首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lutjanus argentimaculatus, also called mangrove red snapper, is a commercially important fish in East Asia. A proper understanding of population structure is primarily linked with the management of genetic resources in exploiting marine fisheries. Herein, seven microsatellite loci, which showed high polymorphism (observed heterozygosity per locus ranging from 0.3571 to 0.7857 and expected heterozygosity per locus ranging from 0.6236 to 0.8821), were isolated and characterized from L. argentimaculatus. Cross‐species amplifications also indicate that primers designed for these loci may be useful for further studies about other closely phylogenetic species of the family Lutjanidae.  相似文献   

2.
Patterns of summertime movement and habitat use of yellow‐stage American eels Anguilla rostrata within York River and estuary and Gaspé Bay (Gaspesia, Québec, Canada) were examined using acoustic telemetry. Fifty fish were tagged with acoustic transmitters and released, either in the river or in the upper estuary, and their patterns of movement and habitat use were monitored at short spatial and temporal scales during the summer months using a dense hydrophone array. Approximately half of the fish released in the river swam to the estuary; two‐thirds of the fish released within the estuary did not move out of the estuary. Anguilla rostrata were detected more frequently and had a greater areal range of detections during night, suggesting greater nocturnal activity. Longitudinal movements within the estuary tended to occur nocturnally, with upstream movements from early to late evening, and downstream movements from late evening to early morning. Approximately one‐third of fish showed a regular pattern of movement, tending to reside in the deeper, downstream part of the estuary during day and in the shallower, more upstream part of the estuary during night. Approximately a quarter of fish, located in the upper estuary, remained upstream during both night and day. The remaining fish showed patterns intermediate between these two.  相似文献   

3.
To clarify seascape-scale habitat use patterns of fishes in the Ryukyu Islands (southern Japan), visual censuses were conducted in the mangrove estuary, sand area, seagrass bed, coral rubble area, branching coral area on the reef flat, and tabular coral area on the outer reef slope at Ishigaki Island in August and November 2004, and May, August and November 2005. During the study period a total of 319 species were observed. Species richness and abundance were highest in the branching and tabular coral areas, followed in order by the seagrass bed and mangrove estuary, and coral rubble and sand areas, in each month. Cluster analysis resulted in a clear grouping of assemblage structures by habitat type rather than by census month. SIMPER analysis showed that fish assemblages in the tabular coral area were mainly characterized by Acanthurus nigrofuscus, Pomacentrus lepidogenys, P. philippinus and P. vaiuli, the branching coral area by Chromis viridis and Pomacentrus moluccensis, the coral rubble area by Amblyeleotris steinitzi and Ctenogobiops pomastictus, the seagrass bed by Cheilio inermis, Lethrinus atkinsoni and Stethojulis strigiventer, the sand area by Valenciennea longipinnis, and the mangrove estuary by Gerres oyena, Lutjanus fulvus and Yongeichthys criniger. Moreover, fishes exhibited two habitat use strategies, inhabiting either a single or several specific habitats throughout their benthic life history stages, or having a possible ontogenetic habitat shift from the mangrove estuary or seagrass bed to coral-dominated habitats (e.g., Lethrinus atkinsoni, Lethrinus obsoletus, Lutjanus fulviflamma, Lutjanus fulvus, Lutjanus gibbus, Lutjanus monostigma and Parupeneus barberinus), suggesting that the mangrove estuary and seagrass bed have a nursery function.  相似文献   

4.
Large numbers of hatchery-reared fish are released in stocking programmes; however, success is limited by high mortality. Predation is seen as the main cause of deaths but might be reduced by training fish before release to avoid predators and/or use refuge. In this study on a potential restocking species, yellowfin bream Acanthopagrus australis, the effects of predator training and refuge on the behaviour of fish in the hatchery were tested. In the first experiment, juvenile bream were exposed to predatory mangrove jack (Lutjanus argentimaculatus) fed exclusively on bream flesh while housed in tanks with and without refuge. Predator training altered fish behaviour when fish were re-exposed to predators, but the effects were subtle and varied between groups of fish. In contrast, refuge created strong and consistent changes in behaviour, significantly slowing down the amount of time that fish took to consume food. A second experiment focused on the effects of refuge. Bream were trained to use artificial seagrass or house bricks as refuge and then exposed to mangrove jacks in a laboratory predation experiment. When refuge was available, fish significantly slowed down their feeding rate. There was a small, transient increase in survival for fish given seagrass refuges, but this was irrespective of whether the bream were trained to use refuge. The results of this study indicate that the use of refuge may be innate and the benefits of refuge may be available to naive hatchery-reared fish or fish trained to use refuge shortly before release. This suggests that there is potential to improve post-release survival of fingerlings without time-consuming and expensive hatchery training.  相似文献   

