首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxalate is metabolized by the glycerate pathway involving glyoxylate carboligase inAlcaligenes LOx andPseudomonas KOx, and by the serine pathway involving hydroxypyruvate reductase inPs.MOx andPs.AM1 (var. 470). AlthoughA.LOx does not grown on formate, stimulation of growth was observed in the presence of amino acids and a few Kreb's cycle intermediates.A.LOx possesses two different mechanisms for the oxidation of formate: (1) the constitutive formate oxidase which is present in the particulate fraction of oxalate-grown and succinate-plus-formate-grown cells; (2) the inducible NAD-linked formate dehydrogenase present in the 100000×g supernatant fraction of the cell-free extracts of oxalate-grown cells alone. The two systems occur simultaneously in oxalate-grown cells. The effect of inhibitors on formate oxidase activity and the other enzyme activities of the particulate formate-oxidizing fraction indicate that the oxidation of formate is linked to the respiratory chain.  相似文献   

2.
Oxalate catabolism is conducted by phylogenetically diverse organisms, including Methylobacterium extorquens AM1. Here, we investigate the central metabolism of this alphaproteobacterium during growth on oxalate by using proteomics, mutant characterization, and (13)C-labeling experiments. Our results confirm that energy conservation proceeds as previously described for M. extorquens AM1 and other characterized oxalotrophic bacteria via oxalyl-coenzyme A (oxalyl-CoA) decarboxylase and formyl-CoA transferase and subsequent oxidation to carbon dioxide via formate dehydrogenase. However, in contrast to other oxalate-degrading organisms, the assimilation of this carbon compound in M. extorquens AM1 occurs via the operation of a variant of the serine cycle as follows: oxalyl-CoA reduction to glyoxylate and conversion to glycine and its condensation with methylene-tetrahydrofolate derived from formate, resulting in the formation of C3 units. The recently discovered ethylmalonyl-CoA pathway operates during growth on oxalate but is nevertheless dispensable, indicating that oxalyl-CoA reductase is sufficient to provide the glyoxylate required for biosynthesis. Analysis of an oxalyl-CoA synthetase- and oxalyl-CoA-reductase-deficient double mutant revealed an alternative, although less efficient, strategy for oxalate assimilation via one-carbon intermediates. The alternative process consists of formate assimilation via the tetrahydrofolate pathway to fuel the serine cycle, and the ethylmalonyl-CoA pathway is used for glyoxylate regeneration. Our results support the notion that M. extorquens AM1 has a plastic central metabolism featuring multiple assimilation routes for C1 and C2 substrates, which may contribute to the rapid adaptation of this organism to new substrates and the eventual coconsumption of substrates under environmental conditions.  相似文献   

3.
Metabolic control associated with diauxic growth of Pseudomonas oxalaticus in batch cultures on mixtures of formate and oxalate was investigated by measuring intracellular enzyme and coenzyme concentrations and Q O 2values during transition experiments from oxalate to formate and vice versa. In transition from oxalate to formate oxalyl-CoA reductase concentration declined after the exhaustion of oxalate and ribulose-1,5-diphosphate carboxylase and 14CO2 fixation appeared upon addition of formate. In the reciprocal transition, ribulose-1,5-diphosphate carboxylase and 14CO2 fixation rate declined sharply after formate exhaustion, and oxalyl-CoA reductase appeared only after addition of oxalate. The intracellular NAD and NADP concentrations measured in the same experiments are reported. At substrate exhaustion the proportion of NAD in the reduced form fell from 15–20% to 2%. On addition of formate to an oxalate-starved culture there was an immediate increase in the proportion of NADH to 50%; such an increase was not observed in the reverse experiment.Abbreviations RuDP ribulose-1,5-diphosphate - HEPES 2-(N-2 hydroxyethylpiperazin-N-yl) ethane sulphonic acid  相似文献   

