首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
To study the role of subcortical structures and cerebellum nuclei in the genesis of the human brain potentials connected with motion patients were examined with parkinsonism and hyperkinetic form of children cerebral paralysis. In one group of patients the motor responses were recorded by means of long-term electrodes implanted with the medical purpose into the ventro-oral group of thalamus nuclei, subcortical nuclei and dentate cerebellum nuclei. In patients of the second group potentials, connected with motion were led from the scalp before and after one-moment destruction in the zone of the same structures. In ventro-oral and reticular thalamus nuclei lateral and medial segments of the pale globe and in the cerebellum dentate nucleus post-motor components were recorded which were considered as electrographic expression of motion realization and completion processes (P2 and N3) and also as slow negative oscillation (component N1), that pointed to participation of the studied structures not only in regulation of voluntary movement but also in the process of movement preparation. Absence of N2 component at recording motor responses from deep electrodes and its sufficient stability at scalp leads gave the reason to suggest that its genesis was connected with the cortex activity.  相似文献   

2.
Identification of a movement protein of rice yellow stunt rhabdovirus   总被引:3,自引:0,他引:3  
Rice yellow stunt rhabdovirus (RYSV) encodes seven genes in its negative-sense RNA genome in the order 3'-N-P-3-M-G-6-L-5'. The existence of gene 3 in the RYSV genome and an analogous gene(s) of other plant rhabdoviruses positioned between the P and M genes constitutes a unique feature for plant rhabdoviruses that is distinct from animal-infecting rhabdoviruses in which the P and M genes are directly linked. However, little is known about the function of these extra plant rhabdovirus genes. Here we provide evidence showing that the protein product encoded by gene 3 of RYSV, P3, possesses several properties related to a viral cell-to-cell movement protein (MP). Analyses of the primary and secondary protein structures suggested that RYSV P3 is a member of the "30K" superfamily of viral MPs. Biolistic bombardment transcomplementation experiments demonstrated that RYSV P3 can support the intercellular movement of a movement-deficient potexvirus mutant in Nicotiana benthamiana leaves. In addition, Northwestern blot analysis indicated that the RYSV P3 protein can bind single-stranded RNA in vitro, a common feature of viral MPs. Finally, glutathione S- transferase pull-down assays revealed a specific interaction between the RYSV P3 protein and the N protein which is a main component of the ribonucleocapsid, a subviral structure believed to be involved in the intercellular movement of plant rhabdoviruses. Together, these data suggest that RYSV P3 is likely a MP of RYSV, thus representing the first example of characterized MPs for plant rhabdoviruses.  相似文献   

3.
Studies attempting to relate the abnormalities of the frontal N30 components of the somatosensory evoked potentials (SEPs) to motor symptoms in Parkinson's disease (PD) have shown contradictory results. We recorded the frontal and parietal SEPs to median nerve stimulation in 2 groups of PD patients: a group of 17 patients presenting the wearing-off phenomenon, and a group of 10 untreated PD patients. The results were compared with a group of 13 healthy volunteers of the same age and with a group of 10 non-parkinsonian patients. All parkinsonian and non-parkinsonian patients were studied before (“off” condition) and after a subcutaneous injection of apomorphine (“on” condition). The gating effects of a voluntary movement (clenching of the hand) on the SEPs were also studied for the wearing-off group of PD patients (in states off and on) in comparison with the healthy subjects. At rest and in the off condition the amplitude of the frontal N30 was significantly reduced in the 2 groups of PD patients. We demonstrate that the movement gating ability of the PD patient is preserved in spite of the reduced amplitude of the frontal N30. This result suggests that the specific change in the frontal N30 in PD is not the consequence of a continuous gating of the sensory inflow by a motor corollary discharge. Clinical motor improvement induced by apomorphine was associated with a significant enhancement of the frontal N30 wave. In contrast, the subcortical P14 and N18 waves and the cortical N20, P22, P27 and N45 were not statistically modified by the drug. Apomorphine infusion did not change the absolute reduced voltage of the N30 reached during the movement gating. While the frontal N30 component of the non-parkinsonian patients was significantly lower in comparison to healthy subjects, this wave did not change after the apomorphine administration. In the wearing-off PD patient group the frontal N30 increment was positively correlated with the number of off hours per day. This specific apomorphine sensitivity of the frontal N30 was interpreted as a physiological index of the dopaminergic modulatory control exerted on the neuronal structures implicated in the generation of the frontal N30.  相似文献   

4.

Objective

The purpose of this study was to assess the frequency of persistent drug-induced movement disorders namely, tardive dyskinesia (TD), parkinsonism, akathisia and tardive dystonia in a representative sample of long-stay patients with chronic severe mental illness.

