首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
2.
3.
4.
5.
6.
7.
Cadherins are single pass transmembrane proteins that mediate Ca(2+)-dependent homophilic cell-cell adhesion by linking the cytoskeletons of adjacent cells. In adherens junctions, the cytoplasmic domain of cadherins bind to beta-catenin, which in turn binds to the actin-associated protein alpha-catenin. The physical properties of the E-cadherin cytoplasmic domain and its interactions with beta-catenin have been investigated. Proteolytic sensitivity, tryptophan fluorescence, circular dichroism, and (1)H NMR measurements indicate that murine E-cadherin cytoplasmic domain is unstructured. Upon binding to beta-catenin, the domain becomes resistant to proteolysis, suggesting that it structures upon binding. Cadherin-beta-catenin complex stability is modestly dependent on ionic strength, indicating that, contrary to previous proposals, the interaction is not dominated by electrostatics. Comparison of 18 cadherin sequences indicates that their cytoplasmic domains are unlikely to be structured in isolation. This analysis also reveals the presence of PEST sequences, motifs associated with ubiquitin/proteosome degradation, that overlap the previously identified beta-catenin-binding site. It is proposed that binding of cadherins to beta-catenin prevents recognition of degradation signals that are exposed in the unstructured cadherin cytoplasmic domain, favoring a cell surface population of catenin-bound cadherins capable of participating in cell adhesion.  相似文献   

8.
9.
10.
Targeted degradation of beta-catenin by chimeric F-box fusion proteins   总被引:5,自引:0,他引:5  
Adenomatous polyposis coli (APC) tumor suppressor protein, together with Axin and glycogen synthase kinase 3beta (GSK-3beta), forms a Wnt-regulated signaling complex that mediates phosphorylation-dependent degradation of cytoplasmic beta-catenin by ubiquitin-dependent proteolysis. Degradation of phosphorylated beta-catenin is initiated by interaction through the WD40-repeat of a F-box protein beta-TrCP, a component of SCF ubiquitin ligase complex. Mutations in APC, Axin, and beta-catenin that prevent down-regulation of cytoplasmic beta-catenin are found in various types of cancers. In the search for efficient treatment and prevention of malignancies associated with increased levels of cytoplasmic beta-catenin, we created chimeric F-box fusion proteins by replacing the WD40-repeat of beta-TrCP with the beta-catenin-binding domains of Tcf4 and E-cadherin. Expression of chimeric F-box fusion proteins successfully promotes degradation of beta-catenin independently of GSK-3beta-mediated phosphorylation. More importantly, this degradation does not require intact APC protein (pAPC).  相似文献   

11.
12.
13.
Dual roles of E-cadherin in prostate cancer invasion   总被引:6,自引:0,他引:6  
The role(s) of E-cadherin in tumor progression, invasion, and metastasis remains somewhat enigmatic. In order to investigate various aspects of E-cadherin biological activity, particularly in prostate cancer progression, our laboratory cloned unique subpopulations of the heterogeneous DU145 human prostatic carcinoma cell line and characterized their distinct biological functions. The data revealed that the highly invasive, fibroblastic-like subpopulation of DU145 cells (designated DU145-F) expressed less than 0.1-fold of E-cadherin protein when compared to the parental DU145 or the poorly invasive DU145 cells (designated DU145-E). Experimental disruption of E-cadherin function stimulated migration and invasion of DU145-E and other E-cadherin-positive prostate cancer cell lines, but did not affect the fibroblastic-like DU145-F subpopulation. Within the medium of parental DU145 cells, the presence of an 80 kDa E-cadherin fragment was detected. Subsequent functional analyses revealed the stimulatory effect of this fragment on the migratory and invasive capability of E-cadherin-positive cells. These results suggest that E-cadherin plays an important role in regulating the invasive potential of prostate cancer cells through an unique paracrine mechanism.  相似文献   

14.
Aberrant activation of Wnt/β-catenin signaling is common in most sporadic and inherited colorectal cancer (CRC) cells leading to elevated β-catenin/TCF transactivation. We previously identified the neural cell adhesion molecule L1 as a target gene of β-catenin/TCF in CRC cells. Forced expression of L1 confers increased cell motility, invasion, and tumorigenesis, and the induction of human CRC cell metastasis to the liver. In human CRC tissue, L1 is exclusively localized at the invasive front of such tumors in a subpopulation of cells displaying nuclear β-catenin. We determined whether L1 expression confers metastatic capacities by inducing an epithelial to mesenchymal transition (EMT) and whether L1 cosegregates with cancer stem cell (CSC) markers. We found that changes in L1 levels do not affect the organization or expression of E-cadherin in cell lines, or in invading CRC tissue cells, and no changes in other epithelial or mesenchymal markers were detected after L1 transfection. The introduction of major EMT regulators (Slug and Twist) into CRC cell lines reduced the levels of E-cadherin and induced fibronectin and vimentin, but unlike L1, Slug and Twist expression was insufficient for conferring metastasis. In CRC cells L1 did not specifically cosegregate with CSC markers including CD133, CD44, and EpCAM. L1-mediated metastasis required NF-κB signaling in cells harboring either high or low levels of endogenous E-cadherin. The results suggest that L1-mediated metastasis of CRC cells does not require changes in EMT and CSC markers and operates by activating NF-κβ signaling.  相似文献   

