首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bacterial chemotaxis, the directed movement of a cell population in response to a chemical gradient, plays a critical role in the distribution and dynamic interaction of bacterial populations in nonmixed systems. Therefore, in order to make reliable predictions about the migratory behavior of bacteria within the environment, a quantitative characterization of the chemotactic response in terms of intrinsic cell properties is needed.The design of the stopped-flow diffusion chamber (SFDC) provides a well-characterized chemical gradient and reliable method for measuring bacterial migration behavior. During flow through the chamber, a step change in chemical concentration is imposed on a uniform suspension of bacteria. Once flow is stopped, diffusion causes a transient chemical gradient to develop, and bacteria respond by forming a band of high cell density which travels toward higher concentrations of the attractant. Changes in bacterial spatial distributions observed through light scattering are recorded on photomicrographs during a 10-min period. Computer-aided image analysis converts absorbance of the photographic negatives to a digital representation of bacterial density profiles. A mathematical model (part II) is used to quantitatively characterize these observations in terms of intrinsic cell parameters: a chemotactic sensitivity coefficient, mu(0), from the aggregate cell density accumulated in the band and a random motility coefficient, mu, from population dispersion in the absence of a chemical gradient.Using the SFDC assay and an individual-cell-based mathematical model, we successfully determined values for both of these population parameters for Escherichia coli K12 responding to fucose. The values obtained were mu = 1.1 +/- 0. 4 x 10(-5) cm(2)/s and chi(o) = 8 +/- 3 +/- 10(-5) cm(2)/s. We have demonstrated a method capable of determining these parameter values from the now validated mathematical model which will be useful for predicting bacterial migration in application systems.  相似文献   

3.
An individual cell-based mathematical model of Rivero et al. provides a framework for determining values of the chemotactic sensitivity coefficient chi 0, an intrinsic cell population parameter that characterizes the chemotactic response of bacterial populations. This coefficient can theoretically relate the swimming behavior of individual cells to the resulting migration of a bacterial population. When this model is applied to the commonly used capillary assay, an approximate solution can be obtained for a particular range of chemotactic strengths yielding a very simple analytical expression for estimating the value of chi 0, [formula: see text] from measurements of cell accumulation in the capillary, N, when attractant uptake is negligible. A0 and A infinity are the dimensionless attractant concentrations initially present at the mouth of the capillary and far into the capillary, respectively, which are scaled by Kd, the effective dissociation constant for receptor-attractant binding. D is the attractant diffusivity, and mu is the cell random motility coefficient. NRM is the cell accumulation in the capillary in the absence of an attractant gradient, from which mu can be determined independently as mu = (pi/4t)(NRM/pi r2bc)2, with r the capillary tube radius and bc the bacterial density initially in the chamber. When attractant uptake is significant, a slightly more involved procedure requiring a simple numerical integration becomes necessary. As an example, we apply this approach to quantitatively characterize, in terms of the chemotactic sensitivity coefficient chi 0, data from Terracciano indicating enhanced chemotactic responses of Escherichia coli to galactose when cultured under growth-limiting galactose levels in a chemostat.  相似文献   

4.
In many natural environments, bacterial populations experience suboptimal growth due to the competition with other microorganisms for limited resources. The chemotactic response provides a mechanism by which bacterial populations can improve their situation by migrating toward more favorable growth conditions. For bacteria cultured under suboptimal growth conditions, evidence for an enhanced chemotactic response has been observed previously. In this article, for the first time, we have quantitatively characterized this behavior in terms of two macroscopic transport coefficients, the random motility and chemotactic sensitivity coefficients, measured in the stopped-flow diffusion chamber assay. Escherichia coli cultured over a range of growth rates in a chemostat exhibits a dramatic increase in the chemotactic sensitivity coefficient for D-fucose at low growth rates, while the random motility coefficient remains relatively constant by comparison. The change in the chemotactic sensitivity coefficient is accounted for by an independently measured increase in the number of galactose-binding proteins which mediate the chemotactic signal. This result is consistent with the relationship between macroscopic and microscopic parameters for chemotaxis, which was proposed in the mathematical model of Rivero and co-workers. (c) 1993 John Wiley & Sons, Inc.  相似文献   

