首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In the not too distant past, it was common belief that rhythms in the physical environment were the driving force, to which organisms responded passively, for the observed daily rhythms in measurable physiological and behavioral variables. The demonstration that this was not the case, but that both plants and animals possess accurate endogenous time-measuring machinery (i.e., circadian clocks) contributed to heightening interest in the study of circadian biological rhythms. In the last few decades, flourishing studies have demonstrated that most organisms have at least one internal circadian timekeeping device that oscillates with a period close to that of the astronomical day (i.e., 24h). To date, many of the physiological mechanisms underlying the control of circadian rhythmicity have been described, while the improvement of molecular biology techniques has permitted extraordinary advancements in our knowledge of the molecular components involved in the machinery underlying the functioning of circadian clocks in many different organisms, man included. In this review, we attempt to summarize our current understanding of the genetic and molecular biology of circadian clocks in cyanobacteria, fungi, insects, and mammals. (Chronobiology International, 17(4), 433-451, 2000)  相似文献   

4.
Recent studies suggest that a class of proteins known as cryptochromes have an evolutionarily conserved role in the entrainment of circadian rhythms to the night-day cycle. While the evidence reported is intriguing, the notion that cryptochromes have the same role in all species requires further investigation.  相似文献   

5.
6.

Background

Fungi are asexually and sexually reproducing organisms that can combine the evolutionary advantages of the two reproductive modes. However, for many fungi the sexual cycle has never been observed in the field or in vitro and it remains unclear whether sexual reproduction is absent or cryptic. Nevertheless, there are indirect approaches to assess the occurrence of sex in a species, such as population studies, expression analysis of genes involved in mating processes and analysis of their selective constraints. The members of the Phialocephala fortinii s. l. - Acephala applanata species complex (PAC) are ascomycetes and the predominant dark septate endophytes that colonize woody plant roots. Despite their abundance in many ecosystems of the northern hemisphere, no sexual state has been identified to date and little is known about their reproductive biology, and how it shaped their evolutionary history and contributes to their ecological role in forest ecosystems. We therefore aimed at assessing the importance of sexual reproduction by indirect approaches that included molecular analyses of the mating type (MAT) genes involved in reproductive processes.

Results

The study included 19 PAC species and > 3, 000 strains that represented populations from different hosts, continents and ecosystems. Whereas A. applanata had a homothallic (self-fertile) MAT locus structure, all other species were structurally heterothallic (self-sterile). Compatible mating types were observed to co-occur more frequently than expected by chance. Moreover, in > 80% of the populations a 1:1 mating type ratio and gametic equilibrium were found. MAT genes were shown to evolve under strong purifying selection.

Conclusions

The signature of sex was found in worldwide populations of PAC species and functionality of MAT genes is likely preserved by purifying selection. We hypothesize that cryptic sex regularely occurs in the PAC and that further field studies and in vitro crosses will lead to the discovery of the sexual state. Although structurally heterothallic species prevail, it cannot be excluded that homothallism represents the ancestral breeding system in the PAC.  相似文献   

7.
8.

Background

Circadian clocks govern daily physiological and molecular rhythms, and putative rhythms in expression of xenobiotic metabolizing (XM) genes have been described in both insects and mammals. Such rhythms could have important consequences for outcomes of chemical exposures at different times of day. To determine whether reported XM gene expression rhythms result in functional rhythms, we examined daily profiles of enzyme activity and dose responses to the pesticides propoxur, deltamethrin, fipronil, and malathion.

Methodology/Principal Findings

Published microarray expression data were examined for temporal patterns. Male Drosophila were collected for ethoxycoumarin-O-deethylase (ECOD), esterase, glutathione-S-transferase (GST), and, and uridine 5′-diphosphoglucosyltransferase (UGT) enzyme activity assays, or subjected to dose-response tests at four hour intervals throughout the day in both light/dark and constant light conditions. Peak expression of several XM genes cluster in late afternoon. Significant diurnal variation was observed in ECOD and UGT enzyme activity, however, no significant daily variation was observed in esterase or GST activity. Daily profiles of susceptibility to lethality after acute exposure to propoxur and fipronil showed significantly increased resistance in midday, while susceptibility to deltamethrin and malathion varied little. In constant light, which interferes with clock function, the daily variation in susceptibility to propoxur and in ECOD and UGT enzyme activity was depressed.