4.
Metabolic regulation in Pseudomonas oxalaticus OX1   总被引:1,自引:0,他引:1  
Diauxic growth of Pseudomonas oxalaticus was observed on a mixture of formate and oxalate in batch cultures. In the first phase of growth only formate was used. The capacity to oxidize oxalate appeared during the lag phase of 2–4 h after the exhaustion of formate and was followed by a second phase of growth on oxalate. The rate of autotrophic 14CO2 fixation measured in washed cell suspensions decreased markedly in this second growth phase on the addition of oxalate. In mixtures of formate with acetate, glyoxylate or glycollate, simultaneous utilization of both substrates was observed. During growth on acetate plus formate formate-oxidizing capacity remained low. With low acetate concentrations, sufficient formate remained after the exhaustion of acetate to support a second growth phase on formate. This phase followed a 1.5–2 h lag, during which formate-oxidizing capacity increased and the Calvin cycle enzymes were synthesized. In mixtures of formate with glyoxylate or glycollate, the formate-oxidizing capacity was high, formate was oxidized rapidly, and no second growth phase was seen. In these latter mixtures high activities of a membrane-bound, phenazine methosulphate/2,6-dichlorophenolindophenollinked formate dehydrogenase and low activities of the soluble NAD-linked formate dehydrogenase were detected. The synthesis of ribulose-1,5-diphosphate carboxylase was totally repressed during growth on formate plus glycollate and partially repressed on formate plus glyoxylate. The regulation of Calvin cyclus enzymes in Pseudomonas oxalaticus is discussed.  相似文献   

5.
1. The type of metabolism adopted by Pseudomonas oxalaticus during growth on a variety of carbon sources was studied. 2. The only substrate upon which autotrophic growth was observed is formate. 3. In mixtures of formate and those substrates upon which the organism can grow faster than on formate, e.g. succinate, lactate or citrate, heterotrophic metabolism results. 4. In mixtures of formate and those substrates upon which the organism can grow at a similar rate to that on formate, e.g. glycollate or glyoxylate, the predominant mode of metabolism adopted is heterotrophic utilization of the C2 substrate coupled with oxidation of formate as ancillary energy source. 5. P. oxalaticus grows on oxalate 30% slower than on formate. In mixtures of formate and oxalate, the predominant mode of metabolism adopted is autotrophic utilization of formate coupled with oxidation of oxalate as ancillary energy source. 6. In mixtures of formate and those substrates upon which the organism grows at a much lower rate than on formate, e.g. glycerol and malonate, the predominant mode of metabolism adopted is autotrophic utilization of formate. 7. It is concluded that synthesis of the enzymes involved in autotrophic metabolism is controlled by a combination of induction and metabolite repression.  相似文献   

6.
1. The growth of Pseudomonas AM1 is much more sensitive to inhibition by sulphanilamide when methanol, rather than succinate, acts as the sole carbon and energy source; a sulphanilamide concentration of 1mm, which causes almost complete inhibition of growth on methanol, has little effect in a succinate medium. 2. Similar results have been obtained with sulphadiazine and sulphathiazole. Sulphanilic acid has little effect. 3. A similar differential sensitivity to sulphanilamide is shown by Protaminobacter ruber and Pseudomonas extorquens when grown on methanol media as compared with succinate. 4. Sulphanilamide inhibited the growth of Pseudomonas oxalaticus on formate, oxalate and succinate media to about the same extent. 5. Inhibition of growth of Pseudomonas AM1 by sulphanilamide is accompanied by an accumulation of glycine in the cells. 6. Inhibition of growth by sulphanilamide can be reversed by p-aminobenzoic acid. 7. Microbiological assays of the folate content of Pseudomonas AM1 have been performed after growth on both methanol and succinate, and the results are discussed in terms of differences in metabolism.  相似文献   

