首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to elucidate a possible role of estrogen receptor in the gonadal sex differentiation and the sex reversal with sex steroids, we examined for the formation of testis or ovary in transgenic medaka fish overexpressing the medaka estrogen receptor under the constitutive medaka beta-actin promoter. The transgenic fish underwent the genetically determined gonadal differentiation and showed the same sex-reversal rates as those of wild-type non-transgenic fish after treatments with estrogen and androgen. These results present invaluable data to reconsider the role of estrogen receptor in the gonadal sex determination.  相似文献   

2.
3.
To elucidate the mechanisms of amphibian gonadal sex differentiation, we examined the expression of aromatase and androgen receptor (AR) mRNAs for days 17-31 after fertilization. The effects of inhibitors and sex steroid hormones were also examined. In ZZ males, expression of AR decreased after day 19, while aromatase expression was low throughout the sampling period. Males treated with 17beta-estradiol (E2) showed increasing aromatase expression after day 21, and formed ovaries. AR antagonist treatment also induced high-level aromatase expression and ovarian differentiation. In males co-treated with an aromatase inhibitor and E2, the undifferentiated gonads developed into testes despite high-level aromatase expression. Males treated with androgen and E2 before and during an estrogen sensitive period, respectively, also formed testes. In ZW females, AR expression persisted at a low-level, while aromatase expression increased after day 18. Short-term treatment with an aromatase inhibitor was ineffective in preventing ovarian differentiation, whereas long-term treatment resulted in testes developing from ovarian structure. Compared with the ZZ males and ZW females, WW females did not exhibit detectable expression of AR, suggesting that the active AR gene(s) itself, or a putative gene regulating AR gene expression, is located on Z chromosomes. From the time lag of aromatase expression between ZW females and ZZ males treated with E2 and the effect of AR antagonist, it was found that in males elevated AR expression suppresses aromatase expression directly or indirectly. Consequently, endogenous androgens, accumulated by blocking estrogen biosynthesis, induced testicular differentiation. The gonadogenesis of males is dependent on sex hormone, whereas that of females has evolved to hormone-independence.  相似文献   

4.
5.
6.
Developmental endocrinology of the reproductive axis in the chicken embryo   总被引:6,自引:0,他引:6  
In mammals, the phenotype of the homogametic sex develops in the (relative) absence of steroids and the phenotype of the heterogametic sex is imposed by the early action of steroids. In contrast, the heterogametic sex in avian species is the female and the presence of estrogens and their receptors plays a crucial role in female sexual differentiation. The time- and sex-dependent expression of enzymes involved in steroidogenesis which determine the ratio of androgens/estrogens produced by the gonads has been extensively investigated during the last 5-6 years. These results all show that the lack of estrogen synthesis in the male appears to be due to the extremely low levels of 17beta-hydroxysteroid dehydrogenase and P450aromatase expression. In females, extensive expression of the aromatase gene (around day 5-6 of incubation), leading to estrogen synthesis, and specific expression of the estrogen receptor-mRNA in the left gonad results in the development of a functional left ovary. Other sex differences can be found in the expression of the inhibin subunit genes in gonads of chicken embryos and in circulating concentrations of inhibin, follicle stimulating hormone (FSH) and steroids. Sex reversal attempts have been made by varying incubation temperatures, by using anti-estrogens, androgens, aromatase inhibitors and synthetic steroids. In ovo administration of a sex steroid hormone or an inhibitor of endogenous sex steroid synthesis can cause phenotypical sex reversal. All these experiments show that the development of gonads in birds is very sensitive to changes in the embryonic hormonal environment, sometimes resulting in changes of postnatal reproduction and even growth.  相似文献   

7.
Aromatase activity is higher in the male than in the female anterior hypothalamic-preoptic area (POA) in both the avian and the rodent adult brain. This sex difference is abolished after castration of the male and restored by androgen treatment. Gonadectomy has no effect on POA aromatase in the female. The aim of this study was to find out whether sex dimorphism in adult POA aromatase is only due to a sex difference in circulating gonadal hormones or dependent upon sexual differentiation of the brain. Aromatase activity was measured in vitro in microdissected POA samples using a sensitive radiometric assay. We examined the effects of gonadectomy and testosterone treatment on enzyme activity in adult rats and doves of both sexes. We also studied the effects of neonatal gonadectomy and hormone substitution in male and female rats. The results suggest that levels of POA aromatase in the adult depend primarily on gonadal activity, but that mechanisms involved in the regulation of aromatase and enzyme induction may be sex-specific and could result from sexual differentiation of the brain in early life. Further work will be required to determine the developmental stage when this occurs and the exact mechanism(s) responsible for increased sensitivity of the adult male POA to the inductive effect of testosterone.  相似文献   

