首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxalate catabolism is conducted by phylogenetically diverse organisms, including Methylobacterium extorquens AM1. Here, we investigate the central metabolism of this alphaproteobacterium during growth on oxalate by using proteomics, mutant characterization, and (13)C-labeling experiments. Our results confirm that energy conservation proceeds as previously described for M. extorquens AM1 and other characterized oxalotrophic bacteria via oxalyl-coenzyme A (oxalyl-CoA) decarboxylase and formyl-CoA transferase and subsequent oxidation to carbon dioxide via formate dehydrogenase. However, in contrast to other oxalate-degrading organisms, the assimilation of this carbon compound in M. extorquens AM1 occurs via the operation of a variant of the serine cycle as follows: oxalyl-CoA reduction to glyoxylate and conversion to glycine and its condensation with methylene-tetrahydrofolate derived from formate, resulting in the formation of C3 units. The recently discovered ethylmalonyl-CoA pathway operates during growth on oxalate but is nevertheless dispensable, indicating that oxalyl-CoA reductase is sufficient to provide the glyoxylate required for biosynthesis. Analysis of an oxalyl-CoA synthetase- and oxalyl-CoA-reductase-deficient double mutant revealed an alternative, although less efficient, strategy for oxalate assimilation via one-carbon intermediates. The alternative process consists of formate assimilation via the tetrahydrofolate pathway to fuel the serine cycle, and the ethylmalonyl-CoA pathway is used for glyoxylate regeneration. Our results support the notion that M. extorquens AM1 has a plastic central metabolism featuring multiple assimilation routes for C1 and C2 substrates, which may contribute to the rapid adaptation of this organism to new substrates and the eventual coconsumption of substrates under environmental conditions.  相似文献   

2.
3.
1. The labelling patterns of phosphoglycerate obtained from formate-grown or oxalate-grown Pseudomonas oxalaticus after exposure for 15sec. to [14C]formate or [14C]oxalate respectively were determined. 2. The phosphoglycerate obtained from the formate-grown cells contained 78% of the radioactivity in the carboxyl group. This is in accord with that predicted for operation of the ribulose diphosphate cycle of carbon dioxide fixation. 3. The labelling pattern of the phosphoglycerate obtained from the oxalate-grown cells approached uniformity, as predicted for the heterotrophic pathway of oxalate assimilation. The departure from complete uniformity may have been due to concurrent 14CO2 fixation into C4 dicarboxylic acids. 4. The labelling pattern of phosphoglycerate obtained from cells that had just started to grow on oxalate after adaptation from formate was determined after incubation of the cells for 15sec. with [14C]oxalate. This pattern approached uniformity. 5. The pathway of incorporation of 14CO2 into cells that had just started to grow on oxalate after adaptation from formate, in the presence of either formate or oxalate as energy source, was studied by chromatographic and radio-autographic analysis. 6. It is concluded from the isotopic data that a mixed heterotrophic–autotrophic metabolism, with the former mode predominating, operates in the initial stages of growth on oxalate after adaptation from growth on formate.  相似文献   

4.
Microbial growth on mercaptosuccinic acid   总被引:3,自引:0,他引:3  
  相似文献   

5.
Microbial growth on carbon monoxide   总被引:14,自引:0,他引:14  
The utilization of carbon monoxide as energy and/or carbon source by different physiological groups of bacteria is described and compared. Utilitarian CO oxidation which is coupled to the generation of energy for growth is achieved by aerobic and anaerobic eu- and archaebacteria. They belong to the physiological groups of aerobic carboxidotrophic, facultatively anaerobic phototrophic, and anaerobic acetogenic, methanogenic or sulfate-reducing bacteria. The key enzyme in CO oxidation is CO dehydrogenase which is a molybdo iron-sulfur flavoprotein in aerobic CO-oxidizing bacteria and a nickel-containing iron-sulfur protein in anaerobic ones. In carboxidotrophic and phototrophic bacteria, the CO-born CO2 is fixed by ribulose bisphosphate carboxylase in the reductive pentose phosphate cycle. In acetogenic, methanogenic, and probably in sulfate-reducing bacteria, CODH/acetyl-CoA synthase directly incorporates CO into acetyl-CoA.In plasmid-harbouring carboxidotrophic bacteria, CO dehydrogenase as well as enzymes involved in CO2 fixation or hydrogen utilization are plasmid-encoded. Structural genes encoding CO dehydrogenase were cloned from carboxidotrophic, acetogenic and methanogenic bacteria. Although they are clustered in each case, they are genetically distinct.Soil is a most important biological sink for CO in nature. While the physiological microbial groups capable of CO oxidation are well known, the type and nature of the microorganisms actually representing this sink are still enigmatic. We also tried to summarize the little information available on the nutritional and physicochemical requirements determining the sink strength. Because CO is highly toxic to respiring organisms even in low concentrations, the function of microbial activities in the global CO cycle is critical.  相似文献   