5.
We tested the hypothesis for several Caribbean reef fish species that there is no difference in nursery function among mangrove, seagrass and shallow reef habitat as measured by: (a) patterns of juvenile and adult density, (b) assemblage composition, and (c) relative predation rates. Results indicated that although some mangrove and seagrass sites showed characteristics of nursery habitats, this pattern was weak. While almost half of our mangrove and seagrass sites appeared to hold higher proportions of juvenile fish (all species pooled) than did reef sites, this pattern was significant in only two cases. In addition, only four of the six most abundant and commercially important species (Haemulon flavolineatum, Haemulon sciurus, Lutjanus apodus, Lutjanus mahogoni, Scarus iserti, and Sparisoma aurofrenatum) showed patterns of higher proportions of juvenile fish in mangrove and/or seagrass habitat(s) relative to coral reefs, and were limited to four of nine sites. Faunal similarity between reef and either mangrove or seagrass habitats was low, suggesting little, if any exchange between them. Finally, although relative risk of predation was lower in mangrove/seagrass than in reef habitats, variance in rates was substantial suggesting that not all mangrove/seagrass habitats function equivalently. Specifically, relative risk varied between morning and afternoon, and between sites of similar habitat, yet varied little, in some cases, between habitats (mangrove/seagrass vs. coral reefs). Consequently, our results caution against generalizations that all mangrove and seagrass habitats have nursery function.  相似文献   

6.
Movement patterns and habitat utilization by black bream Acanthopagrus butcheri (Sparidae), an estuarine resident species, were investigated using acoustic telemetry in a small estuary on the east coast of Tasmania, Australia. Thirty‐four adult A. butcheri were tracked for periods of up to 187 days between August 2005 and January 2006. Although able to tolerate a wide range of salinities, the fish spent most of the time within the upper and middle regions of the estuary, where brackish conditions dominated. The species exhibited extensive movements linked to tidal cycles, with small‐scale upstream movements during incoming tides and downstream movements during out going tides. The extent of these movements was positively correlated with the tidal height difference between consecutive tidal peaks and troughs. Freshwater inflows and resultant changes in salinity also significantly influenced distribution and movement patterns. Fish moved downstream during the periods of heavy inflows, returning upstream as salinities increased to c. >10. During the peak of spawning period (November to December) fish moved into the upper region of the estuary, where they aggregated to spawn. Periodic increases in freshwater discharge, however, resulted in fish leaving the spawning grounds and moving downstream. Towards the end of the spawning season (January), the fish became more dispersed throughout the entire estuarine system.  相似文献   

7.
Although water in mangrove sediments influences nutrient cycling in both, mangrove forest and estuary, little information exists on seasonal and vertical distribution of dissolved organic and inorganic compounds in the sediment column. We studied the influence of sediment texture and chemistry, permeability (K), tides, and rainfall on dissolved organic carbon (DOC) and nitrogen (DON), dissolved inorganic phosphate (DIP) and salinity in creek and sediment waters of a mangrove in Pará, Brazil. Water samples were taken from boreholes and piezometers in the mangrove forest and from an adjacent tidal creek at neap and spring tides, during the dry and rainy season. Forest sediment was analysed for carbon (C), nitrogen (N), salinity and permeability. Clay, C and N decreased with depth. Sediment permeability (K) was lowest (<0.1 m day−1) in the upper, clay-rich and crab-burrow-free mud layer. In the deeper, fine sand strata, K ranged from 0.7 to 1.8 m day−1. Tidal range in the creek was 3.5 and 5.5 m for neap and spring tides, respectively. Salinity, DOC, DON and DIP in creek water were inversely related to tidal height. Piezometer data revealed significant water level changes in deeper, sandy sediment layer, which followed, time-lagged, the tidal fluctuations. In contrast, tide did not affect the water level in the upper sediment due to low permeability. Compared with creek water, sediment water was enriched in DOC, DON and DIP because of organic matter input and mineralization. In deeper layers, solute concentration was most likely affected by sorption processes (DOC and DIP) and reduction reactions (DIP). During the rainy season, DOC and DON in creek and sediment water were higher than in the dry season. DIP appeared invariant to seasonal changes. In the rainy season, salt flushing from surface sediments resulted in higher salinities at intermediate sediment depths, while in the deeper layers salinity was lower due to exchange with water from the tidal creek.  相似文献   