8.
Aromatase activity is higher in the male than in the female anterior hypothalamic-preoptic area (POA) in both the avian and the rodent adult brain. This sex difference is abolished after castration of the male and restored by androgen treatment. Gonadectomy has no effect on POA aromatase in the female. The aim of this study was to find out whether sex dimorphism in adult POA aromatase is only due to a sex difference in circulating gonadal hormones or dependent upon sexual differentiation of the brain. Aromatase activity was measured in vitro in microdissected POA samples using a sensitive radiometric assay. We examined the effects of gonadectomy and testosterone treatment on enzyme activity in adult rats and doves of both sexes. We also studied the effects of neonatal gonadectomy and hormone substitution in male and female rats. The results suggest that levels of POA aromatase in the adult depend primarily on gonadal activity, but that mechanisms involved in the regulation of aromatase activity and enzyme induction may be sex-specific and could result from sexual differentiation of the brain in early life. Further work will be required to determine the developmental stage when this occurs and the exact mechanism(s) responsible for increased sensitivity of the adult male POA to the inductive effect of testosterone.  相似文献   

9.
To dissect the molecular and cellular basis of sexual differentiation of the teleost brain, which maintains marked sexual plasticity throughout life, we examined sex differences in neural expression of all subtypes of nuclear oestrogen and androgen receptors (ER and AR) in medaka. All receptors were differentially expressed between the sexes in specific nuclei in the forebrain. The most pronounced sex differences were found in several nuclei in the ventral telencephalic and preoptic areas, where ER and AR expression were prominent in females but almost completely absent in males, indicating that these nuclei represent female-specific target sites for both oestrogen and androgen in the brain. Subsequent analyses revealed that the female-specific expression of ER and AR is not under the direct control of sex-linked genes but is instead regulated positively by oestrogen and negatively by androgen in a transient and reversible manner. Taken together, the present study demonstrates that sex-specific target sites for both oestrogen and androgen occur in the brain as a result of the activational effects of gonadal steroids. The consequent sex-specific but reversible steroid sensitivity of the adult brain probably contributes substantially to the process of sexual differentiation and the persistent sexual plasticity of the teleost brain.  相似文献   

10.
We examined sex differences in tyrosine hydroxylase immunoreactive (TH-ir) cell populations in the preoptic area (POA), suprachiasmatic nucleus (SCN), posterior tuberculum (TP), and caudal hypothalamus (Hy) in the leopard frog (Rana pipiens), in addition to the effects of natural variation in sex steroid hormones on these same populations in both sexes. All four of these populations have been shown to be dopaminergic. Gonadal sex, androgens, and estrogen all influenced TH-ir cell numbers, but in a complicated pattern of interactions. After factoring out the effects of sex steroids by multiple regression, TH-ir cell numbers in all four areas differed between the sexes, with males having a greater number of TH-ir cells. The influence of androgens and estrogen differed by region and sex of the animals. Androgens were the main influence on TH-ir cell numbers in the POA and SCN. Plasma androgen concentrations were positively correlated with TH-ir cell numbers in both areas in males. In females, androgen concentration was negatively correlated with TH-ir cell numbers in the POA; there was no significant relationship in the SCN in females. In the more caudal populations, estrogen (E2) levels were positively correlated with TH-ir cell numbers in the TP of both males and females. In the caudal hypothalamus, E2 levels were positively correlated with TH-ir cell numbers in females, but there was no significant correlation in males. The results indicate that gonadal sex imposes a baseline sex difference in the four TH-ir (dopamine) populations, resulting in a higher number of such cells in males. Individual and sex-linked differences in gonadal steroid hormones lead to variation around this baseline condition, with androgens having a greater influence on rostral populations and estrogen on caudal populations. Last, an individual's gonadal sex determines the effect that androgens and estrogen have on each population.  相似文献   

11.
The formation of estrogens from androgens in all vertebrates is catalyzed by the "aromatase" complex, which consists of a membrane bound P(450) enzyme, P(450) aromatase (which binds the androgen substrate and inserts an oxygen into the molecule), and a flavoprotein (NADPH-cytochrome P450 reductase). Among vertebrates, the two major sites of aromatase expression are the brain and gonads. Given the importance of estrogen in reptile sex determination, we set out to examine whether P450arom was involved in the initiation and/or stabilization of sex determination in turtles. We examined the expression of aromatase activity in the brain and gonads of two turtle species exhibiting temperature dependent sex determination (TSD), the diamondback terrapin (Malaclemys terrapin), and the common snapping turtle (Chelydra serpentina). Estradiol when applied at stage 14 of the terrapin induces expression of aromatase in the gonad of embryos incubated at male temperatures (26.5 degrees C). The level of expression is similar to that of a normal embryonic ovary. When applied at stage 22, estradiol does not induce aromatase expression in the terrapin. The xenoestrogen, nonylphenol, sex reverses terrapin embryos at 26.5 degrees C. Letrazole, a nonsteroidal aromatase inhibitor, suppresses aromatase activity in the brain at either incubation temperature. Ovotestes are produced by letrazole administration in the terrapin when incubated at 30.5 degrees C. In the snapping turtle at stage 23, gonadal and brain aromatase activity in embryos incubated at female temperatures (30.5 degrees C) is nearly half that exhibited in terrapin embryos at the same temperature. Moreover, letrazole administration suppresses aromatase expression to nearly basal levels. At male incubation temperatures (26.5 degrees ), brain aromatase expression is nearly three times higher than at female temperatures, while gonadal expression levels are nearly one third lower. However, the gonadal expression levels at male temperatures in the snapping turtle are nearly 25 times higher than that found in the terrapin. Estradiol administration elevates this level nearly three fold. These data suggest that is not merely the expression of aromatase that is important for ovarian development, but that the level of expression may be more important.  相似文献   