5.
The directed movement of a bacterial population in response to a chemical gradient is known as bacterial chemotaxis and plays a critical role in the distribution and dynamic interaction of bacterial populations. A quantitative characterization of the chemotactic response in terms of intrinsic cell properties is necessary for making reliable predictions about the migratory behavior of bacterial populations within the environment. The design of the stopped-flow diffusion chamber (SFDC) provides a well-characterized chemical gradient and reliable method for measuring bacterial migration behavior. During flow through the chamber a step change in the chemical concentration is imposed on a uniform suspension of bacteria. Once flow is stopped a transient chemical gradient forms due to diffusion; bacteria respond by forming a band of high cell density that travels toward higher concentrations of the attractant. Sequential observations of bacterial spatial distributions over a period of about ten minutes are recorded on photomicrographs. Computer-aided image analysis of the photographic negatives converts light-scattering information to a digital representation of the bacterial density profiles. A mathematical model is used to quantitatively characterize these observations in terms of intrinsic cell parameters: a chemotactic sensitivity coefficient, χ0, from the aggregate cell density accumulated in the band and a random motility coefficient, μ0, from population dispersion in the absence of a chemical gradient. Using the SFDC assay and an individual cell-based mathematical model we successfully determined values for both of these population parameters forEscherichia coli K12 responding to fucose. The values we obtained were μ0=1.1 ± 0.4 x 10-5 cm2/sec and χ0=8 ± 3 x 10-5 cm2/sec. These parameters will be useful for predicting population behavior in application systems such as biofilm development, population dynamics of genetically-engineered bacteria released into the environment, and in situ bioremediation technologies.  相似文献   

6.
The mathematical model developed by Riveroet al. (1989,Chem. Engng Sci. 44, 2881–2897) is applied to literature data measuring chemotactic bacterial population distributions in response to steep as well as shallow attractant gradients. This model is based on a fundamental picture of the sensing and response mechanisms of individual bacterial cells, and thus relates individual cell properties such as swimming speed and tumbling frequency to population parameters such as the random motility coefficient and the chemotactic sensitivity coefficient. Numerical solution of the model equations generates predicted bacterial density and attractant concentration profiles for any given experimental assay. We have previously validated the mathematical model from experimental work involving a step-change in the attractant gradient (Fordet al., 1991Biotechnol. Bioengng.37, 647–660; For and Lauffenburger, 1991,Biotechnol. Bioengng,37, 661–672). Within the context of this experimental assay, effects of attractant diffusion and consumption, random motility, and chemotactic sensitivity on the shape of the profiles are explored to enhance our understanding of this complex phenomenon. We have applied this model to various other types of gradients with successful intepretation of data reported by Dalquistet al. (1972,Nature New Biol. 236, 120–123) forSalmonella typhimurum validating the mathematical model and supportin the involvement of high and low affinity receptors for serine chemotaxis by these cells.  相似文献   

7.
A high-throughput capillary assay for bacterial chemotaxis   总被引:3,自引:0,他引:3  
We present a high-throughput capillary assay in order to characterize the chemotactic response of the E. coli bacterium. We measure the number of organisms attracted into an array of 96 capillary tubes containing the attractant L-aspartate. The effect of bacterial concentration on the chemotactic response is reported. Such high-throughput assay can be used to characterize bacterial chemotaxis function of a wide range of biochemical parameters.  相似文献   

8.
Quantitative analysis of experiments on bacterial chemotaxis to naphthalene   总被引:6,自引:0,他引:6  
A mathematical model was developed to quantify chemotaxis to naphthalene by Pseudomonas putida G7 (PpG7) and its influence on naphthalene degradation. The model was first used to estimate the three transport parameters (coefficients for naphthalene diffusion, random motility, and chemotactic sensitivity) by fitting it to experimental data on naphthalene removal from a discrete source in an aqueous system. The best-fit value of naphthalene diffusivity was close to the value estimated from molecular properties with the Wilke-Chang equation. Simulations applied to a non-chemotactic mutant strain only fit the experimental data well if random motility was negligible, suggesting that motility may be lost rapidly in the absence of substrate or that gravity may influence net random motion in a vertically oriented experimental system. For the chemotactic wild-type strain, random motility and gravity were predicted to have a negligible impact on naphthalene removal relative to the impact of chemotaxis. Based on simulations using the best-fit value of the chemotactic sensitivity coefficient, initial cell concentrations for a non-chemotactic strain would have to be several orders of magnitude higher than for a chemotactic strain to achieve similar rates of naphthalene removal under the experimental conditions we evaluated. The model was also applied to an experimental system representing an adaptation of the conventional capillary assay to evaluate chemotaxis in porous media. Our analysis suggests that it may be possible to quantify chemotaxis in porous media systems by simply adjusting the model's transport parameters to account for tortuosity, as has been suggested by others.  相似文献   