Method

Naturalistic study of 209, mainly white, antipsychotic-treated patients, mostly diagnosed with psychotic disorder. Of this group, the same rater examined 194 patients at least two times over a 4-year period, with a mean follow-up time of 1.1 years, with validated scales for TD, parkinsonism, akathisia, and tardive dystonia.

Results

The frequencies of persistent movement disorders in the sample were 28.4% for TD, 56.2% for parkinsonism, 4.6% for akathisia and 5.7% for tardive dystonia. Two-thirds of the participants displayed at least one type of persistent movement disorder.

Conclusions

Persistent movement disorder continues to be the norm for long-stay patients with chronic mental illness and long-term antipsychotic treatment. Measures are required to remedy this situation.  相似文献   

5.
Topical organization of the motor cortex was compared in outbred rats by the method of intracortical microstimulation in the norm and in different periods after unilateral partial decortication of the motor projection (MP) of the hind-leg. Stable state of the MPs of the fore- and hind-limbs was in the norm, and within their bounds there was an individual variability of MP zones of separate joints. After the operation, the reconstruction of the motor cortex organization in the opposite hemisphered appeared in later periods, in 5-7 months. Expansion was observed of the boundaries of the excitable area in caudal direction and reduction of the part of responses of the limbs distal muscles as compared to proximal ones and of the body muscles. 8-16 months after the operation, the reactions of axial muscles, including the ipsi- and bilateral ones, became more expressed.  相似文献   

6.
The data are presented on potentials revealed by averaging buman EEG sections recorded during termination of a motor act. The potential consisted of two components: fast positivity and slow negative wave. The complex under study was named "final" or "relaxation" potential. The latency of the "final" potential and that of the muscle relaxation were linearily related. The potential was recorded only in cases when the relaxation of all muscles involved was necessary for a motor task solving at movement termination. If some groups of muscles relaxed and the other ones contracted the potential was not recorded.  相似文献   

7.
Movement-related potentials (MRPs) associated with tongue protrusions and vocalizations were recorded from chronically implanted subdural electrodes over the lower perirolandic area in 7 patients being evaluated for epilepsy surgery. In 3 patients, tongue protrusions elicited a clearly defined, well localized slow negative Bereitschaftspotential (BP) at the motor tongue area, and a positive BP at the sensory tongue area. At the motor tongue area the negative BP was followed by a negative slope (NS′) and a motor potential (MP), and at the sensory tongue area the positive BP and a positive reafferent potential (RAP) were seen but no NS′ and MP could be identified. In the other 4 patients, tongue protrusions elicited positive BP, NS′ and MP at the motor and sensory tongue area, and positive RAP at the sensory area. It was concluded that BPs, NS′ and MPs are mainly generated in the motor cortex involving the crown as well as the anterior bank of the central fissure. The sensory cortex (areas 3a and 3b) also participated in the generation of BPs but to a lesser degree. Different degree of involvement of these multiple generators most likely explains the interindividual variability of polarity and distribution of the MRPs. RAPS most likely arise from primary sensory areas 1 and 2. Brain potentials were also recorded at the motor (2 patients) and sensory (2 patients) language areas, but no specific language-related potentials could be identified.Evoked potentials to lip stimulation were investigated in 4 patients. In 3 patients, the responses at the sensory tongue area (P16, N21 and P30) had the same latency but opposite polarity to those at the motor tongue area. In the other patient, the responses (P16, N21 and P30) at the motor and sensory tongue areas were of the same polarity. The MRPs to tongue protrusions in those 4 patients revealed the same polarity relationship between the pre- and postcentral potentials. However, the maximal amplitude of evoked potentials and MRPs was seen at almost the same electrodes, suggesting that the main generators for these MRPs and evoked potentials must be located at contiguous areas in the anterior and posterior bank, respectively, of the central fissure.  相似文献   

8.
Plasmodesmata (PD) are essential but poorly understood structures in plant cell walls that provide symplastic continuity and intercellular communication pathways between adjacent cells and thus play fundamental roles in development and pathogenesis. Viruses encode movement proteins (MPs) that modify these tightly regulated pores to facilitate their spread from cell to cell. The most striking of these modifications is observed for groups of viruses whose MPs form tubules that assemble in PDs and through which virions are transported to neighbouring cells. The nature of the molecular interactions between viral MPs and PD components and their role in viral movement has remained essentially unknown. Here, we show that the family of PD-located proteins (PDLPs) promotes the movement of viruses that use tubule-guided movement by interacting redundantly with tubule-forming MPs within PDs. Genetic disruption of this interaction leads to reduced tubule formation, delayed infection and attenuated symptoms. Our results implicate PDLPs as PD proteins with receptor-like properties involved the assembly of viral MPs into tubules to promote viral movement.  相似文献   