12.
Two forms of cytochrome P450 aromatase, acting in both the brain and the ovary, have been implicated in controlling ovarian development in fish. To better understand the expression of these two enzymes during sexual differentiation in Atlantic halibut (Hippoglossus hippoglossus), real-time PCR was used to quantify the mRNA levels of ovary- (cyp19a) and brain-type cytochrome P450 aromatase (cyp19b) genes in the gonad and brain during gonadal development. Both enzymes showed high levels of expression in both tissues in developmental stages prior to histologically detectable ovarian differentiation (38 mm fork length), with increased expression occurring slightly earlier in the brain than the gonad. Cyp19a showed a second peak of expression in later stages (> 48 mm) in the gonad, but not the brain. Cyp19b expression was generally higher in the brain than the gonad. These results suggest that sexual differentiation may begin in the brain prior to gonadal differentiation, supporting the idea that steroid hormone expression in the brain is a key determinant of phenotypic sex in fish. In an examination of sexually immature adults, cyp19a was highly expressed in female gonad while cyp19b was very highly expressed in the pituitary of both sexes. The ratio of cyp19a to cyp19b expression was much higher in ovaries than in testes in the adult fish, so this ratio was analyzed in the developing gonads of juvenile halibut in an attempt to infer their sex. This was only partially successful, with about half the fish in later developmental stages showing apparently sex-specific differences in aromatase expression.  相似文献   

13.
14.
Estrogen treatment of hatchling female zebra finches causes the masculine development of singing behavior and of the telencephalic brain regions involved in the control of song. However, early estrogen treatment of males also blocks masculine development of copulatory behavior, presumably controlled by diencephalic regions. In an effort to determine whether the differences in estrogen action are related to sex and regional differences in androgen metabolism (estrogen synthesis or androgen inactivation), we measured aromatase and 5β-reductase activity in dissociated-cell cultures made separately from the telencephalon, diencephalon, and also cerebellum of hatching zebra finches under a variety of conditions. Cultures from all three brain regions express high levels of aromatase and 5β-reductase activity. Comparisons between telencephalic and diencephalic cultures of the activity and kinetics of aromatase suggest that the telencephalic cultures convert androgen to estrogen more efficiently than diencephalic cultures, which might be important in the differential action of estrogen in the two brain regions. However, the activity of neither aromatase nor 5β-reductase was significantly different between the sexes in either telencephalic or diencephalic cultures. Thus, comparisons between the sexes do not support the idea that differences in posthatching aromatase or 5β-reductase activity account for the pattern of sexual differentiation of the song and copulatory systems. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
In fish, according to Yamamoto's model, androgens would drive testis differentiation and estrogens ovarian differentiation. In order to study the implication of steroid enzymes in rainbow trout gonadal differentiation, we examined the expression of some steroid enzyme genes during natural differentiation (cholesterol side chain cleavage = P450scc, 17-hydroxylase/lyase = P450c17, 3beta-hydroxysteroid dehydrogenase = 3betaHSD) and androgen-induced differentiation (P450scc, P450c17, 3betaHSD, aromatase = P450aro, and 11beta-hydroxylase = P45011beta). Expressions of P450scc, 3betaHSD, and P450c17 were all detected in male and female gonads at 55 days post-fertilization (dpf), i.e., two weeks before histological differentiation. There were no differences in their expression level respective to the sex. The androgen treatment was carried out by administration of 11beta-hydroxyandrostenedione (11betaOHDelta4) in genetic all-female populations and the resulting sex ratios were found to be 100% male even at a low dosage of 1 mg/kg of food. Following 11betaOHDelta4 treatment, only the expression of P450c17 was found to be sustained when compared with the female untreated control. In contrast, P450scc was clearly up-regulated and 3betaHSD and P450aro down-regulated by the androgen treatment. P45011beta gene expression remained low in gonads of androgen-treated females, as it did in control untreated females. These results together demonstrate that steroidogenesis in rainbow trout is potentially active in pre-differentiating gonads of both sexes, and that one of the masculinizing actions of androgens in the species may be to down-regulate the female-specific gonadal P450aro gene expression. However, in vivo androgen treatment in genetic females does not induce the same pattern of steroid gene expression as in genetic males. These data suggest that exogenous androgens might induce a male differentiation process with P450aro inhibition being one of the steps required. However, this process would not involve endogenously produced 11-oxygenated androgens.  相似文献   

