed phenomena are discussed from the viewpoint of energy provision of the seedling cells in anoxia and post-anoxia.  相似文献   

5.
Leucocytosis was shown to occur in the pulmonate gastropod Biomphalaria glabrata exposed to the trematode Echinostoma lindoense. In these sensitized snails, the leukocyte count in the hemolymph was elevated 3 to 5 days postexposure to miracidia, and prior to complete encapsulation of sporocysts. This increase continued 1 to 5 days after destruction of sensitizing, irradiated E. lindoense sporocysts. Counts returned to normal levels after this period. A significant and more rapid increase in numbers of circulating leukocytes occurred 1 to 6 hr after reexposure of snails to a sensitizing dose of nonirradiated E. lindoense sporocysts. The leukocyte counts usually returned to normal levels after this period, except in snails in which some resensitizing sporocysts remained alive.  相似文献   

6.
Hemolymph glucose, alkaline phosphatase, lactic dehydrogenase, and creatine phosphokinase in Biomphalaria glabrata infected with Angiostrongylus costaricensis were significantly higher on day 27 postinfection (PI) than in uninfected snails. Hemolymph total calcium from infected snails was less on days 6, 12, and 27 PI than that from controls. Total hemolymph protein was similar for controls and infected animals during the entire study. Throughout the study the mean number of amoebocytes/mm3 hemolymph from infected snails was significantly less than that for controls. Mean total wet weights of digestive gland and foot muscle from infected and uninfected snails was similar throughout the study. Mean μg glycogen/mg wet weight of digestive gland from infected snails was significantly greater on days 24, 27, and 28 PI than that from controls. Mean μg glycogen/mg wet weight of foot muscle from infected snails was significantly reduced between days 12 and 28 PI from that of uninfected snails. It is suggested that hemolymph glucose and digestive gland glycogen in infected snails are augmented by glycogen breakdown in the foot muscle of parasitized animals. Elevations in hemolymph enzymes are due to tissue destruction by larvae emerging from the foot muscle of infected snails. Parasite-induced derangements in shell metabolism underlie observed changes in hemolymph calcium in infected snails.  相似文献   

7.
The activity of lactate dehydrogenase and the concentrations of glucose in the hemolymph and of glycogen in the digestive gland and cephalopedal mass of Biomphalaria glabrata experimentally infected with Angiostrongylus cantonensis were evaluated. Additionally, high performance liquid chromatography (HPLC) was used to determine the hemolymph concentrations of some carboxylic acids (oxalic, piruvic, lactic and succinic). After one, two and three weeks of infection, the snails were dissected to collect the hemolymph and separate the tissues. A significant reduction of the levels of glucose in the hemolymph was observed as of the first week of infection in relation to the control group. The lactate dehydrogenase activity of the infected group was significantly higher than the average of the control group. This increase was accompanied by a reduction of the levels of piruvic acid and an increase in the levels of lactic acid in the hemolymph of the parasited snails, confirming the acceleration of the anaerobic metabolism, necessary for the host to obtain energy and maintain its redox balance. In parallel, there was a decrease in the glycogen content of the storage tissues, with that reduction being significantly greater in the cephalopedal mass than the digestive gland, demonstrating that in this interaction system, the mobilization of glycogen was not sufficient to maintain and reestablish the normal glycemia of the infected snails.  相似文献   

8.
The present study assesses the effects of 1-h anoxia and 3-h post-anoxia recovery period on the activity of pyruvate kinase (PK), 14CO2 produced from 14C-glucose and 14C-lactate, ATP, and glycogen levels in the jaw muscle of Chasmagnathus granulatus fed either a carbohydrate-rich (HC) or high-protein (HP) diet.In the HC control group the jaw muscle PK activity was higher than in HP-fed crabs. In jaw muscle from control HP-fed crabs the lactate oxidation was higher than in HC-fed animals. We observed increased PK activity and ATP concentration and a reduction in the glycogen concentration, 14CO2 production from 14C-lactate in HP-fed crab jaw muscle during anoxia. In crabs fed an HC diet the PK activity decreased in anoxia, the 14CO2 production from 14C-glucose increased, and the 14CO2 production from 14C-lactate did not change.During recovery, a low oxidation capacity for lactate was found in jaw muscle of both dietary groups. PK activity and 14CO2 production from 14C-glucose were high during the recovery period only in the jaw muscle from HP-fed crabs.Recovery decreased the ATP concentration of both dietary groups as compared to anoxia and normoxia, and did not restore the glycogen concentration in the jaw muscle.  相似文献   

