首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study examines the indispensability of a nucleus or nucleus-deriving factors in the induction of cleavage in Xenopus eggs by testing cleavage in Xenopus eggs fertilized with ultraviolet (UV)-damaged sperm and deprived of the female nucleus. These eggs, which contain only one UV-damaged nucleus with one set of centrioles, undergo unique cleavages. Cleavage takes place in only one of the two blastomeres formed by the immediately preceding cleavage. Histologically, only one nucleus, which does not appear to be organized into typical chromosomes, is found in one of the two blastomeres formed by the immediately preceding cleavage. The typical bipolar spindle and the diastema, or a slit of astral rays, are formed in the blastomere that contains the nucleus. By contrast, only asters lacking the spindle and the diastema are formed in the remaining blastomeres, which do not contain a nucleus. The same results are obtained in eggs that contain two UV-damaged nuclei with one set of centrioles. In these eggs, cleavage appears to occur in one or two blastomeres that contain either or both of the nuclei and one bipolar spindle. In eggs that contain one intact and one UV-damaged nuclei, cleavage takes place quite normally with each blastomere containing one nucleus or one set of chromosomes as well as one bipolar spindle. Thus, there is a very close correlation between the presence of a nucleus and the formation of the mitotic spindle, the diastema and the cleavage furrow in the blastomeres of Xenopus embryos. We conclude that the presence of a nucleus or nucleus-deriving factors is indispensable for the formation of the bipolar spindle, the diastema and the cleavage furrow in the blastomeres of the Xenopus embryos.  相似文献   

2.
The organization of filamentous actin (F-actin) in living cells of the oomycete Phytophthora cinnamomi was determined during zoosporogenesis and zoospore encystment by microinjecting sporangia with fluorescently labeled phalloidin and observing resultant fluorescence by confocal microscopy. In multinucleate sporangia prior to the induction of cleavage, phalloidin labeling took the form of plaques which occurred mainly in the periphery of the sporangia. After induction of cleavage, phalloidin labeling showed that the plaques disappeared and that F-actin began to accumulate along the developing cleavage planes and around nuclei and water expulsion vacuoles. F-actin labeling was also observed near the plasma membrane in zoospores and young cysts but reverted to the plaque form in older cysts. Localization of F-actin close to the developing cleavage planes is consistent with the idea that actin microfilaments function in the positioning and expansion of the cleavage membranes. Observations of plaques of actin in living sporangia provide evidence that plaques are not aldehyde-induced fixation artifacts. Copyright 1998 Academic Press.  相似文献   

3.
Isolated rat liver nuclei and subnuclear fractions synthesize polyphosphoinositides in vitro in a mode dependent on the presence of nuclear membrane, detergent and exogenous substrates. The nuclear membrane is not essential as a source of lipid kinases, since the addition of exogenous phosphatidylinositol or phosphatidylinositol monophosphate to reaction mixtures lacking membranes restores the synthesis of phosphatidylinositol mono- and bisphosphate, respectively. Inositide phosphorylation is best accomplished by high-salt extracted nuclei and pre-detergent lamina. These data suggest that the nucleus, and especially the nuclear periphery, is a cell compartment in which polyphosphoinositide synthesis occurs; this might be related to the progression of phosphatidylinositol metabolism-dependent signals to the genetic apparatus.  相似文献   