8.
Fish use of a mangrove habitat was studied in a small mangrove forest on the West coast of Madagascar. A sand bar near the inlet retains water in parts of the channel (pools) at low tide. Fishes in four of these pools were examined daily at all phases of the tidal cycle for 3 weeks using underwater visual census. During week 1, fishes were diverse and abundant in all pools: the dominant species were cardinalfish (related to Apogon lateralis); monos, Monodactylus argenteus; black spotted snappers, Lutjanus ehrenbergi; double bar bream, Acanthopagrus bifasciatus; emperors, Lethrinus lentjan and L. sp., surgeon fish, Acanthurus nigricauda; red-lined sweetlips, Plectorhinchus plagiodesmis; and butterflyfish, Chaetodon kleini. Some species were more abundant in shaded pools; others in more open pools. During week 2 a dramatic difference was noted: the only fishes found were schools of cardinalfish and one moray eel. This week had neap tides, with high tides in the morning and low tides in the afternoon. As the week progressed and during week 3 (spring tides), fishes slowly repopulated the habitat and diversity increased. Monos, absent in week 2, now had increasing numbers of small individuals. While large emperors were scarce, small individuals appeared. The larger butterflyfish and surgeonfish seen in week 1 were replaced by small ones during week 3. Species that had been rare in week 1 were more abundant, including pipefish and small barracudas. While species richness increased during week 3, the community was strikingly different from that seen 2 weeks earlier. Only Pool 1, closest to the entrance, recovered its original species richness. Abundance was much lower than in week 1. Our snapshot study apparently captured a time when older juveniles left the mangrove forest and smaller fishes recruited into it. Utilization of this habitat will likely vary throughout the year depending on the reproductive cycle of the different species whose juveniles utilize it. Longer studies are needed to learn about cycles in fish use of the mangroves.  相似文献   

9.
We studied daily tidal movements of tagged juvenile Lutjanus fulviflamma and Lutjanus ehrenbergii between two adjacent habitats, a subtidal channel and shallow tidal notches in the fossil reef terrace, in a shallow marine bay on Zanzibar Island (Tanzania). Due to a large tidal range, the notches were dry at low-tide and were only accessible to the snappers at high-tide. Of the resighted individuals, 48% showed clear movement between the two habitats, orientated in a direction perpendicular to the tidal currents. Individuals resighted more than once showed site fidelity, indicating homing in both the channel and the notches. We suggest that a significant part of this population of juvenile snappers may move from a low-tide resting habitat to a high-tide resting habitat during the daytime, perhaps to avoid predation by larger predators that may enter the channel at high-tide.  相似文献   

10.
Intertidal movements of fish larvae and juveniles on a mudflat in the Tama River estuary, central Japan, were investigated by comparing the abundance and sizes of fishes caught in the intertidal zone during flood tides with those in the subtidal zone during low tides. A total of 28465 individuals, belonging to 9 families and 20 species, were collected by small purse seine. Among the abundant species, planktonic larvae and juveniles of gobiids and Konosirus punctatus were more abundant in the intertidal zone at flood tide than the subtidal zone at low tide. Similar occurrence patterns were found in juvenile Plecoglossus altivelis altivelis and Lateolabrax japonicus, having fully developed swimming abilities. In contrast to these species, much higher abundances of epibenthic juveniles of 2 gobiids (Acanthogobius flavimanus and Gymnogobius macrognathos) were found in the subtidal zone at low tide, although they also utilized the intertidal zone at flood tide.  相似文献   