9.
Giant growth, depletion of energy stores, and inhibition of reproductive activity are striking effects of many trematode parasites on their intermediate snail hosts. Two hypotheses have been put forward to explain these phenomena: (1) host and parasite compete for energy rich and other essential nutrients, with the parasite as the winner, and (2) the parasite intervenes in the endocrine control of reproduction of the snail. These hypotheses were tested in the present study with the Trichobilharzia ocellata/Lymnaea stagnalis association. The snails were infected at a juvenile stage, and release of cercariae started on Day 55 after exposure. It was shown that enhanced growth of infected snails is not paralleled by a greater increase in dry weight, but hemolymph volume does increase, being 35% greater than in the noninfected controls. Control snails, on the other hand, showed an increase in the percentage body dry weight during sexual maturation. The conclusion is that infected snails retain an essentially juvenile body structure. In control snails, glycogen was depleted from the mantle store at the start of egg laying but the onset of cercariae production marked a severe glycogen depletion from the headfoot and the mantle in infected snails, being nearly complete on Day 68 after exposure. The hemolymph glucose concentration was only slightly lower in infected than in control snails and it did not change (in both groups) during glycogen mobilization. This suggests that glycogen mobilization does not result from the snail and the parasite competing directly for metabolites within the hemolymph. Infection inhibited the maturation of the accessory sex organs: there was no increase in the relative wet weights nor in the amounts of DNA and secretion products in the albumin and prostate glands. Infected snails did not lay eggs. It is presumed that the parasite produces one or more agents which intervene in the action of the gonadotrophic hormones. The release of these agents commences at an early stage of infection.  相似文献   

10.
Abstract. The tiger beetle, Phaeoxantha klugii Chaudoir, survives the annual inundation period in Central Amazonian floodplains as a third‐instar larvae submerged in the soil at approximately 29 °C for up to 3.5 months. Previous studies showed an exceptional anoxia resistance in these larvae and this study investigates whether they perform anaerobiosis. Larvae collected in the field were exposed to a pure nitrogen atmosphere for 0–9 days in the laboratory. The content of lactate, alanine, free sugars and glycogen is analysed in surviving larvae. Lactate and alanine contents rise during anoxia from around 1.5 and 7 to 6–14 and 15–22 µmol g?1 fresh mass, respectively, providing evidence for anaerobic metabolism. Both compounds show a steep increase during the first 12 h and a tendency to rise further with increasing duration of anoxic conditions, indicating a significant metabolic depression within the first day. Content of free sugars and glycogen varies greatly between individuals and ranges from 0.08–2.5 and 0.05–2.9 mg g?1 fresh mass, respectively. Whether glycogen is used as metabolic substrate for anaerobiosis could not be verified. The findings for free sugars indicate that larvae apparently maintain the ability to regulate the level of glucose and/or trehalose even after 9 days of anoxia.  相似文献   

11.
Glycogen Metabolism in Neonatal Rat Brain During Anoxia and Recovery   总被引:2,自引:1,他引:1  
Abstract: Metabolic alterations in glycogen and in glycogen-related metabo lites were studied in neonatal rat brain during controlled anoxia and recovery. One-day postnatal rats were exposed to 100% N, at 37°C for up to 20 min; some rats were allowed to recover in air. Animals were frozen in liquid N, and the brains were prepared for fluorometric analysis of compounds involved in glycogen turnover. During anoxia, glycogen decreased by 29% and 42% at 10 and 20 min, respectively; the free (soluble) and bound (insoluble) components of glycogen decreased in nearly equal proportions. Brain glucose decreased by 72% at 10 min with little further change there after; G-6-P, G-1-P, and UDPG also declined. During recovery from anoxia, glucose and G-6-P increased above control levels for up to 60 min. G-1-P paralleled G-6-P levels, but UDPG remained low. Glycogen returned to control values by 4 h. The findings suggest that although glycogen is mobilized slowly in newborn rat brain, the metabolite contributes at least one-third of the cerebral energy supply during anoxia. Presumably, readily available stores of glycogen combined with low cerebral metabolic requirements underscore the known tolerence of immature animals to hypoxic stress. Glycogen accumulation during recovery appears to be facilitated at the synthetase step, since equilibrium measurements of the phosphoglucomutase and pyrophosphorylase systems indicate that these reactions are not rate-limiting for glycogen synthesis.  相似文献   

