首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Microbiological studies on the intercontinental transport of dust are confounded by the difficulty of obtaining sufficient material for analysis. Axenic samples of dust collected at high altitudes or historic specimens in museums are often so small and precious that the material can only be sacrificed when positive results are assured. With this in mind, we evaluated current methods and developed new ones in an attempt to catalogue all microbes present in small dust or sand samples. The methods used included classical microbiological approaches in which sand extracts were plated out on a variety of different media, polymerase chain reaction (PCR)-based amplification of 16S/18S rRNA sequences followed by construction of clone libraries, PCR amplification of 16S rRNA sequences followed by high-throughput sequencing (HtS) of the products and direct HtS of DNA extracted from the sand. A representative sand sample collected at Bahaï Wadi in the desert of the Republic of Chad was used. HtS with or without amplification showed the most promise and can be performed on ≤100 ng DNA. Since living microbes are often required, current best practices would involve geochemical and microscopic characterisation of the sample, followed by DNA isolation and direct HtS. Once the microbial content of the sample has been deciphered, growth conditions (including media) can be tailored to isolate the micro-organisms of interest.  相似文献   

2.
Aims: Research into the relationship between pathogens, faecal indicator microbes and environmental factors in beach sand has been limited, yet vital to the understanding of the microbial relationship between sand and the water column and to the improvement of criteria for better human health protection at beaches. The objectives of this study were to evaluate the presence and distribution of pathogens in various zones of beach sand (subtidal, intertidal and supratidal) and to assess their relationship with environmental parameters and indicator microbes at a non‐point source subtropical marine beach. Methods and Results: In this exploratory study in subtropical Miami (Florida, USA), beach sand samples were collected and analysed over the course of 6 days for several pathogens, microbial source tracking markers and indicator microbes. An inverse correlation between moisture content and most indicator microbes was found. Significant associations were identified between some indicator microbes and pathogens (such as nematode larvae and yeasts in the genus Candida), which are from classes of microbes that are rarely evaluated in the context of recreational beach use. Conclusions: Results indicate that indicator microbes may predict the presence of some of the pathogens, in particular helminthes, yeasts and the bacterial pathogen Staphylococcus aureus including methicillin‐resistant forms. Indicator microbes may thus be useful for monitoring beach sand and water quality at non‐point source beaches. Significance and Impact of the Study: The presence of both indicator microbes and pathogens in beach sand provides one possible explanation for human health effects reported at non‐point sources beaches.  相似文献   

3.
Millions of metric tons of African desert dust blow across the Atlantic Ocean each year, blanketing the Caribbean and southeastern United States. Previous work in the Caribbean has shown that atmospheric samples collected during dust events contain living microbes, including plant and opportunistic human pathogens. To better understand the potential downwind public health and ecosystem effects of the dust microbes, it is important to characterize the source population. We describe 19 genera of bacteria and 3 genera of fungi isolated from air samples collected in Mali, a known source region for dust storms, and over which large dust storms travel.  相似文献   

4.
Ancient mariners knew that dust whipped up from deserts by strong winds travelled long distances, including over oceans. Satellite remote sensing revealed major dust sources across the Sahara. Indeed, the Bodélé Depression in the Republic of Chad has been called the dustiest place on earth. We analysed desert sand from various locations in Chad and dust that had blown to the Cape Verde Islands. High throughput sequencing techniques combined with classical microbiological methods showed that the samples contained a large variety of microbes well adapted to the harsh desert conditions. The most abundant bacterial groupings in four different phyla included: (a) Firmicutes—Bacillaceae, (b) Actinobacteria—Geodermatophilaceae, Nocardiodaceae and Solirubrobacteraceae, (c) Proteobacteria—Oxalobacteraceae, Rhizobiales and Sphingomonadaceae, and (d) Bacteroidetes—Cytophagaceae. Ascomycota was the overwhelmingly dominant fungal group followed by Basidiomycota and traces of Chytridiomycota, Microsporidia and Glomeromycota. Two freshwater algae (Trebouxiophyceae) were isolated. Most predominant taxa are widely distributed land inhabitants that are common in soil and on the surfaces of plants. Examples include Bradyrhizobium spp. that nodulate and fix nitrogen in Acacia species, the predominant trees of the Sahara as well as Herbaspirillum (Oxalobacteraceae), a group of chemoorganotrophic free-living soil inhabitants that fix nitrogen in association with Gramineae roots. Few pathogenic strains were found, suggesting that African dust is not a large threat to public health.  相似文献   