4.
Control of first cleavage in single-cell reconstituted mouse embryos   总被引:3,自引:0,他引:3  
Karyoplasts derived from mouse embryos at the initial and final stages of the first or second mitotic interphase were fused to early and late enucleated 1-cell embryos. The time of cleavage of reconstituted and control embryos was recorded at 1-h or 8-h intervals after manipulation. This enabled assessment of nuclear and cytoplasmic control over the mitotic apparatus of the 1-cell embryo. Early nuclei from 1- or 2-cell embryos fused to late enucleated embryos delayed cleavage but for only a few hours. However, late nuclei fused to early enucleated embryos were unable to advance the cytoplasmic timing of the next cleavage division. Furthermore, these reconstituted embryos stayed in interphase longer than did controls and many embryos with nuclei derived from late 2-cell embryos failed to cleave. These findings suggest that, allowing for a short period, early nuclei can synchronize with late cytoplasm with no major damage to the cleavage apparatus. It is proposed that this period is required for the completion of DNA synthesis by the early nuclei. However, late nuclei cannot induce mitosis before the expected cytoplasmic time, and, with 2-cell karyoplasts, this interaction causes many embryos to 'block' in interphase, without cleaving, suggesting incompatible nucleo-cytoplasmic interactions between late 2-cell karyoplast and early 1-cell stage cytoplasm.  相似文献   

5.
6.
We describe novel structural domains in in vitro reconstituted Xenopus sperm nuclei, which we term RPA bodies; RPA is the only known marker of these structures. These bodies contain DNA and represent special chromatin domains as seen by transmission electron microscopy. We show that RPA bodies exhibit a similar ultrastructure in nuclei assembled in high-speed supernatant (HSS) of Xenopus egg extract and in nuclei assembled in HSS supplemented with low-speed supernatant (HSS + LSS nuclei). Moreover, RPA bodies are also formed when sperm chromatin containing double-stranded DNA breaks is incubated with HSS of egg extracts. RPA bodies appear to be compartmentalized. By immunoelectron microscopy we show that RPA is preferentially localized at the periphery of the bodies where DNA synthesis also occurs in HSS + LSS nuclei.  相似文献   

7.
8.
A polygonization-based method is used to estimate the fractal dimension and several new scalar lacunarity features from digitized transmission electron micrographs (TEM) of mouse liver cell nuclei. The fractal features have been estimated in different segments of 1D curves obtained by scanning the 2D cell nuclei in a spiral-like fashion called "peel-off scanning". This is a venue to separate estimates of fractal features in the center and periphery of a cell nucleus. Our aim was to see if a small set of fractal features could discriminate between samples from normal liver, hyperplastic nodules and hepatocellular carcinomas. The Bhattacharyya distance was used to evaluate the features. Bayesian classification with pooled co-variance matrix and equal prior probabilities was used as the rule for classification. Several single fractal features estimated from the periphery of the cell nuclei discriminated samples from the hyperplastic nodules and hepatocellular carcinomas from normal ones. The outer 25-30% of the cell nuclei contained important texture information about the differences between the classes. The polygonization-based method was also used as an analysis tool to relate the differences between the classes to differences in the chromatin structure.  相似文献   

9.
Summary The eggs of the gall midgeHeteropeza pygmaea develop parthenogenetically inside of the mother larva. They lack a chorion and remain enveloped by the follicular epithelium. After experimental elimination of the follicular epithelium naked eggs are formed, which reach the blastoderm stage but remain spherical instead of assuming an elongated shape. To analyze this peculiar egg development and the roles of egg shape and envelope during development, the ultrastructure of cleaving normal and naked eggs was investigated. It was shown that the number of elements of Golgi apparatus and endoplasmic reticulum strongly increases during early cleavage. Their association with cleavage furrows and nuclei suggests that these organelles play a dominant role in membrane production. Egg yolk consists of lipids and glycogen, wheareas no proteins are found. Cleaving eggs contain numerous vesicles with lysosomal characteristics, indicating intense autophagic processes. Cleavage furrow formation occurs independently from the positioning of cleavage nuclei. The numerous microtubules, which are associated with cleavage furrows and nuclei and located in the egg periphery, the intercellular bridges, and in the central part of the egg, suggest that the cytoskeleton has an important role in cleavage furrow formation, blastoderm layer establishment, and yolk localization. Since these processes are accurately accomplished in naked spherical eggs, they can be considered as independent of normal egg shape and the follicular epithelium.  相似文献   