9.
The interpretation of quantitative assays for leukocyte chemotactic migration is usually made in terms of measurements such as leading front distance, total migrating cells, and leukotactic index. These quantities allow comparison of cellular migration behavior under specified conditions. They are not useful; however, for comparisons between systems or for correlation with in vivo performance, because they depend upon specific physical aspects of the assay system, such as the geometry, chemoattractant concentration and diffusivity, and observation time. It would be more helpful to measure intrinsic properties of cell movement that could be used for comparison between systems, for correlation with in vivo studies, and to increase our understanding of the cell physiology. In this paper we demonstrate a means of quantitating leukocyte random motility, chemokinesis, and chemotaxis in terms of parameters that do characterize intrinsic cell properties. These parameters are the random motility coefficient and the chemotaxis coefficient, which appear in theoretical models of cell migration. We examine how well such a model describes the leukocyte density profile data observed in a modified under-agarose assay having a linear geometry. Furthermore, we obtain values for the random motility coefficient (and its dependence upon the concentration of the attractant peptide FNLLP) and for the chemotaxis coefficient for leukocytes responding to FNLLP.  相似文献   

10.
A well-characterized experimental system was designed to evaluate the effect of porous media on macroscopic transport coefficients which are used to characterize the migration of bacterial populations. Bacterial density profiles of Pseudomonas putida PRS2000 were determined in the presence and absence of a chemical attractant (3-chlorobenzoate) gradient within sand columns having a narrow distribution of particle diameters. These experimental profiles were compared with theoretical predictions to evaluate the macroscopic transport coefficients. The effective random motility coefficient, used to quantify migration due to a random process in a porous medium, decreased nearly 20-fold as grain size in the columns decreased from 800 to 80 (mu)m. The effective random motility coefficient (mu)(infeff) was related to the random motility coefficient (mu), measured in a bulk aqueous system, according to (mu)(infeff) = ((epsilon)/(tau))(mu) with porosity (epsilon) and tortuosity (tau). Over the times and distances examined in these experiments, bacterial density profiles were unaffected by the presence of an attractant gradient. Theoretical profiles with the aqueous phase value of the chemotactic sensitivity coefficient (used to quantify migration due to a directed process) were consistent with this result and suggested that any chemotactic effect on bacterial migration was below the detection limits of our assay.  相似文献   

11.
A study of the random motility and chemotaxis of Methylosinus trichosporium OB3b was conducted by using Palleroni-chamber microcapillary assay procedures. Under the growth conditions employed, this methanotroph was observed qualitatively with a microscope to be either slightly motile or essentially nonmotile. However, the cells did not not respond in the microcapillary assays in the manner expected for nonmotile Brownian particles. As a consequence, several hydrodynamic effects on these Palleroni microcapillary assays were uncovered. In the random-motility microcapillary assay, nondiffusive cell accumulations occurred that were strongly dependent upon cell concentration. An apparent minimal random-motility coefficient (mu) for this bacterial cell of 1.0 x 10(-7) cm2/s was estimated from microcapillary assays. A simple alternative spectrophotometric assay, based upon gravitational settling, was developed and shown to be an improvement over the Palleroni microcapillary motility assay for M. trichosporium OB3b in that it yielded a more-accurate threefold-lower random-motility coefficient. In addition, it provided a calculation of the gravitational-settling velocity. In the chemotaxis microcapillary assay, the apparent chemotactic responses were strongest for the highest test-chemical concentrations in the microcapillaries, were correlated with microcapillary fluid density, and were strongly dependent upon the microcapillary volume. A simple method to establish the maximal concentration of a chemical that can be tested and to quantify any contributions of abiotic convection is described. Investigators should be aware of the potential problems due to density-driven convection when using these commonly employed microcapillary assays for studying cells which have low motilities.  相似文献   