7.
Pseudomonas oxalaticus was grown in carbon- and energy-limited continuous cultures either with oxalte or formate or with mixtures of these substrates. During growth on the mixtures, simultaneous utilization of the two substrates occurred at all dilution rates tested. Under these conditions oxalate repressed the synthesis of ribulosebisphosphate carboxylase. The degree of this repression was dependent on the dilution rate and the ratio of oxalate and formate in the medium reservoir. At a fixed oxalate/formate ratio repression was greatest at intermediate dilution rates, whereas derepression occurred at both low and high dilution rates. Progressive depression of ribulosebisphosphate carboxylase synthesis and of autotrophic CO2 fixation at low dilution rates was attributed to the decreasing concentration of intracellular repressor molecule(s), parallel to the decreasing concentration of the growth-limiting substrates in the culture. To account for the derepression at higher dilution rates, it is proposed that the rate of oxalyl-CoA production from oxalate limits the supply of metabolic intermediates and that additional energy and reducing power generated from formate drains the pools of metabolic intermediates sufficiently to lower the intracellular concentration of the repressor(s). During growth of Pseudomonas oxalaticus on the heterotrophic substrate oxalate alone, at dilution rates below 10% of the maximum specific growth rate, derepression of ribulosebisphosphate carboxylase synthesis and of autotrophic CO2 fixation was observed to a level which was 50% of that observed during growth on formate alone at the same dilution rate. It is concluded that in Pseudomonas oxalaticus the synthesis of enzymes involved in autotrophic CO2 fixation via the Calvin cycle is regulated by a repression/derepression mechanism and that the contribution of autotrophic CO2 fixation to the biosynthesis of cell material in this organism is mainly controlled via the synthesis of these enzymes.Abbreviations RuBPCase ribulosebisphosphate carboxylase - PMS phenazine methosulphate - DCPIP 2,6-dichlorophenolindophenol - FDH formate dehydrogenase - SR concentration of growth-limiting substrate in reservoir  相似文献   

8.
Hydroxypyruvate and glycolate inhibited the oxidation of [U-14C]glyoxylate to [14C]oxalate in isolated perfused rat liver, but stimulated total oxalate and glycolate synthesis. [14C]Oxalate synthesis from [14C]glycine similarly inhibited by hydroxypyruvate, but conversion of [14C1]glycolate to [4C]oxalate was increased three-fold. Pyruvate had no effect on the synthesis of [14C]oxalate or total oxalate. The inhibition studies suggest that hydroxypyruvate is a precursor of glycolate and oxalate and that the conversion of glycolate to oxalate does not involve free glyoxylate as an intermediate. [14C3]Hydroxypyruvate, but not [14C1]hydroxypyruvate, was oxidized to [14C]oxalate in isolated perfused rat liver. Isotope dilution studies indicate the major pathway involves the decarboxylation of hydroxypyruvate forming glycolaldehyde which is subsequently oxidized to oxalate via glycolate. The oxidation of serine to oxalate appears to proceed predominantly via hydroxypyruvate rather than glycine or ethanolamine. The hyperoxaluria of L-glyceric aciduria, primary hyperoxaluria type II, is induced by the oxidation of the hydroxypyruvate, which accumulates because of the deficiency of D-glyceric dehydrogenase, to oxalate.  相似文献   

9.
The efficiency of oxidative phosphorylation in Pseudomonas oxalaticus during growth on oxalate and formate was estimated by two methods. In the first method the amount of ATP required to synthesize cell material of standard composition was calculated during growth of the organism on either of the two substrates. The [Y ATP max ] theor. values thus obtained were 12.5 and 6.5 for oxalate and formate respectively, if the assumption were made that no energy is required for transport of oxalate or carbon dioxide. When active transport of oxalate requiring an energy input equivalent to 1 mole of ATP per mole of oxalate was taken into account, [Y ATP max ]theor. for oxalate was 9.4. True Y ATP max values were derived from these data on the assumption that the energy produced in the catabolism of Pseudomonas oxalaticus is used with approximately the same efficiency as in a range of other chemoorganotrophs. P/O ratios were calculated using the equation P/O=Y O/Y ATP. The data for Y O and m e required for these calculations were obtained from cultures of Pseudomonas oxalaticus growing on oxalate or formate in carbon-limited continuous cultures. The P/O ratios calculated by this method were, for oxalate, 1.3 (or 1.0 if active transport were ignored), and for formate, 1.7.In the second method the stoicheiometries of the respiration-linked proton translocations with oxalate and formate were measured in washed suspensions of cells grown on the two substrates. The H+/O ratios obtained were 4.3 with oxalate and 3.9 with formate. These data indicate the presence of two functional phosphorylation sites in the electron transport chain of Pseudomonas oxalaticus during growth on both substrates. A comparison of the P/O ratio on oxalate obtained with the two methods indicated that the energy requirement for active transport of oxalate has a major effect on the energy budget of the cell; about 50% of the potentially available energy in oxalate is required for its active transport across the cell membrane. Translocation of formate requires approximately 25% of the energy potentially available in the substrate. These results offer an explanation for the fact that molar growth yields of Pseudomonas oxalaticus on oxalate and formate are not very different.Abbreviations PMS phenazinemethosulphate - DCPIP 2,6-dichlorophenolindophenol - TMPD N,N,N,N-tetramethyl-1,4-phenylene-diamine dihydrochloride - SD standard deviation - PEP Phosphoenol-pyruvate  相似文献   