Conclusions/Significance

Expression and activities of specific XM enzymes fluctuate during the day, and for specific insecticides, the concentration resulting in 50% mortality varies significantly during the day. Time of day of chemical exposure should be an important consideration in experimental design, use of pesticides, and human risk assessment.  相似文献   

9.
Circadian rhythms are ubiquitous in living organisms, synchronizing life functions at the biochemical, physiological, and behavioral levels. The rhythm-generating mechanisms, collectively known as circadian clocks, are not fully understood in any organism. Research in the fruit fly Drosophila has led to the identification of several clock genes that are involved in the function of the brain-centered clock, which controls behavioral rhythms of adult flies. With the use of clock genes as markers, putative circadian clocks were mapped in the fly peripheral organs and shown to be independent from clocks located in the brain. A homologue of fruit fly period gene has been identified in moths and other insects, allowing investigations of this gene's role in known insect rhythms. This approach may increase our understanding of how circadian clocks are organized into the circadian system that orchestrates temporal integration of life processess in insects.  相似文献   

10.
We have reported that Arabidopsis might have genetically distinct circadian oscillators in multiple cell-types.1 Rhythms of CHLOROPHYLL A/B BINDING PROTEIN2 (CAB2) promoter activity are 2.5 h longer in phytochromeB mutants in constant red light and in cryptocrome1 cry2 double mutant (hy4-1 fha-1) in constant blue light than the wild-type.2 However, we found that cytosolic free Ca2+ ([Ca2+]cyt) oscillations were undetectable in these mutants in the same light conditions.1 Furthermore, mutants of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) have short period rhythms of leaf movement but have arrhythmic [Ca2+]cyt oscillations. More important, the timing of cab1-1 (toc1-1) mutant has short period rhythms of CAB2 promoter activity (∼21 h) but, surprisingly, has a wild-type period for circadian [Ca2+]cyt oscillations (∼24 h). In contrast, toc1-2, a TOC1 loss-of-function mutant, has a short period of both CAB2 and [Ca2+]cyt rhythms (∼21 h). Here we discuss the difference between the phenotypes of toc1-1 and toc1-2 and how rhythms of CAB2 promoter activity and circadian [Ca2+]cyt oscillations might be regulated differently.Key words: circadian rhythms, TOC1, multiple oscillators, CAB2, Ca2+ signalling, arabidopsis, circadian [Ca2+]cyt oscillations, aequorin, luciferase, central oscillatorThe plant circadian clock controls a multitude of physiological processes such as photosynthesis, organ and stomatal movements and transition to reproductive growth. A plant clock that is correctly matched to the rhythms in the environment brings about a photosynthetic advantage that results in more chlorophyll, more carbon assimilation and faster growth.3 One of the first circadian clock mutants to be described in plants was the short period timing of cab1-1 (toc1-1), which was identified using the rhythms of luciferase under a CHLOROPHYLL A/B BINDING PROTEIN2 (CAB2) promoter as a marker for circadian period.4Circadian rhythms of both CAB2 promoter activity and cytosolic-free Ca2+ ([Ca2+]cyt) oscillations depend on the function of a TOC1, CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL (TOC1/CCA1/LHY) negative feedback loop.5 In tobacco seedlings, CAB2:luciferase (CAB2:luc) rhythms and circadian [Ca2+]cyt oscillations can be uncoupled in undifferentiated calli.6 In Arabidopsis, we reported that toc1-1 has different periods of rhythms of CAB2 promoter activity (∼21 h) and circadian [Ca2+]cyt oscillations (∼24 h). The mutant allele toc1-1 has a base pair change that leads to a full protein that has an amino acid change from Ala to Val in the CCT domain (CONSTANS, CONSTANS-LIKE and TOC1).7 On the other hand, the mutant toc1-2 has short period of both rhythms of CAB2 promoter activity and circadian [Ca2+]cyt oscillations (∼21 h).1,7 This allele has a base pair change that results in changes to preferential mRNA splicing, resulting in a truncated protein with only 59 residues.7 Thus, the mutated CCT domain in toc1-1 might lead to the uncoupling of rhythms of CAB2 promoter activity and circadian [Ca2+]cyt oscillations while the absence of TOC1 in toc1-2 causes the shortening of the period of both rhythms. Indeed, zeitlupe-1 (ztl-1) mutants, that have higher levels of TOC1, have long periods of both rhythms of CAB2 promoter activity and circadian [Ca2+]cyt oscillations.1 The biochemical function of the CCT domain is unknown but it is predicted to play an important role in protein-protein interactions8 and nuclear localization.9One model to explain the period difference of CAB2:luc expression and circadian [Ca2+]cyt oscillation is that the toc1-1 mutation has uncoupled two oscillators in the same cell. Uncoupled oscillators are a predicted outcome of certain mutations in the recently described three-loop mathematical model.1011 However, both rhythms of TOC1 and CCA1/LHY expression, which would be in uncoupled oscillators accordingly to the model, are described as short-period in toc1-1.5 Thus, we have favored the model in which CAB2:luc expression and circadian [Ca2+]cyt oscillation are reporting cell-types with different oscillators that are affected differently by toc1-1.It is possible that TOC1 could interact with a family of cell-type specific proteins. The interaction of TOC1 with each member of the family could be affected differently by the mutation in the CCT domain (Fig. 1). Two-hybrid assays have shown that TOC1 interacts with PIF proteins (PHYTOCHROME INTERACTING FACTOR3 and PIF4) and related