12.
A study of the random motility and chemotaxis of Methylosinus trichosporium OB3b was conducted by using Palleroni-chamber microcapillary assay procedures. Under the growth conditions employed, this methanotroph was observed qualitatively with a microscope to be either slightly motile or essentially nonmotile. However, the cells did not not respond in the microcapillary assays in the manner expected for nonmotile Brownian particles. As a consequence, several hydrodynamic effects on these Palleroni microcapillary assays were uncovered. In the random-motility microcapillary assay, nondiffusive cell accumulations occurred that were strongly dependent upon cell concentration. An apparent minimal random-motility coefficient (mu) for this bacterial cell of 1.0 x 10(-7) cm2/s was estimated from microcapillary assays. A simple alternative spectrophotometric assay, based upon gravitational settling, was developed and shown to be an improvement over the Palleroni microcapillary motility assay for M. trichosporium OB3b in that it yielded a more-accurate threefold-lower random-motility coefficient. In addition, it provided a calculation of the gravitational-settling velocity. In the chemotaxis microcapillary assay, the apparent chemotactic responses were strongest for the highest test-chemical concentrations in the microcapillaries, were correlated with microcapillary fluid density, and were strongly dependent upon the microcapillary volume. A simple method to establish the maximal concentration of a chemical that can be tested and to quantify any contributions of abiotic convection is described. Investigators should be aware of the potential problems due to density-driven convection when using these commonly employed microcapillary assays for studying cells which have low motilities.  相似文献   

13.
Clinical and scientific investigations of leukocyte chemotaxis will be greatly aided by an ability to measure quantitative parameters characterizing the intrinsic random motility, chemokinetic, and chemotactic properties of cell populations responding to a given attractant. Quantities typically used at present, such as leading front distances, migrating cell numbers, etc., are unsatisfactory in this regard because their values are affected by many aspects of the assay system unrelated to cell behavioral properties. In this paper we demonstrate the measurement of cell migration parameters that do, in fact, characterize the intrinsic cell chemosensory movement responses using cell density profiles obtained in the linear under-agarose assay. These parameters are the random motility coefficient, mu, and the chemotaxis coefficient, chi, which appear in a theoretical expression for cell population migration. We propose a priori the dependence of chi on attractant concentration, based on an independent experimental correlation of individual cell orientation bias in an attractant gradient with a spatial difference in receptor occupancy. Our under-agarose population migration results are consistent with this proposition, allowing chemotaxis to be reliably characterized by a chemotactic sensitivity constant, chi 0, to which chi is directly proportional. Further, chi 0 has fundamental significance; it represents the reciprocal of the difference in number of bound receptors across cell dimensions required for directional orientation bias. In particular, for the system of human peripheral blood polymorphonuclear neutrophil leukocytes responding to FNLLP, we find that the chemotaxis coefficient is a function of attractant concentration, a following the expression: chi = chi 0NT0 f(a) S(a) Kd/(Kd + a)2 where Kd is the FNLLP-receptor equilibrium dissociation constant and NT0 is the total number of cell surface receptors for FNLLP. f(a) is the fraction of surface receptors remaining after down-regulation, and S(a) is the cell movement speed, both known functions of FNLLP concentration. We find that chi 0NT0 = 0.2 cm; according to a theoretical argument outlined in the Appendix this means that these cells exhibit 75% orientation toward higher attractant concentration when the absolute spatial difference in bound receptors is 0.0025NT0 over 10 micron. (For example, if NT0 = 50,000 this would correspond to a spatial difference of 125 bound receptors over 10 micron.) This result can be compared with estimates obtained from visual studies of individual neutrophils.  相似文献   

14.
The capillary assay for quantitative characterization of bacterial motility and chemotaxis is analyzed in terms of a mathematical model for cell population migration, in order to determine values for the cell random motility coefficient, mu and the cell chemotaxis coefficient, chi. The analysis involves both analytical perturbation methods and numerical finite-difference techniques. Transient cell density profiles within the capillary tube are determined as they depend upon mu and chi, providing a means for estimating mu and chi from the common protocol measurements of cell accumulation in the tube at specified observation times. The effects of extraneous factors such as assay geometry, stimulus diffusivity, bacterial density, and observation time are thus separated from the intrinsic cell-stimulus interaction and response. This allows independent population measurements of cell chemosensory movement properties to be extrapolated to situations involving growth and competition of populations, for purposes of better understanding microbial population dynamics in systems of biotechnological and microbial ecological importance.  相似文献   