6.
A member of the genus Arthrobacter was isolated which grew at the expense of 2-bromobutane as sole source of carbon and energy. Evidence is presented which suggests that the initial conversion of 2-bromobutane to 2-butanol is a spontaneous chemical hydrolysis and not mediated by the organism. Further evidence from oxygen consumption experiments indicates that 2-bromobutane is oxidized through 2-butanol, methyl ethyl ketone, ethyl acetate to acetate and ethanol. Results of experiments with cells grown on pathway intermediates reveal that the enzymes necessary for the oxidation of 2-butanol, methyl ethyl ketone, ethyl acetate, ethanol and acetaldehyde are not coordinately, but individually induced by their respective substrates.  相似文献   

7.
Effects of glyoxylate on photosynthesis by intact chloroplasts   总被引:2,自引:4,他引:2       下载免费PDF全文
Because glyoxylate inhibits CO2 fixation by intact chloroplasts and purified ribulose bisphosphate carboxylase/oxygenase, glyoxylate might be expected to exert some regulatory effect on photosynthesis. However, ribulose bisphosphate carboxylase activity and activation in intact chloroplasts from Spinacia oleracea L. leaves were not substantially inhibited by 10 millimolar glyoxylate. In the light, the ribulose bisphosphate pool decreased to half when 10 millimolar glyoxylate was present, whereas this pool doubled in the control. When 10 millimolar glyoxylate or formate was present during photosynthesis, the fructose bisphosphate pool in the chloroplasts doubled. Thus, glyoxylate appeared to inhibit the regeneration of ribulose bisphosphate, but not its utilization.

The fixation of CO2 by intact chloroplasts was inhibited by salts of several weak acids, and the inhibition was more severe at pH 6.0 than at pH 8.0. At pH 6.0, glyoxylate inhibited CO2 fixation by 50% at 50 micromolar, and glycolate caused 50% inhibition at 150 micromolar. This inhibition of CO2 fixation seems to be a general effect of salts of weak acids.

Radioactive glyoxylate was reduced to glycolate by chloroplasts more rapidly in the light than in the dark. Glyoxylate reductase (NADP+) from intact chloroplast preparations had an apparent Km (glyoxylate) of 140 micromolar and a Vmax of 3 micromoles per minute per milligram chlorophyll.

  相似文献   

8.
Moorella thermoacetica is an anaerobic acetogen, a class of bacteria that is found in the soil, the animal gastrointestinal tract, and the rumen. This organism engages the Wood-Ljungdahl pathway of anaerobic CO(2) fixation for heterotrophic or autotrophic growth. This paper describes a novel enzyme, oxalate oxidoreductase (OOR), that enables M. thermoacetica to grow on oxalate, which is produced in soil and is a common component of kidney stones. Exposure to oxalate leads to the induction of three proteins that are subunits of OOR, which oxidizes oxalate coupled to the production of two electrons and CO(2) or bicarbonate. Like other members of the 2-oxoacid:ferredoxin oxidoreductase family, OOR contains thiamine pyrophosphate and three [Fe(4)S(4)] clusters. However, unlike previously characterized members of this family, OOR does not use coenzyme A as a substrate. Oxalate is oxidized with a k(cat) of 0.09 s(-1) and a K(m) of 58 μM at pH 8. OOR also oxidizes a few other 2-oxoacids (which do not induce OOR) also without any requirement for CoA. The enzyme transfers its reducing equivalents to a broad range of electron acceptors, including ferredoxin and the nickel-dependent carbon monoxide dehydrogenase. In conjunction with the well characterized Wood-Ljungdahl pathway, OOR should be sufficient for oxalate metabolism by M. thermoacetica, and it constitutes a novel pathway for oxalate metabolism.  相似文献   