PIL proteins (PIF3-LIKE PROTEIN 1, PIL2, PIL5 and PIL6).8 In fact, TOC1 interaction with both PIF3 and PIL1 is stronger when the N-terminus receiver domain is taken out and the CCT domain is left intact.8 Thus, it is possible that TOC1 and different PIF/PIL proteins interact to regulate the central oscillator. This interaction could be impaired by the Ala to Val change in the toc1-1 mutation, leading to the period shortening. However, lines misexpressing PIF3, PIL1 and PIL6 showed no changes in their circadian rhythms.1216Open in a separate windowFigure 1Models of how the toc1-1 mutation might differently affect cell-type specific circadian oscillators. The single mutant toc1-1 have 21 h rhythms of CAB2 promoter activity and 24 h-rhythms of [Ca2+]cyt oscillations. The toc1-1 mutation is a single amino acid change in the CCT domain. The CCT domain is involved in protein-protein interaction and/or nuclear localization. We have proposed that circadian oscillators with different periods are present in different cell-types. The luminescence generated by CAB2 promoter-drived luciferase (from the CAB2:luc) is probably originated in the epidermis and mesophyll cells. In this model, we propose that the mutation on the CCT domain impairs the mutated TOC1 interaction with the hypothetical protein Z in these cells-types. In contrast, in other cell-types, the mutated TOC1 still interacts with other hypothetical proteins (W), despite the mutation in the CCT domain. In those cell-types, the circadian oscillator could still run with a 24 h period for [Ca2+]cyt rhythms (from the 35S:AEQ construct). One possible identity for Z and W are the members of the PHYTOCHROME INTERACTING FACTOR (PIF) related PIF3-LIKE (PIL) family.One possible explanation for the absence of alterations in the period of circadian rhythms in lines misexpressing PIF/PIL is that they only have roles in certain cell-types. As an example, PIL6 and PIF3 are involved with flowering time and hypocotyl growth in red light1215 while PIL1 and PIL2 are involved with hypocotyl elongation in shade-avoidance responses.16 Both hypocotyl growth and flowering time require cell-type specific regulation: vascular bundle cells in the case of the flowering time17 and the cells in the shoot in the case of the hypocotyl elongation.16 If TOC1 interaction with certain PIF/PIL is indeed cell-type specific, the mutated CCT domain found in the toc1-1 mutant could affect the clock in different ways, depending on the type of PIF/PIL protein expressed in each cell-type. Therefore, a question that arises is: which cell-types are sensitive to the toc1-1 mutation?There is evidence that CAB2 and CATALASE3 (CAT3) are regulated by two oscillators that respond differently to temperature signals.18 These genes might be regulated by two distinct circadian oscillators within the same tissues or a single cell.18 Interestingly, the spatial patterns of expression of CAB2 and CATALASE3 overlap in the mesophyll of the cotyledons.18 Furthermore, rhythms of CAB2 and CHALCONE SYNTHASE (CHS) promoter activity have different periods and they are equally affected by toc1-1 mutation.19 Whereas CAB2 is mainly expressed in the mesophyll cells, CHS is mainly expressed in epidermis and root cells.19 However, rhythms of AEQUORIN luminescence, which reports [Ca2+]cyt oscillation, were insensitive to toc1-1 mutation and appear to come from the whole cotyledon.20 One cell-type which is found in the whole cotyledon but is distinct from either mesophyll or epidermis cells is the vascular tissue and associated cells.Another approach to determine which cell-types are insensitive to toc1-1 mutation is to compare the toc1-1 and toc1-2 phenotypes. The period of circadian [Ca2+]cyt oscillations is not the only phenotype that is different in toc1-1 and toc1-2 mutants. Rhythms in CAB2 promoter activity in constant red light are short period in toc1-1 but arrhythmic in toc1-2.21,22 COLD, CIRCADIAN RHYTHM AND RNA BINDING 2/GLYCINE-RICH RNA BINDING PROTEIN 7 (CCR2/GRP7) is also arrhythmic in toc1-2 but short period in toc1-1 in constant darkness.7,22 When the length of the hypocotyl was measured for both toc1-1 and toc1-2 plants exposed to various intensities of red light, only toc1-2 had a clear reduction in sensitivity to red light. Therefore, toc1-2 has long hypocotyl when maintained in constant red light while hypocotyl length in toc1-1 is nearly identical to that in the wild-type.22 These differences may allow us to separate which cell-types are sensitive to the toc1-1 mutation and which not.Hypocotyl growth is regulated by a large number of factors such as light, gravity, auxin, cytokinins, ethylene, gibberellins and brassinosteroids.23 There is also a correlation between the size of the hypocotyl in red light and defects in the circadian signaling network.24,25 The fact that toc1-1 has different hypocotyl sizes from toc1-2 suggests that circadian [Ca2+]cyt oscillations could be involved in the light-dependent control of hypocotyl growth. Circadian [Ca2+]cyt oscillations might encode temporal information to control cell expansion and hypocotyl growth.2628 toc1-1 have short-period rhythms of hypocotyl elongation, which indicates that the cells in the hypocotyl have a 21 h oscillator.29 However, toc1-1 might also have a wild-type hypocotyl length in continuous red light because cells which generate the signal to regulate hypocotyl growth might have 24 h oscillators.The toc1-1 mutation was the first to be directly associated with the plant circadian clock, revitalizing the field of study.4 Now, by either uncoupling two feedback loops or by distinct TOC1 protein-protein interaction in different cell-types, toc1-1 has shown new properties of the circadian clock that may deepen our understanding of this system.  相似文献   

