首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The dimer initiation site/dimer linkage sequence (DIS/DLS) region in the human immunodeficiency virus type 1 (HIV-1) RNA genome is suggested to play important roles in various steps of the virus life cycle. However, due to the presence of a putative DIS/DLS region located within the encapsidation signal region (E/psi), it is difficult to perform a mutational analysis of DIS/DLS without affecting the packaging of RNA into virions. Recently, we demonstrated that duplication of the DIS/DLS region in viral RNA caused the production of partially monomeric RNAs in virions, indicating that the region indeed mediated RNA-RNA interaction. We utilized this system to assess the precise location of DIS/DLS in the 5' region of the HIV-1 genome with minimum effect on RNA packaging. We found that the entire lower stem of the U5/L stem-loop was required for packaging, whereas the region important for dimer formation was only 10 bases long within the lower stem of the U5/L stem-loop. The R/U5 stem-loop was required for RNA packaging but was completely dispensable for dimer formation. The SL1 lower stem was important for both dimerization and packaging, but surprisingly, deletion of the palindromic sequence at the top of the loop only partially affected dimerization. These results clearly indicated that the E/psi of HIV-1 is much larger than the DIS/DLS and that the primary DIS/DLS is completely included in the E/psi. Therefore, it is suggested that RNA dimerization is a part of RNA packaging, which requires multiple steps.  相似文献   

4.
The genome of retroviruses, including human immunodeficiency virus type 1 (HIV-1), consists of two identical RNA strands that are packaged as noncovalently linked dimers. The core packaging and dimerization signals are located in the downstream part of the untranslated leader of HIV-1 RNA-the Psi and the dimerization initiation site (DIS) hairpins. The HIV-1 leader can adopt two alternative conformations that differ in the presentation of the DIS hairpin and consequently in their ability to dimerize in vitro. The branched multiple-hairpin (BMH) structure folds the poly(A) and DIS hairpins, but these domains are base paired in a long distance interaction (LDI) in the most stable LDI conformation. This LDI-BMH riboswitch regulates RNA dimerization in vitro. It was recently shown that the Psi hairpin structure is also presented differently in the LDI and BMH structures. Several detailed in vivo studies have indicated that sequences throughout the leader RNA contribute to RNA packaging, but how these diverse mutations affect the packaging mechanism is not known. We reasoned that these effects may be due to a change in the LDI-BMH equilibrium, and we therefore reanalyzed the structural effects of a large set of leader RNA mutations that were presented in three previous studies (J. L. Clever, D. Mirandar, Jr., and T. G. Parslow, J. Virol. 76:12381-12387, 2002; C. Helga-Maria, M. L. Hammarskjold, and D. Rekosh, J. Virol. 73:4127-4135, 1999; R. S. Russell, J. Hu, V. Beriault, A. J. Mouland, M. Laughrea, L. Kleiman, M. A. Wainberg, and C. Liang, J. Virol. 77:84-96, 2003). This analysis revealed a strict correlation between the status of the LDI-BMH equilibrium and RNA packaging. Furthermore, a correlation is apparent between RNA dimerization and RNA packaging, and these processes may be coordinated by the same LDI-BMH riboswitch mechanism.  相似文献   

5.
6.
7.
8.
9.
10.
We have previously described a series of human immunodeficiency virus type 1-based vectors in which efficient RNA encapsidation appeared to correlate with the presence of a 1.1-kb env gene fragment encompassing the Rev-responsive element (RRE). In this report, we explore in detail the role of the RRE and flanking env sequences in vector expression and RNA encapsidation. The analysis of a new series of vectors containing deletions within the env fragment failed to identify a discrete packaging signal, although the loss of certain sequences reduced packaging efficiency three- to fourfold. Complete removal of the env fragment resulted in a 100-fold decrease in the vector transduction titer but did not abolish RNA encapsidation. We conclude that the RRE and 3' env sequences are not essential for human immunodeficiency virus type 1 vector encapsidation but may be important in vectors in which a heterologous gene has been placed adjacent to the 5' packaging signal, potentially disrupting its structure.  相似文献   