9.
  • 1.1. In assay mixtures for 2-oxoglutarate:glyoxylate carboligase with mitochondrial fractions of Tetrahymena pyriformis 2-oxoglutarate carrying the label from [2-14C]glyoxylate was formed. The isotropic label was confined mainly to carbon 1 of 2-oxoglutarate.
  • 2.2. The extent of labelling varied in proportion to the activity of the enzyme in thiamine-deficient cells.
  • 3.3. A hypothetical cycle is considered to account for the regeneration of 2-oxoglutarate in the assay mixtures.
  相似文献   

10.
11.
A new strictly anaerobic, gram-negative, nonsporeforming bacterium, Strain PerGlx1, was enriched and isolated from marine sediment samples with glyoxylate as sole carbon and energy source. The guanineplus-cytosine content of the DNA was 44.1±0.2 mol %. Glyoxylate was utilized as the only substrate and was stoichiometrically degraded to carbon dioxide, hydrogen, and glycolate. An acetyl-CoA and ADP-dependent glyoxylate converting enzyme activity, malic enzyme, and pyruvate synthase were found at activities sufficient for growth (0.25 U x mg protein-1). These findings allow to design a new degradation pathway for glyoxylate: glyoxylate is condensed with acetyl-CoA to form malyl-CoA; the free energy of the thioester linkage in malyl-CoA is conserved by substrate level phosphorylation. Part of the electrons released during glyoxylate oxidation to CO2 reduce a small fraction of glyoxylate to glycolate.  相似文献   

12.
Microbial growth patterns described by fractal geometry.   总被引:6,自引:0,他引:6       下载免费PDF全文
M Obert  P Pfeifer    M Sernetz 《Journal of bacteriology》1990,172(3):1180-1185
Fractal geometry has made important contributions to understanding the growth of inorganic systems in such processes as aggregation, cluster formation, and dendritic growth. In biology, fractal geometry was previously applied to describe, for instance, the branching system in the lung airways and the backbone structure of proteins as well as their surface irregularity. This investigation applies the fractal concept to the growth patterns of two microbial species, Streptomyces griseus and Ashbya gossypii. It is a first example showing fractal aggregates in biological systems, with a cell as the smallest aggregating unit and the colony as an aggregate. We find that the global structure of sufficiently branched mycelia can be described by a fractal dimension, D, which increases during growth up to 1.5. D is therefore a new growth parameter. Two different box-counting methods (one applied to the whole mass of the mycelium and the other applied to the surface of the system) enable us to evaluate fractal dimensions for the aggregates in this analysis in the region of D = 1.3 to 2. Comparison of both box-counting methods shows that the mycelial structure changes during growth from a mass fractal to a surface fractal.  相似文献   

13.
Park C  Lee I  Jang JH  Kang WK 《FEBS letters》2007,581(20):3800-3804
Recently, negative effects of phosphatase in tumorigenesis and metastasis have been suggested in various tumor types. In this study, we showed that RhoA activation modulated phosphatase during senescence-like arrest in human prostate cancer cells. Under senescence-inducing condition, decreased Erk phosphorylation was detected in caRhoA-transfected cells and inactivation of Erk, but not p38, prevented doxorubicin-induced cell senescence. Cells were induced to senescence by inhibition of phosphatase activity (VHR, MKP3, or PP2A) without additional cellular stress. Of interest, caRhoA prevented doxorubicin-induced decrease of phosphatase. Thus, we postulate that RhoA signaling may protect cells against cellular senescence by maintaining phosphatase activity and Erk dephosphorylation.  相似文献   