5.
The number of reports of coral diseases has increased throughout the world in the last 20 years. Aspergillosis, which primarily affects Gorgonia ventalina and G. flabellum, is one of the few diseases to be characterized. This disease is caused by Aspergillus sydowii, a terrestrial fungus with a worldwide distribution. Upon infection, colonies may lose tissue, and ultimately, mortality may occur if the infection is not sequestered. The spores of A. sydowii are <5 m, small enough to be easily picked up by winds and dispersed over great distances. Aspergillosis is prevalent in the Caribbean, and it appears that this primarily terrestrial fungus has adapted to a marine environment. It has been proposed that dust storms originating in Africa may be one way in which potential coral pathogens are distributed and deposited into the marine environments of the Caribbean. To test the hypothesis that African dust storms transport and deposit pathogens, we collected air samples from both dust storms and periods of non-dust in St. John, U.S. Virgin Islands. Because we focused on fungal pathogens and used A. sydowii as a model, we isolated and cultured fungi on various types of media. Fungi including Aspergillus spp. were isolated from air samples taken from dust events and non-dust events. Twenty-three separate cultures and seven genera were isolated from dust event samples whereas eight cultures from five genera were isolated from non-dust air samples. Three isolates from the Virgin Islands dust event samples morphologically identified as Aspergillus spp. produced signs of aspergillosis in seafans, and the original pathogens were re-isolated from those diseased seafans fulfilling Koch's Postulates. This research supports the hypothesis that African dust storms transport across the Atlantic Ocean and deposit potential coral pathogens in the Caribbean.  相似文献   

6.
The influence of Ni on arbuscular mycorrhizal fungi (AMF) has not been studied yet. We tested the tolerance to Ni of five AMF isolates from New Caledonian ultramafic soils. Spore germination indicated that these isolates were clearly more tolerant to Ni than three other isolates from non-ultramafic soils. They were able to germinate at 30 μg g−1 Ni, whereas spores of the non-ultramafic isolates were totally inhibited at 15 μg g−1 Ni. Among the ultramafic isolates, two were obtained from roots of Ni-hyperaccumulating plants. Their tolerance to Ni was clearly higher than all the other isolates. The proportion of germinated spores of the different isolates in contact with ultramafic soils showed the same tendencies as those observed with Ni solutions. Tolerance to Ni increased when spores were produced from mycorrhiza on plants grown on sand containing 20 μg g−1 Ni, in comparison with those produced on sand without Ni. These results indicate that the tolerance to Ni of AMF spores can be induced by the presence of this metal in the substrate.
Hamid AmirEmail:
  相似文献   

7.
How are climate and marine biological outbreaks functionally linked?   总被引:5,自引:0,他引:5  
Since the mid-1970s, large-scale episodic events such as disease epidemics, mass mortalities, harmful algal blooms and other population explosions have been occurring in marine environments at an historically unprecedented rate. The variety of organisms involved (host, pathogens and other opportunists) and the absolute number of episodes have also increased during this period. Are these changes coincidental? Between 1972 and 1976, a global climate regime shift took place, and it is manifest most clearly by a change in strength of the North Pacific and North Atlantic pressure systems. Consequences of this regime shift are: (1) prolonged drought conditions in the Sahel region of Africa; (2) increased dust supply to the global atmosphere, by a factor of approximately four; (3) increased easterly trade winds across the Atlantic; (4) increased eolian transport of dust to the Atlantic and Caribbean basins; and (5) increased deposition of iron-rich eolian dust to typically iron-poor marine regions. On the basis of well-documented climate and dust observations and the widely accepted increase in marine outbreak rates, this paper proposes that the increased iron supply has altered the micronutrient factors limiting growth of opportunistic organisms and virulence of pathogenic microbes, particularly in macronutrient-rich coastal systems.  相似文献   

8.
Many root‐colonizing microbes are multifaceted in traits that improve plant health. Although isolates designated as biological control agents directly reduce pathogen growth, many exert additional beneficial features that parallel changes induced in animal and other hosts by health‐promoting microbes termed probiotics. Both animal and plant probiotics cause direct antagonism of pathogens and induce systemic immunity in the host to pathogens and other stresses. They also alter host development and improve host nutrition. The probiotic root‐colonizing pseudomonads are generalists in terms of plant hosts, soil habitats and the array of stress responses that are ameliorated in the plant. This article illustrates how the probiotic pseudomonads, nurtured by the carbon (C) and nitrogen (N) sources released by the plant in root exudates, form protective biofilms on the root surface and produce the metabolites or enzymes to boost plant health. The findings reveal the multifunctional nature of many of the microbial metabolites in the plant–probiotic interplay. The beneficial effects of probiotics on plant function can contribute to sustainable yield and quality in agricultural production.  相似文献   