9.
Virus-encoded movement proteins (MPs) mediate cell-to-cell spread of viral RNA through plant membranous intercellular connections, the plasmodesmata. The molecular pathway by which MPs interact with viral genomes and target plasmodesmata channels is largely unknown. The 9-kDa MP from carnation mottle carmovirus (CarMV) contains two potential transmembrane domains. To explore the possibility that this protein is in fact an intrinsic membrane protein, we have investigated its insertion into the endoplasmic reticulum membrane. By using in vitro translation in the presence of dog pancreas microsomes, we demonstrate that CarMV p9 inserts into the endoplasmic reticulum without the aid of any additional viral or plant host components. We further show that the membrane topology of CarMV p9 is N(cyt)-C(cyt) (N and C termini of the protein facing the cytoplasm) by in vitro translation of a series of truncated and full-length constructs with engineered glycosylation sites. Based on these results, we propose a topological model in which CarMV p9 is anchored in the membrane with its N- and C-terminal tail segments interacting with its soluble, RNA-bound partner CarMV p7, to accomplish the viral cell-to-cell movement function.  相似文献   

10.
The cell-to-cell transport of plant viruses depends on one or more virus-encoded movement proteins (MPs). Some MPs are integral membrane proteins that interact with the membrane of the endoplasmic reticulum, but a detailed understanding of the interaction between MPs and biological membranes has been lacking. The cell-to-cell movement of the Prunus necrotic ringspot virus (PNRSV) is facilitated by a single MP of the 30K superfamily. Here, using a myriad of biochemical and biophysical approaches, we show that the PNRSV MP contains only one hydrophobic region (HR) that interacts with the membrane interface, as opposed to being a transmembrane protein. We also show that a proline residue located in the middle of the HR constrains the structural conformation of this region at the membrane interface, and its replacement precludes virus movement.Plant viruses encode movement proteins (MPs) that mediate the intra- and intercellular spread of the viral genome via plasmodesmata, membranous channels that traverse the walls of plant cells and enable intercellular transport and communication. There is a range of diversity in the number and type of viral proteins required for viral movement (21). Research on tobacco mosaic virus (TMV) has played a leading role in understanding MP activity (2). The genome of TMV encodes a single 30-kDa multidomain protein, the namesake of the 30K superfamily (7). Viral RNA is associated with the membrane of the endoplasmic reticulum (ER) and microtubules in the presence of this MP (23, 30).A large number of plant viruses have 30K MPs, which share common abilities, including binding nucleic acids, localizing and increasing the size exclusion limit of plasmodesmata, and interacting with the ER membrane. A topological model has been proposed in which the TMV MP has two putative transmembrane (TM) helices, both the N and C termini oriented toward the cytoplasm, and a short loop exposed in the ER lumen (4). There is less experimental information for other 30K MPs, but they are likely to have some membrane interaction.Direct experimental evidence of the integration of MPs into the membrane has been obtained only for small hydrophobic MPs that do not belong to the 30K superfamily. There are two TM segments in the p9 protein of carnation mottle virus (41), whereas the p6 protein of beet yellow virus (29) and the p7B protein of melon necrotic spot virus (22) have a single TM segment. In viruses with genomes that include three partially overlapping open reading frames, termed the triple-gene block (TGB), all three TGB proteins are required for movement where the two smaller proteins, TGBp2 and TGBp3, are also TM proteins (24). Furthermore, cross-linking experiments with carnation mottle virus p9 protein demonstrated that its membrane insertion occurs cotranslationally in a signal recognition particle-dependent manner and throughout the cellular membrane integration components, the translocon (33, 34).Prunus necrotic ringspot virus (PNRSV) is a tripartite, positive-strand RNA virus in the genus Ilarvirus of the family Bromoviridae. RNAs 1 and 2 encode the polymerase proteins P1 and P2, respectively. RNA 3 is translated into a single 30K-type MP. The coat protein is translated from a subgenomic RNA 4 produced during virus replication.The present study tackled the association of the PNRSV MP with biological membranes. The in vitro translation of model integral membrane protein constructs in the presence of microsomal membranes demonstrated that the hydrophobic region (HR) of the PNRSV MP did not span the membranes. Different biochemical and biophysical experiments suggested that the protein is tightly associated with, but does not traverse, the membrane, leaving both its N- and C-terminal hydrophilic regions facing the cytosol. Finally, a mutational analysis of the HR revealed that both the helicity and hydrophobicity of the region are essential for viral cell-to-cell movement.  相似文献   