10.
The appearance and stabilization of a core protein epitope of the snRNP is developmentally regulated during pig embryogenesis. The epitope recognized by the monoclonal antibody Y12 is present in the germinal vesicle of mature oocytes and interphase nuclei of late 4-cell stage (24 to 30 hours post cleavage to the 4-cell stage) to blastocyst stage embryos. There was no antibody localization within pronuclei, or nuclei of 2-cell or early 4-cell stage embryos. Zygotes or 2-cell stage embryos cultured in the presence of alpha-amanitin to the late 4-cell stage showed no immunoreactivity, whereas control embryos had immunoreactivity. Thus antibody localization was correlated with RNA synthesis and RNA processing that begins by 24 hours post cleavage to the 4-cell stage. A final experiment showed no detectable immunoreactivity in 16-cell stage nuclei that had been transferred to enucleated activated meiotic metaphase II oocytes. Since immunoreactivity is associated with active RNA synthesis and RNA processing, it suggests that the 16-cell stage nucleus, which is RNA synthetically active, does not process RNA after nuclear transfer to an enucleated activated meiotic metaphase II oocyte.  相似文献   

11.
Cleavage and blastoderm formation in Coelopa frigida are extremely rapid developmental processes. In short (6–7 minutes) successive cell cycles, nuclei multiply and spread out through the egg. The movement seems to be aided by endoplasmic vesicles and cisternae which are in direct contact with the nuclear membrane. The first cells to separate from the egg plasmodium in early superficial cleavage stages are the pole cells. Precursor material from multivesicular bodies forms the pole cell membranes. The primary nuclei from the posterior pole region are removed from the blastoderm by the pole cell segregation. Blastoderm nuclei from the regions adjacent to the posterior pole migrate into the residual periplasm after pole cell segregation has been completed and constitute the blastoderm nuclei in that region of the egg. Nucleoli are not revealed during internal cleavage. They appear in pole cells shortly after their segregation. The generation time of the blastoderm nuclei increases after the twelfth cleavage. Concurrently, nucleoli form in the blastoderm nuclei and permanent cell membranes separate individual blastoderm cells. After blastoderm cells have been separated from each other, they remain in contact with the interior yolk sac by means of cytoplasmic canals. This contact is maintained at least during the early phases of blastokinesis. Observations on nuclear migration and rapid membrane formation are discussed as examples of protein assembly from subunits as an alternative to de novo protein synthesis in early stages of development.  相似文献   

12.
Biochemical and autoradiographic evidence show both glycogen synthesis and the presence of glycogen synthase (UDP glucose [UDPG]: glycogen 4-alpha-D-glucosyltransferase; EC 2.4.1.11) in isolated nuclei of Ehrlich-Lettré mouse ascites tumor cells of the mutant subline HD33. 5 d after tumor transplantation, glycogen (average 5-7 pg/cell) is stored mainly in the cell nuclei. The activity of glycogen synthase in isolated nuclei is 14.5 mU/mg protein. At least half of the total cellular glycogen synthase activity is present in the nuclei. The nuclear glycogen synthase activity exists almost exclusively in its b form. The Km value for (a + b) glycogen synthase is 1 x 10(-3) M UDPG, the activation constant is 5 x 10(-3) M glucose-6-phosphate (Glc-6-P). Light and electron microscopic autoradiographs of isolated nuclei incubated with UDP-[1-3H]glucose show the highest activity of glycogen synthesis not only in the periphery of glycogen deposits but also in interchromatin regions unrelated to detectable glycogen particles. Together with earlier findings on nuclear glycogen synthesis in intact HD33 ascites tumor cells (Zimmermann, H.-P., V. Granzow, and C. Granzow. 1976. J. Ultrastruct. Res. 54:115-123), the results of tests on isolated nuclei suggest a predominantly appositional mode of nuclear glycogen deposition, without participation of the nuclear membrane system. In intact cells, synthesis of UDPG for nuclear glycogen synthesis depends on the activity of the exclusively cytoplasmic UDPG pyrophosphorylase (UTP: alpha-D-glucose-1-phosphate uridylyltransferase; EC 2.7.7.9). However, we conclude that glycogen synthesis is not exclusively a cytoplasmic function and that the mammalian cell nucleus is capable of synthesizing glycogen.  相似文献   