9.
Charles Darwin, like others before him, collected aeolian dust over the Atlantic Ocean and sent it to Christian Gottfried Ehrenberg in Berlin. Ehrenberg's collection is now housed in the Museum of Natural History and contains specimens that were gathered at the onset of the Industrial Revolution. Geochemical analyses of this resource indicated that dust collected over the Atlantic in 1838 originated from the Western Sahara, while molecular-microbiological methods demonstrated the presence of many viable microbes. Older samples sent to Ehrenberg from Barbados almost two centuries ago also contained numbers of cultivable bacteria and fungi. Many diverse ascomycetes, and eubacteria were found. Scanning electron microscopy and cultivation suggested that Bacillus megaterium , a common soil bacterium, was attached to historic sand grains, and it was inoculated onto dry sand along with a non-spore-forming control, the Gram-negative soil bacterium Rhizobium sp. NGR234. On sand B. megaterium quickly developed spores, which survived for extended periods and even though the numbers of NGR234 steadily declined, they were still considerable after months of incubation. Thus, microbes that adhere to Saharan dust can live for centuries and easily survive transport across the Atlantic.  相似文献   

10.
This review considers the reasons for, and research governing, the regulation and monitoring of genetically engineered micro-organisms and viruses (GEMs) released into the environment. The hazards associated with releasing GEMs into the environment are the creation and evolution of new pests and diseases, and damage to the ecosystem and non target species. The similarities and differences between GEMs and conventional micro-organisms are discussed in relation to risk assessment. Other issues covered include the persistence of micro-organisms in the environment, transgene dispersal to non-engineered microbes and other organisms, the effects of transgenes and transformation on fitness, and the evolution of pests and pathogens that are given or acquire transgenes. Areas requiring further research are identified and recommendations for risk assessment made.  相似文献   

11.
This study used a PCR-based molecular identification technique to examine bacterial assemblage composition in background aerosols of the eastern Mediterranean Sea during a rapid change of meteorological conditions. 16S rDNA fragments of 166 clones were identified and were affiliated with six bacterial phyla (Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, Spirochetes, and Fusobacteria), plant-related sequences, and other uncultivated bacterial groups. The analyzed clones were closely related to sequences previously characterized from diverse sources including soil, plants, marine water and sediment, human skin, activated sludge, house dust, indoor air, gut microbiota, and food. Plant- and human-associated sequences accounted for the largest fraction of the identified clones. Spore-forming Firmicutes showed a considerable increase when air mass origin changed from north to south implying that south winds favored bacterial spores transportation from the inland of Crete or North Africa. However, no conclusive trends were revealed for other groups of microorganisms. The influence of air mass origin was further investigated for marine- and terrestrial-associated sequences. A higher number of marine-associated sequences were identified when south winds crossed the inland of Crete, while the opposite was observed when north winds passed over the Aegean Sea. This discrepancy could be partly explained by the fact that the north winds were blowing at very low speed which constrained the formation of sea-spray aerosols and the ejection of marine microbes from sea surface to the atmosphere. Overall, the interpretation of bacterial assemblage composition in relation to the meteorological conditions was proved to be a complicated task which is in line with previous studies.  相似文献   

12.
Ascospores of a strain of Saccharomyces cerevisiae Hansen were less sensitive to desiccation and heat than vegetative cells. Desiccation resistance was acquired earlier during sporulation and lost later during spore germination than heat resistance. As spores matured, resistance to both stresses increased. With the exception of the first few hours in sporulation medium, when proline appeared to be utilized, the intracellular free proline content increased during sporulation and decreased during spore germination. Not all the proline lost could be detected in the germination medium, indicating that some was metabolically utilized by the germinating spores. Since exogenous proline supplied to vegetative or sporulating cells before desiccation increased their survival, it is suggested that the high level of free proline in mature spores may protect against desiccation stress.  相似文献   