11.
12.
Summary An idea is proposed for the role of the circadian rhythmicity in the control of the oscillatory behavior observed in the growth and product formation during the cell-retention continuous culture of Clostridium acetobutylicum. C. acetobutylicum is highly sensitive to the permeability of the cell membrane. A physical mechanism for the variability of the cytoplasmic membrane has been proposed suggesting that the performance of the cell membrane, due to its liquid crystalline structure, is influenced by the external forces (e.g. earth's magnetic field). A previously developed Physiological State Model was extended by incorporating the effect of external forces on the cell membrane permeability. The new mathematical model could simulate the observed oscillatory behavior of the microbial culture. Some experimental results in support of the theoretical predictions have been presented.Nomenclature a Anisotropy - B Butanol concentration in the fermentation broth (g/l) - B i Intracellular butanol concentration (g/l) - B ex Extracellular butanol concentration (g/l) - Mean value of the butyric acid solution concentration (g/l) - BA i Intracellular butyric acid concentration (g/l) - BA ex Extracellular butyric acid concentration (g/l) - D Dilution rate (l/h) - H Magnetizing force (oersted) - K Constant in Equation (1) - k B Constant in Equation (15) - K BA Saturation constant - k BA 1 Constant in Equation (13) - k BA 2 Constant in Equation (13) - K D Constant in Equation (13) - k G 1 Constant in Equation (8) - k G 2 Constant in Equation (8) - k G 3 Constant in Equation (9) - K I Inhibition Constant - k p Constant in Eq. (11) - K S Monod constant - n Number of the active sugar transport sites - P Cellular membrane permeability (l/g wet cell·h) - q S Specific rate of substrate utilization (g substrate/g biomass·h) - S Substrate concentration in the fermentation broth (g/l) - S O Substrate concentration in the feed solution (g/l) - t Time (h) - X Total biomass concentration (g/l) - X 1 Active biomass concentration (g/l) - X 2 Non-active biomass concentration (g/l) Greek Letters Ratio of the dry to wet cell weight (g dry cell/g wet cell) - 1 Constant in Equation (6) - 2 Constant in Equation (6) - 3 Constant in Equation (6) - Specific culture growth rate (1/h)  相似文献   