13.
When thymocytes were cultured with adenosine, deoxyadenosine, or deoxyguanosine at 1 mM for 24 h, DNA cleavage at internucleosomal sites with multiples of approximately 180 bp was induced, followed by lactate dehydrogenase release into the medium. In the presence of coformycin, an adenosine deaminase inhibitor, or formycin B, a purine nucleoside phosphorylase inhibitor, DNA cleavage was induced by these nucleosides at concentrations of less than 50 microM. Other purine and pyrimidine ribo- and deoxyribonucleosides did not induce DNA cleavage or LDH release. Because thymocyte nuclei contain a Ca2+,Mg2+-dependent endonuclease, which preferentially cuts DNA in its linker regions, DNA fragmentation induced by the three purine nucleosides was suggested to occur through increased activity of the endonuclease. The DNA cleavage induced by the nucleosides required protein phosphorylation and synthesis, inasmuch as it was inhibited by an inhibitor of protein kinases, H-7, and by an inhibitor of protein synthesis, cycloheximide. The inhibition of DNA cleavage was accompanied by a reduction in lactate dehydrogenase release, suggesting a causal relationship between DNA cleavage and cell death. The DNA cleavage and subsequent cell lysis might be related to the selective thymocyte deletion observed in patients with adenosine deaminase or purine nucleoside phosphorylase deficiency.  相似文献   

14.
R Steward 《Cell》1989,59(6):1179-1188
dorsal is one of the maternally active dorsal-ventral polarity genes of Drosophila and is homologous to the vertebrate proto-oncogene c-rel. In wild-type embryos, the dorsal protein is found in the cytoplasm during cleavage. After the nuclei migrate to the periphery of the embryo, a ventral-to-dorsal gradient of nuclear dorsal protein is established. The formation of the nuclear gradient is disrupted in mutant embryos from other maternally active dorsal-ventral polarity genes: in dorsalized embryos only cytoplasmic protein is observed, while in ventralized embryos the nuclear gradient is shifted dorsally. My findings suggest that nuclear localization is critical for dorsal to function as a morphogen and that the distribution of the dorsal protein determines cell fate along the dorsal-ventral axis.  相似文献   

15.
Masuda K  Haruyama S  Fujino K 《Planta》1999,210(1):165-167
The architecture of the nuclei of higher plants includes a structure similar to the nuclear lamina of vertebrates. Changes in this structure were monitored during mitosis in carrot (Daucus carota L.) and celery (Apium graveolens L.) cells by immunofluorescence microscopy using an antibody that recognized the nuclear-matrix protein NMCP1. This protein has been shown to be localized exclusively at the periphery of the nucleus (K. Masuda et al. 1997, Exp Cell Res 232: 173–187). Immunofluorescence was recognized throughout cells in mitotic metaphase, although it was distributed predominantly in the mitotic spindle zone. At late anaphase or telophase, the immunofluorescence was localized around each set of daughter chromosomes. Immunofluorescence in newly formed daughter nuclei was restricted to the periphery of nuclei. This behavior was very similar to that of the nuclear lamina of vertebrates, suggesting that the structure located between the nuclear envelope and the chromosomes in plants disassembles and assembles in parallel with the disintegration and re-formation of the nuclear envelope. Received: 30 April 1999 / Accepted: 26 June 1999  相似文献   