11.
We investigated how the electrophysiological signature of contour integration is changed by the context in which a contour is embedded. Specifically, we manipulated the orientations of Gabor elements surrounding an embedded shape outline. The amplitudes of early visual components over posterior scalp regions were changed by the presence of a contour, and by the orientation of elements surrounding the contour. Differences in context type had an effect on the early P1 and N1 components, but not on the later P2 component. The presence of a contour had an effect on the N1 and P2 components, but not on the earlier P1 component. A modulatory effect of context on contour integration was observed on the N1 component. These results highlight the importance of the context in which contour integration takes place.  相似文献   

12.
Mechanical components of motor enzyme function.   总被引:1,自引:0,他引:1  
Motor enzymes use energy from ATP dephosphorylation to generate movement by a mechanical cycle, moving and pushing in one direction while attached to their cytoskeletal substrate, and recovering by moving relative to their substrate to a new attachment site. Mainstream models assert that movement while attached to the substrate results from preexisting strain in the attached motor. The additional underlying ideas can be described in terms of three components for strain amplification: a rotating lever arm, multiple attached states, and elastic compliance. These components determine how energy is recovered during the mechanical cycle and stored in a strained motor. They may coexist in a real motor; the challenge is to determine the contributions of each component. Because these components can generate similar relationships between strain energy and strain, standard measurements of motor function do not discriminate easily between these components. However, important information could be is provided by observations that suggest weak coupling between chemical and mechanical cycles, observations of negative force and movement events in single motor experiments, and the discovery that two motors that move in opposite directions have very similar structures. In models incorporating changes in conformation between attached states, these observations are only explained easily if the conformational changes are tightly coupled to changes in the strength of motor-substrate binding.  相似文献   

13.
Somatosensory evoked potentials (SSEP) elicited by electrical stimulation of the median nerve were compared in patients with Parkinson's disease and individuals without clinical manifestations of extrapyramidal insufficiency (46 and 55 persons, respectively). The amplitude of the N31 component was found to diminish in Parkinsonian patients while the latency of the P44 component increased significantly. In addition, these parameters depended on the age of the tested subjects; the direction of age-related changes of the N31 and P44 components coincided with those typical of parkinsonism. Our findings seem to suggest that changes in the somatic afferentation caused by Parkinson's disease and aging are of the same type and depend on disturbances in the nigrostriatal dopaminergic system.Neirofiziologiya/Neurophysiology, Vol. 26, No. 3, pp. 141–145, March–April, 1994.  相似文献   

14.
Some electrical properties of the synapses between central giant axons (presynaptic) and the motor giant axon (postsynaptic) of the crayfish abdominal nerve cord have been investigated. Postsynaptic potential change in response to presynaptic volleys contains two components: a spike potential and a synaptic potential of very long time course. Amplitude of the synaptic potential is graded according to the number of active presynaptic axons. Conductance increase in the synaptic membrane endures over most of the period of potential change, and it is this rather than the "electrical time constant" of the membrane that in large measure determines the form of the synaptic potential. Temporal summation of synaptic potential occurs during repetitive presynaptic stimulation, and after such stimulation the rate of decay of synaptic potential is greatly slowed.  相似文献   

15.
Recovery functions of somatosensory evoked potentials were studied by the paired stimulation technique in 61 patients with various neurological disorders. A less suppressive or hyperexcitable phase at short intervals, which had been shown in myoclonic patients, was seen in 22 patients. This abnormality was observed even in patients without myoclonus or involuntary movements, which suggests that this phenomenon is not mainly due to some dysfunction causing myoclonus or movement disorders. Less suppression at short intervals was observed for both N20-P25 and P25-N33 components in most of them. Less suppressive recovery of the N20-P25 component with normal recovery of the P25-N33 component was shown only in 3 patients with subcortical lesions with relative sparing of the cortical elements (Binswanger's subcortical encephalopathy). We conclude that less suppressive recovery of only the N20-P25 component suggests the presence of subcortical lesions.  相似文献   

16.

Background

In a subset of children with unilateral Cerebral Palsy (CP) a discrepancy between capacity and performance of the affected upper limb can be observed. This discrepancy is known as Developmental Disregard (DD). Though the phenomenon of DD has been well documented, its underlying cause is still under debate. DD has originally been explained based on principles of operant conditioning. Alternatively, it has been proposed that DD results from a diminished automaticity of movements, resulting in an increased cognitive load when using the affected hand. To investigate the amount of involved cognitive load we studied Event-Related Potentials (ERPs) preceding task-related motor responses during a single-hand capacity and a dual-hand performance task. It was hypothesised that children with DD show alterations related to long-latency ERP components when selecting a response with the affected upper limb, reflecting increased cognitive load in order to generate an adequate response and especially so within the dual-hand task.