11.
The study focused on small‐scale location and movement patterns of the bluestripe snapper Lutjanus kasmira on the north coast of Moorea (Society Archipelago, French Polynesia, south‐central Pacific). Juveniles of this species occur in the estuary, and adults occur widely in the lagoon, the outer slope and in the intermediate channel, where fish aggregate in large schools during daytime. While fish were all sampled within a few hundred metres, they exhibited significantly different parasite fauna and otolith shapes according to their locality: estuary, lagoon, channel and outer slope. While juveniles did not exhibit any parasites in the estuary parasitological and otolith‐shape data suggest that adults rarely move between their three adjoining habitats, and more interestingly that large aggregations in the channel are formed predominantly by resident individuals with limited local movement, including at night. Besides giving some information on the host biology, such findings may have application in local fisheries management.  相似文献   

12.
Shallow-water vegetated estuarine habitats, notably seagrass, mangrove and saltmarsh, are known to be important habitats for many species of small or juvenile fish in temperate Australia. However, the movement of fish between these habitats is poorly understood, and yet critical to the management of the estuarine fisheries resource. We installed a series of buoyant pop nets in adjacent stands of seagrass, mangrove and saltmarsh in order to determine how relative abundance of fishes varied through lunar cycles. Nets were released in all habitats at the peak of the monthly spring tide for 12 months, and in the seagrass habitat at the peak of the neap tide also. The assemblage of fish in each habitat differed during the spring tides. The seagrass assemblage differed between spring and neap tide, with the neap tide assemblage showing greater abundances of fish, particularly those species which visited the adjacent habitats when inundated during spring tides. The result supports the hypothesis that fish move from the seagrass to the adjacent mangrove and saltmarsh during spring tides, taking advantage of high abundances of zooplankton, and use seagrass as a refuge during lower tides. The restoration and preservation of mangrove and saltmarsh utility as fish habitat may in some situations be linked to the proximity of available seagrass.  相似文献   

13.
Expansion of the monospecific mangrove, Kandelia obovata, has converted intertidal mudflats and other habitats into mangrove forests, thus reducing estuarine biodiversity in the Danshuei River estuary, northern Taiwan. Dense mangrove vegetation was removed to create a small patchwork of mudflats and a tidal creek in February 2007. Subsequent changes in sediment properties and biodiversity of the macrobenthos and avian communities were examined. The results showed that the creation of different habitats led to changes in sediment properties and biodiversity. The water content and sorting degree of the sediments differed significantly among the restored mudflat, the tidal creek, and the mangrove control site. Silt/clay, organic carbon content, and chlorophyll a concentrations varied seasonally, but not among sites. The abundance of polychaetes in the creek was greater than that in the mudflat or the mangrove (12.5 vs. 5.3 and 2.2 individuals/m2, respectively), suggesting preferential colonization of infaunal polychaetes in habitats with prolonged submersion. Crabs showed seasonal changes in density, with higher densities in summer than in autumn and winter. The species richness of wintering shorebirds on the created mudflat increased dramatically from 2002 to 2007. The transformation of a vegetated area into an open mudflat appeared to benefit shorebirds by providing roosting habitat. Our study demonstrated that controlling the spread of estuarine mangrove forests could increase biodiversity, and could particularly benefit the migratory shorebird community.  相似文献   

14.
The distribution of juvenile Penaeus (Fenneropenaeus) merguiensis de Man and other epibenthic crustaceans in different microhabitats within a riverine mangrove forest was examined in subtropical eastern Australia. Catches in vegetated and cleared microhabitats were compared at sites located in mangroves on the creek edge (1-2 m into the forest) and the inner forest (a further 14-22 m into the forest). Crustaceans were sampled using 3×3 m lift nets that were activated at the top of spring flood tides between March and May 2000. The abundance of P. merguiensis in the adjacent creek was also monitored during both high and low tides using a small beam trawl. A large size range of P. merguiensis was caught in the mangrove forest (2-13.5 mm carapace length) and the maximum density recorded was 1 prawn m−2. Catches of P. merguiensis were significantly higher at the creek edge than at the inner forest sites. Catches did not differ significantly between vegetated and cleared microhabitats, but catches were highly variable within microhabitats. This result was attributed to the very high activity levels of P. merguiensis and suggests that detecting differences between microhabitats used by prawns in the field would require a large number of samples. Substantial numbers of Acetes sibogae australis (Hansen), Macrobrachium novaehollandiae (de Man) and Metapenaeus bennettae (Racek and Dall) also entered the forest and catches of these species followed a similar pattern to those for P. merguiensis, i.e. catches were higher at the creek edge than the inner forest, did not differ between microhabitats and were highly variable within a microhabitat.  相似文献   