13.
No study has yet been carried out on seed development in a cold desert sand dune papilionoid legume. Thus, our primary aims were to (i) monitor seed development in the cold desert sand dune species Eremosparton songoricum from the time of pollination to seed maturity, and (ii) compare seed development in this species with that in other species of papilionoid legumes. Fruit and seed size, mass and seed moisture content, and seed imbibition, germination, desiccation tolerance and water retention during development (pollination to seed maturity) were monitored in the papilionaceous shrub E. songoricum in the Gurbantunggut Desert of northwest China. The duration of seed development was 40 days. Seeds reached physiological maturity 28 days after pollination (DAP), at which time 58% of them germinated and they had developed desiccation tolerance. Seeds became impermeable 36–40 DAP, when their moisture content was about 10%. The final stage of maturation drying occurred via loss of water through the hilum. The developmental stages and their timing (DAP) in seeds of E. songoricum are generally similar to those reported for other papilionaceous legumes with a water‐impermeable seed coat (physical dormancy). In general, the developmental features of seeds with water‐impermeable coats at maturity do not appear to be specific to habitat or phylogeny.  相似文献   

14.
Microorganisms are abundant in the upper atmosphere, particularly downwind of arid regions, where winds can mobilize large amounts of topsoil and dust. However, the challenge of collecting samples from the upper atmosphere and reliance upon culture-based characterization methods have prevented a comprehensive understanding of globally dispersed airborne microbes. In spring 2011 at the Mt. Bachelor Observatory in North America (2.8 km above sea level), we captured enough microbial biomass in two transpacific air plumes to permit a microarray analysis using 16S rRNA genes. Thousands of distinct bacterial taxa spanning a wide range of phyla and surface environments were detected before, during, and after each Asian long-range transport event. Interestingly, the transpacific plumes delivered higher concentrations of taxa already in the background air (particularly Proteobacteria, Actinobacteria, and Firmicutes). While some bacterial families and a few marine archaea appeared for the first and only time during the plumes, the microbial community compositions were similar, despite the unique transport histories of the air masses. It seems plausible, when coupled with atmospheric modeling and chemical analysis, that microbial biogeography can be used to pinpoint the source of intercontinental dust plumes. Given the degree of richness measured in our study, the overall contribution of Asian aerosols to microbial species in North American air warrants additional investigation.  相似文献   

15.
Real-time PCR detection of environmental mycobacteria in house dust   总被引:1,自引:0,他引:1  
Analysing the number and species of microbes in indoor dust is needed for assessment of human exposure to microbes in dwellings. Environmental mycobacteria are common heterotrophic bacteria in both natural and man-made environments and potential inducers of human immune system. Culture of mycobacteria from samples rich with other microbes is difficult due to the slow growth rate of mycobacteria and this has hampered the studies on their role in indoor human exposure. A quantitative, real-time 5'-nuclease (TaqMan) PCR assay was developed to detect environmental mycobacteria in indoor dust samples. The specificity of the primers and the probe targeting the 16S rDNA of mycobacteria, tested with 26 mycobacterial and 10 non-mycobacterial but related species, proved to be high. When tested on 20 indoor dust samples collected from five homes, the assay gave counts varying between 4.8 × 104 and 7.2 × 106 cell/g, being on average 1.1 × 103 times higher than culture. Seasonal variation in the dust counts of mycobacteria was observed by both culture and qPCR. Total of 140 isolates considered as mycobacteria by Ziehl-Neelsen staining and GLC-analyses were subjected to PCR analysis with the mycobacterial primers, and 39 isolates to partial 16S rDNA sequencing. All proved to be mycobacteria and revealed high diversity of mycobacterial species in the dust samples. Majority of the sequences were related to M. terrae and M. avium complexes.  相似文献   

16.
The indoor atmosphere is an ecological unit that impacts on public health. To investigate the composition of organisms in this space, we applied culture-independent approaches to microbes harvested from the air of two densely populated urban buildings, from which we analyzed 80 megabases genomic DNA sequence and 6000 16S rDNA clones. The air microbiota is primarily bacteria, including potential opportunistic pathogens commonly isolated from human-inhabited environments such as hospitals, but none of the data contain matches to virulent pathogens or bioterror agents. Comparison of air samples with each other and nearby environments suggested that the indoor air microbes are not random transients from surrounding outdoor environments, but rather originate from indoor niches. Sequence annotation by gene function revealed specific adaptive capabilities enriched in the air environment, including genes potentially involved in resistance to desiccation and oxidative damage. This baseline index of air microbiota will be valuable for improving designs of surveillance for natural or man-made release of virulent pathogens.  相似文献   