12.
Specimens of the stone crab, Menippe mercenaria, survived severe hypoxia (PO2 less than 8mm Hg) for at least 12 hr at 28-30 degrees C. During the time course of 12 hr of hypoxia, hemolymph L-lactate levels rose to 30-50 mumoles/g wet wt. There was a slight elevation of L-alanine levels, whereas succinate was found in only trace quantities in the hemolymph. Pronounced metabolic changes took place in the heart, cheliped closer, and leg socket muscles during severe hypoxia. L-lactate accumulated to levels ranging from 16-20 mumoles/g wet wt. There were pronounced changes in high-energy phosphate levels in the cheliped closer and leg socket muscles. Taking into account expected intra- and extracellular water content, the calculated intracellular lactate content in the three muscles investigated is substantially less than the hemolymph lactate concentrations. Part of this reverse concentration gradient may be accounted for by the reduction in lactate activity due to cation-lactate complex formation. Hemolymph calcium and magnesium concentrations rose considerably during severe hypoxia. During recovery from severe hypoxia, approximately 50% of the accumulated lactate in the hemolymph was cleared in 6 hr. Hemolymph lactate and alanine levels returned to near control levels after 24 hr of recovery. This study shows that the stone crab, M. mercenaria, survives severe hypoxia by a reliance on glycogen fermentation to lactate. This species is capable of tolerating high levels of accumulated lactate.  相似文献   

13.
Embryos of the annual killifish Austrofundulus limnaeus can experience oxygen deprivation as part of their normal developmental environment. We exposed embryos to anoxia and monitored heart activity for 48 hr, and subsequent aerobic recovery from anoxia for 40 hr. Embryos were tested at four different developmental stages that differ in their tolerance of anoxia. Our results indicate that high tolerance of anoxia is associated with an arrest of heart contractility during the first 24 hr of anoxia. These embryos recover to normoxic levels of heart rate within 16 hr of aerobic recovery. In contrast, embryos from later developmental stages that have a highly reduced ability to survive long-term anoxia experience a severe bradycardia but not an arrest of heart rate. These data illustrate a new and potentially powerful model for investigating the effects of anoxia on the developing cardiovascular system in vertebrates.  相似文献   

14.
Continuous exposure of Biomphalaria glabrata snails to 0.1% colchicine resulted in a significant increase, relative to non-exposed snails, in the number of arrested mitotic figures in the amebocyte-producing organ (APO) as soon as 4 h, with peak numbers after 12 h of exposure. The number of circulating hemocytes was significantly elevated at 24 h. However, by 72 h both the number of mitotic figures in the APO and the concentration of circulating hemocytes in the hemolymph had returned to control levels. Hemocytes appeared to possess normal morphology throughout this exposure, including the formation of long filopodia with supporting rodlike structures that have been reported to contain microtubules. Snail survival decreased as a function of exposure time. Significantly fewer snails, relative to controls, survived a 48-h exposure, and only 1 out of 30 snails recovered from a 72-h exposure to 0.1% colchicine. Colchicine-exposed snails displayed intoxicated behavior, even upon removal from the colchicine solution, although no histopathology was evident in the CNS of snails exposed for 72 h.  相似文献   

15.
Studies with the isolated perfused working rat heart were carried out to investigate factors that may enable the heart to recover after periods of anoxia. It was found that the presence of glucose in the perfusion fluid during anoxia was essential for complete post-anoxic recovery and the presence of a high concentration of K(+) increased not only the rate of recovery but also the final extent of recovery. In an attempt to clarify the roles played by glucose and K(+) in aiding the survival and recovery of the anoxic myocardium the concentrations of parameters associated with energy liberation and anaerobic glycolysis (ATP, ADP, AMP, P(i), creatine phosphate, glycogen and lactate) were measured in the presence and absence of glucose during the anoxic phase. Determinations of these parameters were carried out during the working aerobic control period, the anoxic period (K(+) arrest) and the recovery period. The results demonstrated that glucose acted as an energy source during anoxia and thus maintained myocardial concentrations of high-energy phosphates, particularly ATP. These studies have also shown a direct relationship between the ability of the heart to recover and the concentration of myocardial ATP at the time of reoxygenation.  相似文献   

16.
Rhizopus stolonifer sporangiospores developed prominent ultrastructural changes under anoxia. Mitochondria were scattered randomly throughout the cytoplasm in spores incubated aerobically for 3 hr, but moved to the periphery of the cytoplasm when the spores were exposed to anoxia. Endoplasmic reticulum, inconspicuous in control spores, appeared near the plasmalemma and was frequently found connected to a nuclear membrane. The cytoplasm, otherwise usually uniformly dense and containing abundant ribosomes, appeared mottled under anoxia. The absence of ribosomes could account for the mottled appearance. Lipid inclusions were distinctively separated from the electron-transparent areas of the mottled cytoplasm. The increasing thickness of the inner wall indicated that the metabolic activity of spores continued under anoxia. When aerobic conditions succeeded anoxia, germ-tube protrusion occurred.  相似文献   