10.
The levels of the oxidation enzyme methanol dehydrogenase and the serine pathway enzymes, hydroxypyruvate reductase, glycerate kinase, serine transhydroxymethylase, serine-glyoxylate aminotransferase, phosphoenolpyruvate carboxylase, and malyl-coenzyme A lyase, were studied in cells of the facultative methylotrophs Pseudomonas AM1, Pseudomonas 3A2 and Hyphomicrobium X grown on different substrates. Induction and dilution curves for these enzymes suggest they may be regulated coordinately in Hyphomicrobium X, but not in Pseudomonas AM1 or 3A2. Glyoxylate stimulated the serine transhydroxymethylase activity in methanol-grown cells of all three organisms. A secondary alcohol dehydrogenase activity was detected at low levels in Pseudomonas AM1 and Hyphomicrobium X, but not in Pseudomonas 3A2.  相似文献   

11.
Barley (Hordeum vulgare L.) endosperm from developing seeds was found to contain relatively high activities of cytosolic NAD(P)H-dependent hydroxypyruvate reductase (HPR-2) and isocitrate dehydrogenase (ICDH). In contrast, activities of peroxisomal NADH-dependent hydroxypyruvate reductase (HPR-1) and glycolate oxidase as well as cytosolic NAD(P)H-dependent glyoxylate reductase were very low or absent in the endosperm both during maturation and seed germination, indicating the lack of a complete glycolate cycle in this tissue. In addition, activities of cytosolic glucose-6-phosphate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase were low or absent in the endosperm. The endosperm HPR-2 exhibited similar properties to those of an earlier described HPR-2 from green leaves, e.g. activities with both hydroxypyruvate and glyoxylate, utilization of both NADPH and NADH as cofactors, and a strong uncompetitive inhibition by oxalate (Ki in the order of micromolar). In etiolated leaves, both HPR-1 and HPR-2 were present with the same activity as in green leaves, indicating that the lack of HPR-1 in the endosperm is not a general feature of non-photosynthetic tissues. We conclude that the endosperm has considerable capacity for cytosolic NADP/NADPH cycling via HPR-2 and ICDH, the former being possibly involved in the utilization of a serine-derived carbon.  相似文献   

12.
1. The labelling patterns of phosphoglycerate obtained from formate-grown or oxalate-grown Pseudomonas oxalaticus after exposure for 15sec. to [14C]formate or [14C]oxalate respectively were determined. 2. The phosphoglycerate obtained from the formate-grown cells contained 78% of the radioactivity in the carboxyl group. This is in accord with that predicted for operation of the ribulose diphosphate cycle of carbon dioxide fixation. 3. The labelling pattern of the phosphoglycerate obtained from the oxalate-grown cells approached uniformity, as predicted for the heterotrophic pathway of oxalate assimilation. The departure from complete uniformity may have been due to concurrent 14CO2 fixation into C4 dicarboxylic acids. 4. The labelling pattern of phosphoglycerate obtained from cells that had just started to grow on oxalate after adaptation from formate was determined after incubation of the cells for 15sec. with [14C]oxalate. This pattern approached uniformity. 5. The pathway of incorporation of 14CO2 into cells that had just started to grow on oxalate after adaptation from formate, in the presence of either formate or oxalate as energy source, was studied by chromatographic and radio-autographic analysis. 6. It is concluded from the isotopic data that a mixed heterotrophic–autotrophic metabolism, with the former mode predominating, operates in the initial stages of growth on oxalate after adaptation from growth on formate.  相似文献   