14.
The availability of water, which can be expressed in terms of water activity (a(w)), is one of the most important determinants for microbial homeostasis and growth on surface to air interfaces. Here we show, using an environmental control chamber containing a precisely controlled temperature/a(w) gradient in combination with a mathematical approach, that the environmental a(w) growth limit of a microorganism can be lower than its intracellular a(w) limit. This internal limit represents the point at which microbial cells cannot lower their internal a(w) any further in response to low external a(w) values without interfering with essential intracellular processes. To grow at external a(w) values below their internal limit, microbes need to generate more water metabolically than they lose to their environment. This internal a(w) limit can be calculated by measuring the a(w) growth limit of an organism at different water vapour diffusivities using barometric pressure as a variable. Fascinating morphological changes, such as rope-like superstructures formed by B. subtilis, are furthermore observed in response to low external a(w) values in particular around the calculated intracellular a(w) limit. The intracellular a(w) limit of an organism is a decisive parameter for water limitation-induced adaptations in cellular hydrophilicity and morphogenesis.  相似文献   

15.
16.
Microorganisms may be responsible for physical and chemical changes in composite materials. Inoculation of a fungal consortium to pre-sterilized coupons of five composites resulted in deep penetration into the interior of all materials at a temperature of approximately 22°C within 5 weeks. Scanning electron microscopy (SEM) showed that the inoculated composites were etched by the microorganisms. None of the five composites tested resisted fungal attack. Inoculation of extracts of these composites with the same fungi resulted in higher growth compared to the control, suggesting that chemical compounds leached from the composites were utilized by microorganisms as a source of carbon and energy. Studies with pure fibers used in the manufacture of composite materials showed that the fungi grew rapidly on both glass and carbon fibers in the presence of the fungal consortium. Our study indicates that microorganisms pose a threat to composite materials. We are currently investigating chemical and physical changes induced in these materials by the growth of fungi.  相似文献   

17.
The stoichiometry and kinetics of reaction of methemerythrin with the deoxy forms of myoglobin and hemoglobin have been examined at I = 0.2 M and 25 degrees C. One mole of methemerythrin (on the basis of the monomer unit containing two irons) reacts with 2 mol of deoxymyoglobin and with 0.5 mol of deoxyhemoglobin. All reactions are second order. Rate constants for reaction with deoxymyoglobin are 0.25 M-1s-1 (Phascolopsis gouldii) and 5.6 M-1s-1 (Themiste pyroides) at pH 6.3. There is little effect of raising the ionic strength to 1.35 M and only a small decrease in rate when the pH is adjusted to 8.2. The rate constant for reaction of deoxyhemoglobin with P. gouldii methemerythrin is approximately 0.1 M-1s-1 at pH 6.3. Metmyohemerythrin from T. pyroides reacts slightly slower than the octamer form (k = 2.0 M-1s-1 at pH 6.3 and 7.0). Oxymyoglobin is converted to metmyoglobin by methemerythrin. The electron-transfer path is discussed and a self-exchange rate constant for hemerythrin assessed as 10(-3) M-1s-1 on the basis of Marcus's theory.  相似文献   

18.
Studies of the growth-modifying actions for Escherichia coli, Saccharomyces cerevisiae, and Tetrahymena thermophila of helium, nitrogen, argon, krypton, xenon, and nitrous oxide led to the conclusion that there are two definable classes of gases. Class 1 gases, including He, N(2), and Ar, are not growth inhibitors; in fact, they can reverse the growth inhibitory action of hydrostatic pressures. Class 2 gases, including Kr, Xe, and N(2)O, are potent growth inhibitors at low pressures. For example, at 24 degrees C, 50% growth-inhibitory pressures of N(2)O were found to be ca. 1.7 MPa for E. coli, 1.0 MPa for S. cerevisiae, and 0.5 MPa for T. thermophila. Class 1 gases could act as potentiators for growth inhibition by N(2)O, O(2), Kr, or Xe. Hydrostatic pressure alone is known to reverse N(2)O inhibition of growth, but we found that it did not greatly alter oxygen toxicity. Therefore, potentiation by class 1 gases appeared to be a gas effect rather than a pressure effect. The temperature profile for growth inhibition of S. cerevisiae by N(2)O revealed an optimal temperature for cell resistance of ca. 24 degrees C, with lower resistance at higher and lower temperatures. Overall, it appeared that microbial growth modification by hyperbaric gases could not be related to their narcotic actions but reflected definably different physiological actions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号