15.
Isaac J. Schlosser 《Oecologia》1998,113(2):260-268
I examine how dispersal of juvenile creek chubs (Semotilusatromaculatus) from beaver ponds into adjacent stream environments interacts with temporal abiotic variability to influence fish foraging, growth, and long-term persistence in the lotic ecosystem. Minnow trapping in upstream and downstream beaver ponds, along with weir traps used to monitor directional movement, indicated that most chubs colonized the stream from the downstream beaver pond. Large annual fluctuations in density of age 0 creek chubs occurred in the stream over a 10-year sampling period. Multiple regression analysis indicated that stream temperature, precipitation, and the density of reproductive creek chubs were not correlated with summer density of age 0 chubs in the stream. The factor most strongly associated with increased density of age 0 creek chubs was creation of the downstream beaver pond during the 6th–7th years of the study, suggesting dispersal from the pond was the primary factor determining age 0 fish density in the stream. Most individuals in the strong year classes neither persisted in the stream through their first winter nor resulted in an increased abundance of older age classes in later years. Comparison of age 0 fish density in summer to the proportion of fish surviving to age 1 in spring suggested that overwinter mortality was density dependent. Furthermore, a comparison of the size structure for age 0 individuals in summer to age 1 individuals the following spring indicated that winter mortality was size dependent. Experiments in an artificial stream adjacent to the natural channel revealed that fish growth was strongly density dependent, decreasing as fish density increased across both spring and summer, and elevated and low discharge. The decline in invertebrate prey captured by the fish and the subsequent decline in fish growth appeared to be particularly pronounced under low discharge in summer. Changes in juvenile creek chub density had no significant effect on benthic insect or crustacean abundance, suggesting that exploitative competition for limited invertebrate drift resources was a more important cause of density- dependent growth than depressed local benthic invertebrate abundance. These results suggest that lotic regions adjacent to beaver ponds act as potential reproductive “sinks” for dispersing juveniles confronting seasonal and flow-mediated restrictions on resource acquisition and growth, and the occurrence of seasonal bottlenecks to their survival, especially harsh winter conditions. Received: 9 September 1996 / Accepted: 8 August 1997  相似文献   

16.
Juveniles of two Acentrogobius species collected in a mangrove estuary in Sikao Creek, southern Thailand, were identified by morphological and molecular methods. A total of 1315 Acentrogobius specimens were collected and grouped into types A (n = 1107, 4·4–12·0 mm standard length, LS) (melanophore absent or indistinct on posterodorsal contour of caudal peduncle; two rows of melanophore blotches on lateral midline) and B (n = 208, 4·8–12·6 mm LS) (distinct melanophore on posterodorsal contour of caudal peduncle; a single row of melanophore blotches on lateral midline). Based on the reverse series method, the melanophore patterns of larger juveniles were linked with the smallest specimens possessing adult characters. The homogeneities of mitochondrial cytochrome b region sequences between the two juvenile types and adult Acentrogobius species collected in the study area indicated type A to be A. kranjiensis (homogeneity between type A and A. kranjiensis: 99·3–100%), and type B to be A. malayanus (homogeneity between latter 98·1 and 99·7%). No Acentrogobius juveniles were collected from the surf zone outside the creek mouth, both species apparently spending most of their life histories within the estuarine habitat. During their pelagic phase, A. kranjiensis and A. malayanus dispersed in the upper, middle and lower reaches of the creek. On the other hand, occurrence patterns during the benthic phase of A. kranjiensis and A. malayanus differed, the former showing upstream movement and the latter downstream movement with growth. These results emphasize the necessity of analysing early fish life histories at the species level, and the collaboration between morphological and molecular methods should prove valuable in accurately identifying of larvae and juveniles.  相似文献   