11.
12.
We investigated the infectivities and replicative capacities of a large panel of variants of the molecular human immunodeficiency virus type 1 (HIV-1) NL4-3 clone that differ exclusively in the V3 region of the viral envelope glycoprotein and the nef gene. Our results demonstrate that Nef enhances virion infectivity and HIV-1 replication independently of the viral coreceptor tropism.  相似文献   

13.
D T Poon  J Wu    A Aldovini 《Journal of virology》1996,70(10):6607-6616
Interaction of the human immunodeficiency virus type 1 (HIV-1) Gag precursor polyprotein (Pr55Gag) with the viral genomic RNA is required for retroviral replication. Mutations that reduce RNA packaging efficiency have been localized to the highly basic nucleocapsid (NC) p7 domain of Pr55Gag, but the importance of the basic amino acid residues in specific viral RNA encapsidation and infectivity has not been thoroughly investigated in vivo. We have systematically substituted the positively charged residues of the NC domain of Pr55Gag in an HIV-1 viral clone by using alanine scanning mutagenesis and have assayed the effects of these mutations on virus replication, particle formation, and RNA packaging in vivo. Analysis of viral clones with single substitutions revealed that certain charged amino acid residues are more critical for RNA packaging efficiency and infectivity than others. Analysis of viral clones with multiple substitutions indicates that the presence of positive charge in each of three independent domains--the zinc-binding domains, the basic region that links them, and the residues that Hank the two zinc-binding domains--is necessary for efficient HIV-1 RNA packaging. Finally, we note that some mutations affect virus replication more drastically than RNA incorporation, providing in vivo evidence for the hypothesis that NC p7 may be involved in aspects of the HIV life cycle in addition to RNA packaging.  相似文献   

14.
15.
16.
17.
Splicing of human immunodeficiency virus type 1 (HIV-1) exon 6D is regulated by the presence of a complex splicing regulatory element (SRE) sequence that interacts with the splicing factors hnRNP H and SC35. In this work, we show that, in the context of the wild-type viral sequence, hnRNP H acts as a repressor of exon 6D inclusion independent of its binding to the SRE. However, hnRNP H binding to the SRE acts as an enhancer of exon 6D inclusion in the presence of a critical T-to-C mutation. These seemingly contrasting functional properties of hnRNP H appear to be caused by a change in the RNA secondary structure induced by the T-to-C mutation that affects the spatial location of bound hnRNP H with respect to the exon 6D splicing determinants. We propose a new regulatory mechanism mediated by RNA folding that may also explain the dual properties of hnRNP H in splicing regulation.  相似文献   

18.
19.
J Luban  S P Goff 《Journal of virology》1994,68(6):3784-3793
We previously identified blocks of sequence near the 5' end of the human immunodeficiency virus (HIV-1) genome which conferred on RNA the ability to bind specifically to the HIV-1 Gag polyprotein, Pr55gag (J. Luban and S. P. Goff, J. Virol. 65:3203-3212, 1991; R. Berkowitz, J. Luban, and S. P. Goff, J. Virol. 67:7190-7200, 1993). Here we report the use of an RNase protection assay to quantify the effect of deletion of these sequences on RNA packaging into virions. First, we demonstrated with wild-type HIV-1 sequences that in comparison with spliced viral RNA, full-length viral genomic RNA is enriched 20-fold in virions. A previously described mutation with deletion of sequences between the major splice donor and the first codon of gag (A. Lever, H. Gottlinger, W. Haseltine, and J. Sodroski, J. Virol. 63:4085-4087, 1989) disrupted these ratios such that different HIV-1 RNA forms were packaged in direct proportion to cytoplasmic concentrations. The effect of deletion mutations preceding and within gag coding sequence on packaging was then tested in competition with RNAs containing wild-type packaging sequences. Using this system, we were able to demonstrate significant effects on packaging of RNAs with mutations immediately preceding the first codon of gag. The greatest reduction in packaging was seen with RNAs lacking the first 40 nucleotides of gag coding sequence, although sequences more 3' had slight additional effects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号