16.
Clarke BL  Khosla S 《Steroids》2009,74(3):296-305
Testosterone is the major gonadal sex steroid produced by the testes in men. Testosterone is also produced in smaller amounts by the ovaries in women. The adrenal glands produce the weaker androgens dehydroepiandrosterone, dehydroepiandrosterone sulfate, and androstenedione. These androgens collectively affect skeletal homeostasis throughout life in both men and women, particularly at puberty and during adult life. Because testosterone can be metabolized to estradiol by the aromatase enzyme, there has been controversy as to which gonadal sex steroid has the greater skeletal effect. The current evidence suggests that estradiol plays a greater role in maintenance of skeletal health than testosterone, but that androgens also have direct beneficial effects on bone. Supraphysiological levels of testosterone likely have similar effects on bone as lower levels via direct interaction with androgen receptors, as well as effects mediated by estrogen receptors after aromatization to estradiol. Whether high doses of synthetic, non-aromatizable androgens may, in fact, be detrimental to bone due to suppression of endogenous testosterone (and estrogen) levels is a potential concern that warrants further study.  相似文献   

17.
18.
A genetic switch determines whether the indifferent gonad develops into an ovary or a testis. In adult females of many avian species, the left ovary is functional while the right one regresses. In the embryo, bone morphogenetic proteins (BMP) mediate biological effects in many organ developments but their roles in avian sex determination and gonadal differentiation remains largely unknown. Here, we report the sex-specific and left-right (L-R) asymmetric expression pattern of Bmp7 in the chicken gonadogenesis. Bmp7 was L-R asymmetrically expressed at the beginning of genital ridge formation. After sexual differentiation occurred, sex-specific expression pattern of Bmp7 was observed in the ovary mesenchyme. In addition, ovary-specific Bmp7 expression was reduced in experimentally induced female-to-male reversal using the aromatase inhibitor (AI). These dynamic changes of expression pattern of Bmp7 in the gonad with or without AI treatment suggest that BMP may play roles in determination of L-R asymmetric development and sex-dependent differentiation in the avian gonadogenesis.  相似文献   

19.
Testicular type Sox9 is the most upstream conserved gene in the sex determining cascade among vertebrate. However, in medaka, only one Sox9 gene was identified as expressed in the ovary; no other Sox9 gene was reported expressed in the testis. We explored the medaka genome and cloned a novel testicular type Sox9 cDNA. Phylogenetic analysis revealed that both our isolated Sox9 and the already reportedly cloned medaka Sox9 belongs zebrafish Sox9a branch. Therefore, we named our gene Sox9a2. Unexpectedly, Sox9a2 mRNA was expressed in somatic cells surrounding germ cells at similar high levels in both sexes during early gonadal sex differentiation. However, at the initial stage of testicular tubules development, the expression of Sox9a2 was maintained only in XY gonads, and was remarkably reduced in XX gonads. These results suggest that Sox9a2 is not involved in early sex determination and differentiation, but is involved in the later development of testicular tubules in medaka.  相似文献   

20.
Cholesterol side chain cleavage cytochrome P450 (P450scc, Cyp11a) is responsible for the first step in steroidogenesis, catalyzing the conversion of cholesterol to prognenolone. To investigate the differentiation of steroid‐producing cells and the function of sex steroids during gonadal differentiation in the teleost fish, medaka (Oryzias latipes), we isolated the full length cDNA of medaka P450scc and analyzed the expression pattern of P450scc mRNA during gonadal development using in situ hybridization. At hatching, and just after the initiation of morphological sex differentiation, we did not detect any P450scc expression in both sexes. In male gonads, expression of P450scc was detected in the interstitial somatic cells 15 days after hatching following the formation of the seminiferous tubule precursor, and was maintained in the interstitial somatic cells throughout testicular development. In the female gonad, expression of P450scc was initially detected in interstitial somatic cells 5 days after hatching. Subsequently, the expression of P450scc was continuously detected in the interstitial somatic cells of the developing ovary. This expression pattern of P450scc differed from that of female specific steroidogenic enzyme P450arom. Both P450scc and P450arom expressing cells, only P450scc expressing cells, and only P450arom expressing cells were observed. Our results suggest that expression of steroidogenic enzymes is regulated by various mechanisms during ovarian development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号