16.
Conditions were established for the maximal synthesis of RNA by Xenopus cultured cell nuclei. These differed from those for mammalian nuclei in having a lower K+ optimum. The Xenopus nuclei showed all three RNA polymerase activities and processed rRNA to 28 S and 18 S species. Extracts of full-grown oocytes stimulated the rate of RNA synthesis 2.5-fold and caused it to continue linearly for at least 6 hr. This full effect could be produced by preincubation of the nuclei with oocyte extract, followed by their reisolation and assay under standard conditions, provided that the four ribonucleotide triphosphates were present during the preincubation. The stimulatory factor(s) were mainly present in the cytoplasm of the oocyte. They produced quantitatively identical stimulations of RNA synthesis in hamster nuclei. The overall stimulatory effect of cell extracts disappears in the egg, remains absent through cleavage, but reappears at the late blastula stage. This corresponds to the changes in RNA synthesis believed to occur in early development. The extracts affect polymerases I and III, but not II to a significant extent. They also stimulate the incorporation of [γ-32P]ATP and GTP into RNA, though to a lesser extent than the incorporation of [3H]UTP. The egg extract inhibits γ-32P incorporation. There therefore seems to be some effect on the initiation of new chain synthesis, but its magnitude is uncertain, and the effect could be indirect.  相似文献   

17.
Nuclei were isolated from somatic embryos of carrot (Daucus carota L.) using a buffer system containing non-ionic detergent. To prepare nuclear matrices, the purified membrane-depleted nuclei were digested with DNase I in combination with RNase A, followed by extraction with 1 M NaCl. The DNA residue in the final insoluble fraction was less than 4% of that in isolated nuclei, and most of the residual nuclei retained their sphericity. Electron microscopy revealed that the nuclear matrix was composed of a distinct peripheral layer, an internal matrix structure and some fibrils; residual nucleoli were observed when exogeneous RNase was not incorporated. The proteins extracted from the nuclei and nuclear subfractions were compared by gel electrophoresis, which showed that the residual fraction contained many minor proteins. To identify proteins showing specific localization at the nuclear periphery, we prepared monoclonal antibodies (MAbs) against an ion-exchange chromatography fraction extracted from carrot nuclear matrices. Immunofluorescence microscopy with one of the MAbs, CML-1, showed exclusive staining of the nuclear periphery. The MAb recognized several spots showing microheterogeneity, with a narrow range of pI and molecular mass upon immunoblotting. A complete set of these spots was shown to be conserved in nuclear matrices. On the other hand, MAb CML-13 appeared to react with the nuclear interior as well as the periphery, recognizing a 96-kDa polypeptide of the nuclear matrix. These proteins were thus demonstrated to lie at the nuclear periphery, and to constitute the nuclear matrices in carrot. The 96-kDa polypeptide is suggested to be similar to the 92-kDa nuclear protein reported by Beven et al. in carrot (Beven et al., 1991, J. Cell Sci. 98, 293–302).Abbreviations DEAE diethylaminoethyl - MAb monoclonal antibody - NEPHGE nonequilibrium pH gradient electrophoresis We wish to thank Ms. Akiko Itoh for excellent technical assistance. This work was supported by a Grant-in-Aid (05640738) from the Ministry of Education of Japan.  相似文献   

18.
19.
20.
Pre-Lamin A processing is linked to heterochromatin organization   总被引:1,自引:0,他引:1  
Pre-lamin A undergoes subsequent steps of post-translational modification at its C-terminus, including farnesylation, methylation, and cleavage by ZMPSTE24 metalloprotease. Here, we show that accumulation of different intermediates of pre-lamin A processing in nuclei, induced by expression of mutated pre-lamin A, differentially affected chromatin organization in human fibroblasts. Unprocessed (non-farnesylated) pre-lamin A accumulated in intranuclear foci, caused the redistribution of LAP2alpha and of the heterochromatin markers HP1alpha and trimethyl-K9-histone 3, and triggered heterochromatin localization in the nuclear interior. In contrast, the farnesylated and carboxymethylated lamin A precursor accumulated at the nuclear periphery and caused loss of heterochromatin markers and Lap2alpha in enlarged nuclei. Interestingly, pre-lamin A bound both HP1alpha and LAP2alpha in vivo, but the farnesylated form showed reduced affinity for HP1alpha. Our data show a link between pre-lamin A processing and heterochromatin remodeling and have major implications for understanding molecular mechanisms of human diseases linked to mutations in lamins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号