17.
The use of a coastal estuary by bonnethead sharks, Sphyrna tiburo, was examined by acoustic monitoring, gillnet sampling and tag- recapture studies. Acoustic monitoring data were used to define the residency and movement patterns of sharks within Pine Island Sound, Charlotte Harbor, Florida. Sharks were monitored for periods of 1–173 days with individuals regularly moving in and out of the detection range of the acoustic system. Patterns of movement could not be correlated with tidal level or time of day. Home range sizes within the Pine Island Sound population were typically small with individuals using core areas on a daily basis. However, core areas shifted within the study site over time resulting in eventual usage of most of the available habitat. Gillnet sampling revealed that S. tiburo were abundant in shallow water near seagrass beds, but that presence of individuals at specific sites was variable. Tag-recapture data showed that most individuals remained within the Pine Island Sound region over time and did not appear to undergo long coastal migrations. The movement and residence patterns of S. tiburo suggest that individuals are resident within the estuary, but do not show site fidelity to specific areas within the estuary.  相似文献   

18.
Fish assemblages utilising saltmarsh and mangrove during spring tides were surveyed over a 12-month period using buoyant pop nets. A total of 48 net releases in the saltmarsh identified 16 species, at a density of 0.56 fish m−2, with six species being of commercial importance. The same number of releases within the mangrove collected a total of 23 species at a density of 0.76 fish m−2. However, fish density was higher within the saltmarsh than the adjacent mangrove when corrected for water volume. Multidimensional scaling revealed different assemblages of fish in the two habitats, with higher numbers of Ambassis jacksoniensis and Pseudomugil sp. in the saltmarsh and higher numbers of Mugilogobius sp. and Acanthopagrus australis in the mangrove. The result suggests a potentially significant role for saltmarsh as a fish habitat in the estuaries of southeast Australia.  相似文献   

19.
To aid recovery efforts of smalltooth sawfish (Pristis pectinata) populations in U.S. waters a research project was developed to assess how changes in environmental conditions within estuarine areas affected the presence, movements, and activity space of this endangered species. Forty juvenile P. pectinata were fitted with acoustic tags and monitored within the lower 27 km of the Caloosahatchee River estuary, Florida, between 2005 and 2007. Sawfish were monitored within the study site from 1 to 473 days, and the number of consecutive days present ranged from 1 to 125. Residency index values for individuals varied considerably, with annual means highest in 2005 (0.95) and lowest in 2007 (0.73) when several P. pectinata moved upriver beyond detection range during drier conditions. Mean daily activity space was 1.42 km of river distance. The distance between 30-minute centers of activity was typically <0.1 km, suggesting limited movement over short time scales. Salinity electivity analysis demonstrated an affinity for salinities between 18 and at least 24 psu, suggesting movements are likely made in part, to remain within this range. Thus, freshwater flow from Lake Okeechobee (and its effect on salinity) affects the location of individuals within the estuary, although it remains unclear whether or not these movements are threatening recovery.  相似文献   

20.
Synopsis The green sturgeon, Acipenser medirostris, is a long-lived, iteroparous, anadromous acipenserid that is native to the San Francisco Bay Estuary, California. Sub-adult and adult fish are oceanic, but enter the estuary during the spring and remain through autumn. Little is known about green sturgeon distribution within the estuary or what, if any, physical parameters influence their movements. We report the results of a telemetry study conducted between September 2001 and November 2002. Five sub-adult and one adult green sturgeon were captured by trammel net in the San Pablo Bay region of the estuary. We implanted depth-sensing, ultrasonic transmitters within the peritoneum of individuals and tracked them from a boat for 1 – 15 h per day over periods ranging from 1 to 12 days. Salinity, temperature, and dissolved oxygen profiles of the water column were measured hourly. Observed movements were categorized as either non-directional or directional. Non-directional movements, accounting for 63.4% of observations, were closely associated with the bottom, with individuals moving slowly while making frequent changes in direction and swim speed, or not moving at all. Directional movements consisted of continuous swimming in the top 20% of the water column while holding a steady course for extended periods. Four of the five sub-adult fish remained within the confines of San Pablo Bay for the duration of their tracking period. The remaining sub-adult moved over 45 km up-river into Suisun Bay before contact was lost. The adult fish exited the bay and entered the ocean 6 h after release near Tiburon, CA, a movement of approximately 10 km. The sub-adult fish typically remained at the shallower depths (<10 m) of the estuary, but there were no apparent preferences for temperature, salinity, or dissolved oxygen, with the fish moving widely and rapidly across the range of these physical parameters. Activity is believed to be independent of light level with no discernable crepuscular, nocturnal, or diurnal peaks in activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号