13.
The mode of glyoxylate production from acetyl-CoA was investigated in three strains of methylotrophic bacteria,Pseudomonas MA,Pseudomonas AM1 and organism PAR. This investigation was prompted by the recently reported discovery of a homoisocitrate lyase in methylotrophic bacteria and the suggested involvement of this novel enzyme in assimilation of C1 and C2 compounds as part of a homoisocitrate-glyoxylate cycle. We were unable to detect cleavage of any of the four stereoisomers of homoisocitric acid by cell-free extracts of C1-or C2-grown bacteria. Extracts of C1-grown bacteria did not catalyze condensation of glyoxylate with glutarate or production of glyoxylate from acetyl-CoA and 2-ketoglutarate. Extracts of C1-grownPseudomonas MA catalyzed cleavage of isocitrate;threo-homoisocitrate was a potent competitive inhibitor of this reaction. These results indicate that homoisocitrate cleavage does not occur in any of the methylotrophs tested. The pathway for oxidation of acetyl-CoA to glyoxylate inPseudomonas AM1 and organism PAR therefore remains obscure.  相似文献   

14.
Although the tricarboxylic acid (TCA) cycle is essential in almost all aerobic organisms, its precise modulation and integration in global cellular metabolism is not fully understood. Here, we report on an alternative TCA cycle uniquely aimed at generating ATP and oxalate, two metabolites critical for the survival of Pseudomonas fluorescens. The upregulation of isocitrate lyase (ICL) and acylating glyoxylate dehydrogenase (AGODH) led to the enhanced synthesis of oxalate, a dicarboxylic acid involved in the immobilization of aluminum (Al). The increased activity of succinyl-CoA synthetase (SCS) and oxalate CoA-transferase (OCT) in the Al-stressed cells afforded an effective route to ATP synthesis from oxalyl-CoA via substrate level phosphorylation. This modified TCA cycle with diminished efficacy in NADH production and decreased CO2-evolving capacity, orchestrates the synthesis of oxalate, NADPH, and ATP, ingredients pivotal to the survival of P. fluorescens in an Al environment. The channeling of succinyl-CoA towards ATP formation may be an important function of the TCA cycle during anaerobiosis, Fe starvation and O2-limited conditions.  相似文献   

15.
1. Two enzymes that catalyse the reduction of glyoxylate to glycollate have been separated and purified from a species of Pseudomonas. Their molecular weights were estimated as 180000. 2. Reduced nicotinamide nucleotides act as the hydrogen donators for the enzymes. The NADH-linked enzyme is entirely specific for its coenzyme but the NADPH-linked reductase shows some affinity towards NADH. 3. Both enzymes convert hydroxypyruvate into glycerate. 4. The glyoxylate reductases show maximal activity at pH6·0–6·8, are inhibited by keto acids and are strongly dependent on free thiol groups for activity. 5. The Michaelis constants for glyoxylate and hydroxypyruvate were found to be of a high order. 6. The reversibility of the reaction has been demonstrated for both glyoxylate reductases and the equilibrium constants were determined. 7. The reduction of glyoxylate and hydroxypyruvate is not stimulated by anions.  相似文献   