13.
It was recently reported that the proportion of dark-coloured Soay sheep (Ovis aries) in the Hebrides has decreased, despite the fact that dark sheep tend to be larger than lighter sheep, and there exists a selective advantage to large body size. It was concluded that an apparent genetic linkage between loci for the coat colour polymorphism and loci with antagonistic effects on body size explained the decrease. Those results explain why the proportion of dark animals is not increasing, but not why it is decreasing. Between 1985 and 2005 there was a significant increase in mean ambient temperature near the islands. We suggest that, while in the past a dark coat has offset the metabolic costs of thermoregulation by absorbing solar radiation, the selective advantage of a dark coat may be waning as the climate warms in the North Atlantic. In parallel, Bergman''s rule may be operating, reducing the selective advantage of large body size in the cold. Either or both of these mechanisms can explain the decrease in the proportion of dark-coloured larger sheep in this population in which smaller (and light-coloured) sheep should be favoured by their lower gross energy demand. If environmental effects are the cause of the decline, then we can expect the proportion of dark-coloured Soay sheep to decrease further.  相似文献   

14.
In situ growth rates of the toxin-producing dinoflagellate Dinophysis norvegica collected in the central Baltic Sea were estimated during the summers of 1998 and 1999. Flow cytometric measurements of the DNA cell cycle of D. norvegica yielded specific growth rates (μ) ranging between 0.1 and 0.4 per day, with the highest growth rates in stratified populations situated at 15–20 m depth. Carbon uptake rates, measured using 14C incubations followed by single-cell isolation, at irradiances corresponding to depths of maximum cell abundance were sufficient to sustain growth rates of 0.1–0.2 per day. The reason for D. norvegica accumulation in the thermocline, commonly at 15–20 m depth, is thus enigmatic. Comparison of depth distributions of cells with nutrient profiles suggests that one reason could be to sequester nutrients. Measurements of single-cell nutrient status of D. norvegica, using nuclear microanalysis, revealed severe deficiency of both nitrogen and phosphorus as compared to the Redfield ratio.It is also possible that suitable prey or substrate for mixotrophic feeding is accumulating in the thermocline. The fraction of cells containing digestive vacuoles ranged from 2 to 22% in the studied populations. Infection by the parasitic dinoflagellate Amoebophrya sp. was observed in D. norvegica in all samples analysed. The frequency of infected cells ranged from 1 to 3% of the population as diel averages, ranging from 0.2 to 6% between individual samples. No temporal trends in infection frequency were detected. Estimated loss rates based on observed infection frequencies were 0.5–2% of the D. norvegica population daily, suggesting that these parasites were not a major loss factor for D. norvegica during the periods of study.  相似文献   