15.
Cadherins and catenins in breast cancer   总被引:21,自引:0,他引:21  
  相似文献   

16.
《The Journal of cell biology》1994,127(6):2061-2069
beta-Catenin is involved in the formation of adherens junctions of mammalian epithelia. It interacts with the cell adhesion molecule E- cadherin and also with the tumor suppressor gene product APC, and the Drosophila homologue of beta-catenin, armadillo, mediates morphogenetic signals. We demonstrate here that E-cadherin and APC directly compete for binding to the internal, armadillo-like repeats of beta-catenin; the NH2-terminal domain of beta-catenin mediates the interaction of the alternative E-cadherin and APC complexes to the cytoskeleton by binding to alpha-catenin. Plakoglobin (gamma-catenin), which is structurally related to beta-catenin, mediates identical interactions. We thus show that the APC tumor suppressor gene product forms strikingly similar associations as found in cell junctions and suggest that beta-catenin and plakoglobin are central regulators of cell adhesion, cytoskeletal interaction, and tumor suppression.  相似文献   

17.
The tyrosine kinase substrate p120cas (CAS), which is structurally similar to the cell adhesion proteins beta-catenin and plakoglobin, was recently shown to associate with the E-cadherin-catenin cell adhesion complex. beta-catenin, plakoglobin, and CAS all have an Arm domain that consists of 10 to 13 repeats of a 42-amino-acid motif originally described in the Drosophila Armadillo protein. To determine if the association of CAS with the cadherin cell adhesion machinery is similar to that of beta-catenin and plakoglobin, we examined the CAS-cadherin-catenin interactions in a number of cell lines and in the yeast two-hybrid system. In the prostate carcinoma cell line PC3, CAS associated normally with cadherin complexes despite the specific absence of alpha-catenin in these cells. However, in the colon carcinoma cell line SW480, which has negligible E-cadherin expression, CAS did not associate with beta-catenin, plakoglobin, or alpha-catenin, suggesting that E-cadherin is the protein which bridges CAS to the rest of the complex. In addition, CAS did not associate with the adenomatous polyposis coli (APC) tumor suppressor protein in any of the cell lines analyzed. Interestingly, expression of the various CAS isoforms was quite heterogeneous in these tumor cell lines, and in the colon carcinoma cell line HCT116, which expresses normal levels of E-cadherin and the catenins, the CAS1 isoforms were completely absent. By using the yeast two-hybrid system, we confirmed the direct interaction between CAS and E-cadherin and determined that CAS Arm repeats 1 to 10 are necessary and sufficient for this interaction. Hence, like beta-catenin and plakoglobin, CAS interacts directly with E-cadherin in vivo; however, unlike beta-catenin and plakoglobin, CAS does not interact with APC or alpha-catenin.  相似文献   

18.
19.
We have previously demonstrated that Protein Kinase D1 (PKD1) interacts with E-cadherin and is associated with altered cell aggregation and motility in prostate cancer (PC). Because both PKD1 and E-cadherin are known to be dysregulated in PC, in this study we investigated the functional consequences of combined dysregulation of PKD1 and E-cadherin using a panel of human PC cell lines. Gain and loss of function studies were carried out by either transfecting PC cells with full-length E-cadherin and/or PKD1 cDNA or by protein silencing by siRNAs, respectively. We studied major malignant phenotypic characteristics including cell proliferation, motility, and invasion at the cellular level, which were corroborated with appropriate changes in representative molecular markers. Down regulation or ectopic expression of either E-cadherin or PKD1 significantly increased or decreased cell proliferation, motility, and invasion, respectively, and combined down regulation cumulatively influenced the effects. Loss of PKD1 or E-cadherin expression was associated with increased expression of the pro-survival molecular markers survivin, beta-catenin, cyclin-D, and c-myc, whereas overexpression of PKD1 and/or E-cadherin resulted in an increase of caspases. The inhibitory effect of PKD1 and E-cadherin on cell proliferation was rescued by coexpression with beta-catenin, suggesting that beta-catenin mediates the effect of proliferation by PKD1 and E-cadherin. This study establishes the functional significance of combined dysregulation of PKD1 and E-cadherin in PC and that their effect on cell growth is mediated by beta-catenin.  相似文献   

20.
beta-Catenin is a key molecule involved in both cell adhesion and Wnt signaling pathway. However, the exact relationship between these two roles has not been clearly elucidated. Tyrosine phosphorylation of beta-catenin was shown to decrease its binding to E-cadherin, leading to decreased cell adhesion and increased beta-catenin signaling. We have previously shown that receptor-like protein-tyrosine phosphatase PCP-2 localizes to the adherens junctions and directly binds and dephosphorylates beta-catenin, suggesting that PCP-2 might regulate the balance between signaling and adhesive beta-catenin. Here we demonstrate that PCP-2 can inhibit both the wild-type and constitutively active forms of beta-catenin in activating target genes such as c-myc. The phosphatase activity of PCP-2 is required for this effect since loss of catalytic activity attenuates its inhibitory effect on beta-catenin activation. Expression of PCP-2 in SW480 colon cancer cells can lead to stabilization of cytosolic pools of beta-catenin perhaps, by virtue of their physical interaction. PCP-2 expression also leads to increased membrane-bound E-cadherin and greater stabilization of adherens junctions by dephosphorylation of beta-catenin, which could further sequester cytosolic beta-catenin and thus inhibit beta-catenin mediated nuclear signaling. Furthermore, SW480 cells stably expressing PCP-2 have a reduced ability to proliferate and migrate. Thus, PCP-2 may play an important role in the maintenance of epithelial integrity, and a loss of its regulatory function may be an alternative mechanism for activating beta-catenin signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号