16.
Diauxic growth was observed in batch cultures of Pseudomonas oxalaticus when cells were pregrown on acetate and then transferred to mixtures of acetate and oxalate. In the first phase of growth only acetate was utilized. After the exhaustion of acetate from the medium enzymes involved in the metabolism of oxalate were synthesized during a lag phase of 2 h, followed by a second growth phase on oxalate. When the organism was pregrown on oxalate, oxalate utilization from the mixture with acetate completely ceased after a few hours during which acetate became the preferred substrate. Similar observations were made with formate/oxalate mixtures in which formate was the preferred substrate. Until formate was exhausted, it completely suppressed oxalate metabolism, again resulting in diauxic growth. However, when the organism was pregrown on oxalate and then transferred to mixtures of oxalate and formate, both substrates were utilized simultaneously although the initial rate of oxalate utilization from the mixture was strongly reduced as compared to growth on oxalate alone.Since both preferred substrates cross the cytoplasmic membrane by diffusion, whereas oxalate is accumulated by an inducible, active transport system, the effect of acetate and formate on oxalate transport was studied at different external pH values. At pH 5.5 both substrates completely inhibited oxalate transport. However, at pH 7.5, the pH at which the diauxic growth experiments were performed, formate and acetate did not affect oxalate transport. Growth patterns and enzymes profiles suggest that, at higher pH values, formate and acetate possibly affect oxalate utilization via an effect on the internal pool of oxalyl-CoA, the first product of oxalate metabolism.Abbreviations PMS phenazine methosulphate - RuBPCase ribulosebisphosphate carboxylase - DCPIP 2,6-dichlorophenolindophenol - FDH formate dehydrogenase - p.m.f. protonmotive force  相似文献   

17.
The use of LaPr 88/29 mutant of barley (Hordeum vulgare), which lacks NADH-preferring hydroxypyruvate reductase (HPR-1), allowed for an unequivocal demonstration of at least two related NADPH-preferring reductases in this species: HPR-2, reactive with both hydroxypyruvate and glyoxylate, and the glyoxylate specific reductase (GR-1). Antibodies against spinach HPR-1 recognized barley HPR-1 and partially reacted with barley HPR-2, but not GR-1, as demonstrated by Western immunoblotting and immunoprecipitation of proteins from crude leaf extracts. The mutant was deficient in HPR-1 protein. In partially purified preparations, the activities of HPR-1, HPR-2, and GR-1 could be differentiated by substrate kinetics and/or inhibition studies. Apparent Km values of HPR-2 for hydroxypyruvate and glyoxylate were 0.7 and 1.1 millimolar, respectively, while the Km of GR-1 for glyoxylate was 0.07 millimolar. The Km values of HPR-1, measured in wild type, for hydroxypyruvate and glyoxylate were 0.12 and 20 millimolar, respectively. Tartronate and P-hydroxypyruvate acted as selective uncompetitive inhibitors of HPR-2 (Ki values of 0.3 and 0.4 millimolar, respectively), while acetohydroxamate selectively inhibited GR-1 activity. Nonspecific contributions of HPR-1 reactions in assays of HPR-2 and GR-1 activities were quantified by a direct comparison of rates in preparations from wild-type and LaPr 88/29 plants. The data are evaluated with respect to previous reports on plant HPR and GR activities and with respect to optimal assay procedures for individual HPR-1, HPR-2, and GR-1 rates in leaf preparations.  相似文献   

18.
Succinate (or a product of succinate metabolism) is a catabolite repressor of some enzymes of the serine pathway (hydroxypyruvate reductase, serine-glyoxylate aminotransferase and glycerate kinase) but not of methanol dehydrogenase nor methylamine dehydrogenase. A mutant (PCT64) of Pseudomonas AM1, which is unable to grow on C(1) compounds, lacks glycerate kinase, showing that this enzyme is essential for the operation of the serine pathway. Mutant PCT48, unable to convert acetate into glycollate, has lost the ability to grow both on C(1) compounds and on ethanol. The properties of a third mutant (PCT57) show that Pseudomonas AM1 contains enzymes catalysing the conversion of acetate into glyoxylate. Evidence is presented that hydroxypyruvate reductase is involved in the oxidation of glycollate to glyoxylate during growth on ethanol. A scheme is proposed for the conversion of ethanol and of C(1) compounds into glyoxylate in which acetate (or a derivative) and glycollate are intermediates.  相似文献   