15.
Quantification of chemotaxis to naphthalene by Pseudomonas putida G7.   总被引:1,自引:0,他引:1  
The capillary assay was used to quantify the chemotactic response of Pseudomonas putida G7 to naphthalene. Experiments were conducted in which the cell concentration in the assay chamber, the naphthalene concentration in the capillary, or the incubation time was varied. Data from these experiments were evaluated with a model that accounted for the effect of diffusion on the distribution of substrate and the transport of cells from the chamber through the capillary orifice. By fitting a numerical solution of this model to the data, it was possible to determine the chemotactic sensitivity coefficient, chi0. The mean of the best-fit values for chi0 from the three types of experiments was 7.2 x 10(-5) cm2/s. A less computationally intensive model based on earlier approaches that ignore cell transport in the chamber resulted in chi0 values that were approximately three times higher. The models evaluated in the present study could simulate the results of capillary assays only at low chamber cell concentrations, for which the effect of consumption on the distribution of substrate was negligible. Results from this work suggest that it is possible to use the capillary assay to quantify taxis towards environmentally relevant chemoeffectors that have low aqueous solubility.  相似文献   

16.
Various Ca(2+) antagonists used in animal research, many of them known to be Ca(2+) channel blockers, inhibited Escherichia coli chemotaxis (measured as entry of cells into a capillary containing attractant). The most effective of these, acting in the nanomolar range, was omega-conotoxin GVIA. The next most effective were gallopamil and verapamil. At concentrations around 100-fold higher than that needed for inhibition of chemotaxis, each of these antagonists inhibited motility (measured as entry of cells into a capillary lacking attractant). Various other Ca(2+) antagonists were less effective, though chemotaxis was almost always more sensitive to inhibition than was motility. Cells treated with each of these Ca(2+) antagonists swam with a running bias, i.e., tumbling was inhibited. Similarly, some Na(+) antagonists used in animal research inhibited bacterial chemotaxis. E. coli chemotaxis was inhibited by saxitoxin at concentrations above 10(-7) M, while more than 10(-4) M was needed to inhibit motility. Cells treated with saxitoxin swam with a tumbling bias. In the case of other Na(+) antagonists in animals, aconitine inhibited bacterial chemotaxis 10 times more effectively than it inhibited motility, and two others inhibited chemotaxis and motility at about the same concentration. In the case of K(+) antagonists used in animal research, 4-aminopyridine blocked E. coli chemotaxis between 10(-3) M and, totally, 10(-2) M, while motility was not affected at 10(-2) M; on the other hand, tetraethylammonium chloride failed to inhibit either chemotaxis or motility at 10(-2) M.  相似文献   

17.
Measuring the chemotactic response of Borrelia burgdorferi, the bacterial species that causes Lyme disease, is relatively more difficult than measuring that of other bacteria. Because these spirochetes have long generation times, enumerating cells that swim up a capillary tube containing an attractant by using colony counts is impractical. Furthermore, direct counts with a Petroff-Hausser chamber is problematic, as this method has a low throughput and necessitates a high cell density; the latter can lead to misinterpretation of results when assaying for specific attractants. Only rabbit serum and tick saliva have been reported to be chemoattractants for B. burgdorferi. These complex biological mixtures are limited in their utility for studying chemotaxis on a molecular level. Here we present a modified capillary tube chemotaxis assay for B. burgdorferi that enumerates cells by flow cytometry. Initial studies identified N-acetylglucosamine as a chemoattractant. The assay was then optimized with respect to cell concentration, incubation time, motility buffer composition, and growth phase. Besides N-acetylglucosamine, glucosamine, glucosamine dimers (chitosan), glutamate, and glucose also elicited significant chemoattractant responses, although the response obtained with glucose was weak and variable. Serine and glycine were nonchemotactic. To further validate and to exploit the use of this assay, a previously described nonchemotactic cheA2 mutant was shown to be nonchemotactic by this assay; it also regained the wild-type phenotype when complemented in trans. This is the first report that identifies specific chemical attractants for B. burgdorferi and the use of flow cytometry for spirochete enumeration. The method should also be useful for assaying chemotaxis for other slow-growing prokaryotic species and in specific environments in nature.  相似文献   