15.
Abstract

Inbred mouse strains differ in the expression of free‐running circadian activity rhythms. Although previous studies have suggested that BALB/c mice fail to display coherent rhythmicity under constant light, these studies presented only averaged data, and not individual animals’ activity patterns. In the present study, wheel‐running activity rhythms were monitored from individual BALB/c mice during long‐term exposure to constant red light All mice displayed dramatic lability of circadian activity rhythms, characterized by spontaneous alterations in both free‐running period and rhythm coherence. These results suggest that the circadian system in this strain is composed of a population of weakly‐coupled circadian oscillators.  相似文献   

16.
Evolutionary adaptation is the adjustment of species to a new or changing environment. Engaging in mutualistic microbial symbioses has been put forward as a key trait that promotes the differential, evolutionary success of many animal and plant lineages (McFall‐Ngai, 2008). Microbial mutualists allow these organisms to occupy new ecological niches where they could not have persisted on their own or would have been constrained by competitors. Vertical transmission of beneficial microbial symbionts from parents to the offspring is expected to link the adaptive association between a given host and microbe, and it can lead to coevolution and sometimes even cospeciation (Fisher, Henry, Cornwallis, Kiers, & West, 2017). Vertical transmission also causes bottlenecks that strongly reduce the effective population size and genetic diversity of the symbiont population. Moreover, vertically transmitted symbionts are assumed to have fewer opportunities to exchange genes with relatives in the environment. In a “From the Cover” article in this issue of Molecular Ecology, Breusing, Johnson, Vrijenhoek, and Young (2019) investigated whether hybridization among different host species could lead to interspecies exchange of otherwise strictly vertically transmitted symbionts. Hybridization of divergent lineages can potentially cause intrinsic and extrinsic incompatibilities, swamp rare alleles, and lead to population extinctions. In some cases, however, it might also create novel trait combinations that lead to evolutionary innovation (Marques, Meier, & Seehausen, 2019). Breusing et al. (2019) linked the concept of hybridization to symbiont transmission, and their findings have significant implications for the study of evolution of vertically transmitted symbionts and their hosts.  相似文献   

17.
BackgroundDrugs that modulate previously unexplored targets could potentially slow or halt the progression of neurodegenerative diseases. Several candidate proteins lie within the dark kinome, those human kinases that have not been well characterized. Much of the kinome (~80%) remains poorly studied, and these targets likely harbor untapped biological potential.Scope of reviewThis review highlights the significance of kinases as mediators of aberrant pathways in neurodegeneration and provides examples of published high-quality small molecules that modulate some of these kinases.Major conclusionsThere is a need for continued efforts to develop high-quality chemical tools to illuminate the function of understudied kinases in the brain. Potent and selective small molecules enable accurate pairing of an observed phenotype with a protein target.General significanceThe examples discussed herein support the premise that validation of therapeutic hypotheses surrounding kinase targets can be accomplished via small molecules and they can serve as the basis for disease-focused drug development campaigns.  相似文献   

18.
The two major rhythms of the biosphere are daily and seasonal; the two major adaptations to these rhythms are the circadian clock, mediating daily activities, and the photoperiodic timer, mediating seasonal activities. The mechanistic connection between the circadian clock and the photoperiodic timer remains unresolved. Herein, we show that the rhythmic developmental response to exotic light:dark cycles, usually used to infer a causal connection between the circadian clock and the photoperiodic timer, has evolved independently of the photoperiodic timer in the pitcher-plant mosquito Wyeomyia smithii across the climatic gradient of eastern North America from Florida to Canada and from the coastal plain to the mountains. We conclude that the photoperiodic timing of seasonal events can evolve independently of the daily circadian clock.  相似文献   

19.
20.
Fifty years after its introduction, cardiac pacing has evolved from an experimental medical treatment to an expanding field in today's cardiology. Only recently there is accumulating evidence that prolonged stimulation of the right ventricular apex is associated with clinically significant adverse effects. In this commentary, the potential adverse effects are summarised and potential modifications in contemporary pacing are discussed. (Neth Heart J 2008;16(suppl 1):S12-S14.)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号