19.
Glycolate oxidase (GO) has been identified in the endocyanom Cyanophora paradoxa which has peroxisome-like organelles and cyanelles instead of chloroplasts. The enzyme used or formed equimolar amounts of O2 or H2O2 and glyoxylate, respectively. Aerobically, the enzyme did not reduce the artificial electron acceptor dichlorophenol indophenol. However, after an inhibitor of glycolate dehydrogenase, KCN (2 millimolar), was added to the assay medium, considerable aerobic glycolate:dichlorophenol indophenol reductase activity was detectable. The leaf GO inhibitor 2-hydroxybutynoate (30 micromolar), which binds irreversibly to the flavin moiety of the active site of leaf GO, inhibited Cyanophora GO and pea (Pisum sativum L.) GO to the same extent. This suggests that the active sites of both enzymes are similar. Cyanophora GO and pea GO cannot oxidize d-lactate. In contrast to GO from pea or other organisms, the affinity of Cyanophora GO for l-lactate is very low (Km 25 millimolar). Another important difference is that Cyanophora GO produced sigmoidal kinetics with O2 as varied substrate, whereas pea GO produced normal Michaelis-Menten kinetics. It is concluded that there is considerable inhomogeneity among the glycolate-oxidizing enzymes from Cyanophora, pea, and other organisms. The specific catalase activity in Cyanophora was only one-tenth of that in leaves. NADH-and NADPH-dependent hydroxypyruvate reductase (HPR) and glyoxylate reductase activities were detected in Cyanophora. NADH-HPR was markedly inhibited by hydroxypyruvate above 0.5 millimolar. Variable substrate inhibition was observed with glyoxylate in homogenates from different algal cultures. It is proposed that Cyanophora has multiple forms of HPR and glyoxylate reductase, but no enzyme clearly resembling leaf peroxisomal HPR was identified in these homogenates. Moreover, no serine:glyoxylate aminotransferase activity was detected. These results collectively indicate the possibility that the glycolate metabolism in Cyanophora deviates from that in leaves.  相似文献   

20.
At least two hydroxypyruvate reductases (HPRs), differing in specificity for NAD(P)H and (presumably) utilizing glyoxylate as a secondary substrate, were identified by fractionation of crude maize leaf extracts with ammonium sulfate. The NADH-preferring enzyme, which most probably represented peroxisomal HPR, was precipitated by 30 to 45% saturated ammonium sulfate, while most of the NADPH-dependent activity was found in a 45 to 60% precipitate. The HPRs had similar low Kms for hydroxypyruvate (about 0.1 millimolar), regardless of cofactor, while affinities of glyoxylate reductase (GR) reactions for glyoxylate varied widely (Kms of 0.4-12 millimolar) depending on cofactor. At high hydroxypyruvate concentrations, the NADPH-HPR from the 30 to 45% precipitate showed negative cooperativity with respect to this reactant, having a second Km of 6 millimolar. In contrast, NADPH-HPR from the 45 to 60% precipitate was inhibited at high hydroxypyruvate concentrations (K1 of 3 millimolar) and, together with NADPH-GR, had only few, if any, common antigenic determinants with NADH-HPR from the 30 to 45% fraction. Both NADPH-HPR and NADPH-GR activities from the 45 to 60% precipitate were probably carried out by the same enzyme(s), as found by kinetic studies. Following preincubation with NADPH, there was a marked increase (up to sixfold) in activity of NADPH-HPR from either crude or fractionated extracts. Most of this increase could be attributed to an artefact resulting from an interference by endogeneous NADPH-phosphatase, which hydrolyzed NADPH to NADH, the latter being utilized by the NADH-dependent HPR. However, in the presence of 15 millimolar fluoride (phosphatase inhibitor), preincubation with NADPH still resulted in over 60% activation of NADPH-HPR. The NADPH treatment stimulated the Vmax of the reductase but had no effect on its Km for hydroxypyruvate. Enzyme distribution studies revealed that both NADH and NADPH-dependent HPR and GR activities were predominantly localized in the bundle sheath compartment. Rates of NADPH-HPR and NADPH-GR in this tissue (over 100 micromoles per hour per milligram of chlorophyll each) are in the upper range of values reported for leaves of C3 species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号