17.
碳水化合物对昆虫的能量代谢和物质合成具有重要的作用。本研究选用2种一般性生物碱(氢溴酸东莨菪碱和烟碱)以及2种β-葡萄糖苷类化合物(七叶灵和皂角苷), 研究其在不同浓度下对棉铃虫Helicoverpa armigera (Hübner)幼虫体内海藻糖酶活性及相关碳水化合物代谢的影响。结果表明: 用饲喂法处理3龄幼虫96 h后, 皂角苷对棉铃虫幼虫的活体抑制效果明显, 且随添加物浓度增高, 棉铃虫死亡率上升, 10, 20, 40 g/L浓度下棉铃虫的均重分别是0.194, 0.089和0.034 g, 分别为对照的86.99%, 39.91%和15.24%。对海藻糖酶活性及其相关代谢酶的测定结果表明, 2种苷类化合物显著抑制中肠海藻糖酶活性, 饲喂40 g/L皂角苷的试虫中肠海藻糖酶比活力仅是对照组的54.21%; 饲喂30 g/L七叶灵的试虫中肠海藻糖酶比活力为对照组的83.73%。而2种生物碱类化合物显著抑制血淋巴和脂肪体中海藻糖酶活性, 20 g/L氢溴酸东莨菪碱对棉铃虫血淋巴和脂肪体组织的海藻糖酶活性抑制率分别为7.24%和71.43%; 而20 g/L烟碱对试虫血淋巴和脂肪体组织的海藻糖酶活性抑制率为26.29%和33.44%。用氢溴酸东莨菪碱、 烟碱和七叶灵处理试虫后, 血淋巴海藻糖含量都有所增高。4种化合物能够导致试虫糖原磷酸化酶活性变化, 其中, 皂角苷在中肠和脂肪体表现为显著抑制作用, 而随外源化合物浓度变化, 糖原含量和糖原磷酸化酶活性表现为此消彼长关系。饲喂4种植物源化合物的试虫血淋巴中葡萄糖浓度变化和其海藻糖变化一致。本研究证明β-葡萄糖苷类化合物是海藻糖酶抑制剂, 在作为先导化合物进行农药创制开发方面具有重要意义。  相似文献   

18.
Specimens of Biomphalaria glabrata were exposed to 0.06 ppm of copper in the form of CuSO4, and the resulting changes in the wet and dry weights of the soft tissues and in the osmolality of the hemolymph were measured. The wet weights of snails exposed to copper increased as a function of time, while those of the controls decreased. The dry weights of both the experimental and control snails decreased equally. Finally, the ratio of wet weight to dry weight of the experimental snails was significantly higher than that of the controls after 24 and 48 hr of exposure to copper. In addition, the osmolality of the hemolymph of snails exposed to copper was significantly lower than that of the controls after 12, 24, and 36 hr of exposure. These data have led to the conclusion that exposure of B. glabrata to copper results in an osmotic influx of water into its tissues and thereby causes death.  相似文献   

19.
Elevated CO(2) levels are hypothesized to play a role in the initiation and maintenance of estivation in snails through disturbances of acid-base status. The aim of our study was to identify the ambient CO(2) threshold that induces disturbances in acid-base status in the air-breathing land snail Helix lucorum. Acid-base parameters were determined in the hemolymph of snails acclimated to 0.5%, 1%, 2%, 4%, and 8% CO(2) in air for 20 d. In addition, we evaluated the effects of long-term acclimation on metabolic rate and on levels of D-lactate dehydrogenase activity (D-LDH) and of D-lactate in snails after 20 d of exposure to increased CO(2) levels. Helix lucorum proved to be unable to compensate for a decrease in extracellular pH (pH(e)) when acclimated to levels higher than 1% CO(2) in air. The rate of oxygen consumption started to decrease when snails were acclimated to 0.5% CO(2) in air. However, there was no correlation between the drops in pH(e) and in metabolic rate. Long-term acclimation to elevated CO(2) levels induced an increase in the activity of D-LDH with a concomitant accumulation of D-lactate in tissues. This indicates that long-term acclimation to elevated ambient CO(2) levels could reduce the aerobic capacity of land snails and trigger expression of anaerobic pathways of ATP turnover. The threshold levels of ambient CO(2) that induce changes in acid-base status and elicit metabolic depression in adult land snails H. lucorum are higher than the future atmospheric levels that are expected to result from human use of fossil energy resources.  相似文献   

20.
Plasma levels of lactate and oxypurines markedly increased in both fed and fasted rats exposed to three acute anoxic states, cyanide poisoning, carbon monoxide poisoning and inhalation of oxygen-deficient gas, suggesting that the transition of aerobic to anaerobic metabolism occurred similarly in both groups. Plasma glucose level of fed rats increased 1.8-2.5 times after exposure to anoxia, whereas a remarkable hypoglycemia was induced by the exposure of fasted rats to anoxia. Hepatic glycogen stores in fed rats induced hyperglycemia, while exhaustion of the stores in fasted rats resulted in severe hypoglycemia during acute anoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号