18.
The Boyden chamber assay provides a convenient method of assessing cell migration and measuring cell motility coefficients at the population level. Previous models of this assay completely ignore cell sedimentation in the suspension, assuming that all cells have already settled on the filter surface before commencing migration within the filter. However, ignoring cell sedimentation could lead to poor data interpretation because the time required for cells to settle through the suspension is close to the incubation period of only a few hours. This study models the Boyden chamber assay by incorporating the cell settling process to account for the cells remaining in the upper well when other cells migrate in the filter. The simulations in this study elucidate the experiments in the literature that test the haptotactic and chemotactic responses of rabbit chondrocytes to type II collagen. This study determines the cell population random motility, as well as the haptotaxis and chemotaxis coefficients, by fitting the experimental data. Results show that the chemotactic motility coefficient is 100 times greater than the haptotactic coefficient, and the equilibrium collagen-receptor dissociation constant is about 10-fold the haptotactic counterpart. Diffusion causes the soluble collagen gradients in the chemotactic case to decline over time, while the coated collagen gradients in the haptotactic assay are likely to remain fixed. As a result, the chemotactic case exhibits a lower number of migrated cells than the haptotactic assay. This study also demonstrates the influences of the dimensionless parameters that control cell behavior in the Boyden assay, providing a reference for future experiment designs.  相似文献   

19.
The growth of new capillary blood vessels, or angiogenesis, is a prominent component of numerous physiological and pathological conditions. An understanding of the co-ordination of underlying cellular behaviors would be helpful for therapeutic manipulation of the process. A probabilistic mathematical model of angiogenesis is developed based upon specific microvessel endothelial cell (MEC) functions involved in vessel growth. The model focuses on the roles of MEC random motility and chemotaxis, to test the hypothesis that these MEC behaviors are of critical importance in determining capillary growth rate and network structure. Model predictions are computer simulations of microvessel networks, from which questions of interest are examined both qualitatively and quantitatively. Results indicate that a moderate MEC chemotactic response toward an angiogenic stimulus, similar to that measured in vitro in response to acidic fibroblast growth factor, is necessary to provide directed vascular network growth. Persistent random motility alone, with initial budding biased toward the stimulus, does not adequately provide directed network growth. A significant degree of randomness in cell migration direction, however, is required for vessel anastomosis and capillary loop formation, as simulations with an overly strong chemotactic response produce network structures largely absent of these features. The predicted vessel extension rate and network structure in the simulations are quantitatively consistent with experimental observations of angiogenesis in vivo. This suggests that the rate of vessel outgrowth is primarily determined by MEC migration rate, and consequently that quantitative in vitro migration assays might be useful tools for the prescreening of possible angiogenesis activators and inhibitors. Finally, reduction of MEC speed results in substantial inhibition of simulated angiogenesis. Together, these results predict that both random motility and chemotaxis are MEC functions critically involved in determining the rate and morphology of new microvessel network growth.  相似文献   

20.
In E. coli, chemotactic behavior exhibits perfect adaptation that is robust to changes in the intracellular concentration of the chemotactic proteins, such as CheR and CheB. However, the robustness of the perfect adaptation does not explicitly imply a robust chemotactic response. Previous studies on the robustness of the chemotactic response relied on swarming assays, which can be confounded by processes besides chemotaxis, such as cellular growth and depletion of nutrients. Here, using a high-throughput capillary assay that eliminates the effects of growth, we experimentally studied how the chemotactic response depends on the relative concentration of the chemotactic proteins. We simultaneously measured both the chemotactic response of E. coli cells to L: -aspartate and the concentrations of YFP-CheR and CheB-CFP fusion proteins. We found that the chemotactic response is fine-tuned to a specific ratio of [CheR]/[CheB] with a maximum response comparable to the chemotactic response of wild-type behavior. In contrast to adaptation in chemotaxis, that is robust and exact, capillary assays revealed that the chemotactic response in swimming bacteria is fined-tuned to wild-type level of the [CheR]/[CheB] ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号