Methods

Fifteen children with unilateral CP participated in the study. One of the participants was excluded due to major visual impairments. Seven of the remaining participants displayed DD. The other seven children served as a control group. All participants performed two versions of a cue-target paradigm, a single-hand capacity and a dual-hand performance task. The ERP components linked to target presentation were inspected: the mid-latency P2 component and the consecutive long-latency N2b component.

Results

In the dual-hand performance task children with DD showed an enhancement in mean amplitude of the long-latency N2b component when selecting a response with their affected hand. No differences were found regarding the amplitude of the mid-latency P2 component. No differences were observed regarding the single-hand capacity task. The control group did not display any differences in ERPs linked to target evaluation processes between both hands.

Conclusion

These electrophysiological findings show that DD is associated with increased cognitive load when movements are prepared with the affected hand during a dual-hand performance task. These findings confirm behavioural observations, advance our insights on the neural substrate of DD and have implications for therapy.  相似文献   

17.
18.
The purpose of this study is to evaluate prospectively the sensitivities of conventional and new electrophysiological techniques and to investigate their relationship with the body mass index (BMI) in a population of patients suspected of having carpal tunnel syndrome (CTS). In this study, 165 hands of 92 consecutive patients (81 female, 11 male) with clinical diagnosis of CTS were compared to reference population of 60 hands of 30 healthy subjects (26 female and 4 male). Extensive sensory and motor nerve conduction studies (NCSs) were performed in the diagnosis of subtle CTS patients. Also, the patients were divided into subgroups and sensitivities were determined according to BMI. The mean BMI was found to be significantly higher in the CTS than in the control group (p < 0.001). The sensitivity of the median sensory nerve latency (mSDL) and median motor distal latency (mMDL) were 75.8% and 68.5%, respectively. The most sensitive parameters of sensory and motor NCSs were the difference between median and ulnar sensory distal latencies to the fourth digit [(D4M-D4U), (77%)] and the median motor terminal latency index [(mTLI), (70.3%)], while the median-to-ulnar sensory action potential amplitude ratio (27%) and the median-thenar to ulnar-hypothenar motor action potential amplitude ratio (15%) were least sensitive tests. Sensory tests were more sensitive than motor NCSs. Combining mSDL with D4M-D4U, and mMDL with mTLI allowed for the detection of abnormalities in 150 (91%) and 132 (80%) hands, respectively. Measurements of all NCSs parameters were abnormal in obese than in non-obese patients when compared to the BMI. The newer nerve conduction techniques and combining different NCSs tests are more sensitive than single conventional NCS test for the diagnosis of suspected CTS. Meanwhile, CTS is associated with increasing BMI.  相似文献   

19.
Converging data suggest that abnormal synchronised oscillatory activity in the basal ganglia may contribute to bradykinesia in patients with Parkinson's disease. This synchrony preferentially occurs over 10-30 Hz, the so-called beta band. Correlative evidence has been supplemented by experiments in which direct stimulation of the basal ganglia in the beta band slows movement. Yet questions remain regarding the small scale of the latter effects and whether synchrony is an early or even obligatory feature of parkinsonism. Nevertheless, the principle that abnormally synchronised activity in the beta band can disrupt the function finds a precedent in the syndrome of cortical myoclonus. Here, pathologically synchronised discharges of pyramidal neurons are transmitted to the healthy spinal cord. The result is the synchronous discharge of motor units leading to rhythmic jerking.  相似文献   

20.
Tau pathology is implicated in mechanisms of neurodegenerative tauopathies, including Alzheimer’s disease (AD) and hereditary frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). It has been reported that transgenic mice expressing FTDP-17 mutation P301L of human tau (P301L mice) display extensive tau pathology and exhibit behavioral deficits with aging. In this study, we investigated the effects of T-817MA, a neuroprotective agent, on the motor and cognitive impairments associated with neuronal degeneration in P301L mice. T-817MA prevented the progression of motor deficit and the loss of spinal cord motor neurons in P301L mice. Furthermore, T-817MA significantly attenuated the spatial memory impairment and the reduction in synaptic terminal density in the hippocampal dentate gyrus of P301L mice. These results indicate that T-817MA improved the motor and cognitive impairments as a result of inhibiting neuronal degeneration derived from tau pathology in the P301L mice. Therefore, it is expected that T-817MA has a therapeutic potential for tau-related neurodegenerative diseases such as AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号