17.
Beach sand is a habitat that supports many microbes, including viruses, bacteria, fungi and protozoa (micropsammon). The apparently inhospitable conditions of beach sand environments belie the thriving communities found there. Physical factors, such as water availability and protection from insolation; biological factors, such as competition, predation, and biofilm formation; and nutrient availability all contribute to the characteristics of the micropsammon. Sand microbial communities include autochthonous species/phylotypes indigenous to the environment. Allochthonous microbes, including fecal indicator bacteria (FIB) and waterborne pathogens, are deposited via waves, runoff, air, or animals. The fate of these microbes ranges from death, to transient persistence and/or replication, to establishment of thriving populations (naturalization) and integration in the autochthonous community. Transport of the micropsammon within the habitat occurs both horizontally across the beach, and vertically from the sand surface and ground water table, as well as at various scales including interstitial flow within sand pores, sediment transport for particle-associated microbes, and the large-scale processes of wave action and terrestrial runoff. The concept of beach sand as a microbial habitat and reservoir of FIB and pathogens has begun to influence our thinking about human health effects associated with sand exposure and recreational water use. A variety of pathogens have been reported from beach sands, and recent epidemiology studies have found some evidence of health risks associated with sand exposure. Persistent or replicating populations of FIB and enteric pathogens have consequences for watershed/beach management strategies and regulatory standards for safe beaches. This review summarizes our understanding of the community structure, ecology, fate, transport, and public health implications of microbes in beach sand. It concludes with recommendations for future work in this vastly under-studied area.  相似文献   

18.
Zeev  Arad 《Journal of Zoology》1990,221(1):113-124
Bush-dwelling land snails are exposed to desiccating conditions that are more severe than those of snails that seek the shelter of rock crevices, litter or the upper layers of the soil. We studied the resistance to desiccation in four bush-dwelling species of Israeli snails to evaluate a possible relation between their water economy and their distribution pattern. The resistance to desiccation decreased in the following order: Xeropicta vestalis (a widely distributed Mediterranean species), Trochoidea simulata (a desert species), Theba pisana (a Mediterranean species from the sand dunes of the coastal plain), and Monacha haifaensis (a Mediterranean species). Xeropicta vestalis also had the quickest response to the desiccating conditions. It is probably prevented from establishing itself in the desert, in spite of its superior water economy, because it is an annual, semelparous species, and the desert is a highly unpredictable environment. An immediate response to desiccating conditions may be a key factor in the success of desert-inhabiting land snails. Snails from more humid regions take several days to recruit their water preserving mechanisms, a delay which may be crucial to their water balance. The conchiometrics of X. vestalis and T. simulata suggest that the main water preserving mechanisms of these species are located in the mantle, rather than in the shell and epiphragm.  相似文献   

19.
Bacterial spore structures and their protective role in biocide resistance   总被引:1,自引:0,他引:1  
The structure and chemical composition of bacterial spores differ considerably from those of vegetative cells. These differences largely account for the unique resistance properties of the spore to environmental stresses, including disinfectants and sterilants, resulting in the emergence of spore-forming bacteria such as Clostridium difficile as major hospital pathogens. Although there has been considerable work investigating the mechanisms of action of many sporicidal biocides against Bacillus subtilis spores, there is far less information available for other species and particularly for various Clostridia. This paucity of information represents a major gap in our knowledge given the importance of Clostridia as human pathogens. This review considers the main spore structures, highlighting their relevance to spore resistance properties and detailing their chemical composition, with a particular emphasis on the differences between various spore formers. Such information will be vital for the rational design and development of novel sporicidal chemistries with enhanced activity in the future.  相似文献   

20.
Recent molecular data suggest that desert green algae have evolved from freshwater ancestors at least 14 times in three major classes (Chlorophyceae, Trebouxiophyceae and Charophyceae), offering a unique opportunity to study the adaptation of photosynthetic organisms to life on land in a comparative phylogenetic framework. We examined the photorecovery of phylogenetically matched desert and aquatic algae after desiccation in darkness and under illumination. Desert algae survived desiccation for at least 4 weeks when dried in darkness, and recovered high levels of photosynthetic quantum yield within 1 h of rehydration in darkness. However, when 4 weeks of desiccation was accompanied by illumination, three of six desert taxa lost their ability to recover quantum yield during rehydration in the dark. Aquatic algae, in contrast, recovered very little during dark rehydration following even just 24 h of desiccation. Re-illuminating rehydrated algae produced a nearly complete recovery of quantum yield in all desert and two of five aquatic taxa. These contrasts provide physiological evidence that desert green algae possess mechanisms for photosynthetic recovery after desiccation distinct from those in aquatic relatives, corroborating molecular evidence that they are not happenstance, short-term visitors from aquatic environments. Photosensitivity during desiccation among desert algae further suggests that they may reside in protected microsites within crusts, and species specificity of photosensitivity suggests that disturbances physically disrupting crusts could lead to shifts or losses of taxonomic diversity within these habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号