首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

In early 2009, a novel influenza A(H1N1) virus that emerged in Mexico and United States rapidly disseminated worldwide. The spread of this virus caused considerable morbidity with over 18000 recorded deaths. The new virus was found to be a reassortant containing gene segments from human, avian and swine influenza viruses.

Methods/Results

The first case of human infection with A(H1N1)pdm09 in Pakistan was detected on 18th June 2009. Since then, 262 laboratory-confirmed cases have been detected during various outbreaks with 29 deaths (as of 31st August 2010). The peak of the epidemic was observed in December with over 51% of total respiratory cases positive for influenza. Representative isolates from Pakistan viruses were sequenced and analyzed antigenically. Sequence analysis of genes coding for surface glycoproteins HA and NA showed high degree of high levels of sequence identity with corresponding genes of regional viruses circulating South East Asia. All tested viruses were sensitive to Oseltamivir in the Neuraminidase Inhibition assays.

Conclusions

Influenza A(H1N1)pdm09 viruses from Pakistan form a homogenous group of viruses. Their HA genes belong to clade 7 and show antigenic profile similar to the vaccine strain A/California/07/2009. These isolates do not show any amino acid changes indicative of high pathogenicity and virulence. It is imperative to continue monitoring of these viruses for identification of potential variants of high virulence or drug resistance.  相似文献   

2.
H5N1 influenza viruses pose a pandemic threat but have not acquired the ability to support sustained transmission between mammals in nature. The restrictions to transmissibility of avian influenza viruses in mammals are multigenic, and overcoming them requires adaptations in hemagglutinin (HA) and PB2 genes. Here we propose that a further restriction to mammalian transmission of the majority of highly pathogenic avian influenza (HPAI) H5N1 viruses may be the short stalk length of the neuraminidase (NA) protein. This genetic feature is selected for when influenza viruses adapt to chickens. In our study, a recombinant virus with seven gene segments from a human isolate of the 2009 H1N1 pandemic combined with the NA gene from a typical chicken-adapted H5N1 virus with a short stalk did not support transmission by respiratory droplet between ferrets. This virus was also compromised in multicycle replication in cultures of human airway epithelial cells at 32°C. These defects correlated with a reduction in the ability of virus with a short-stalk NA to penetrate mucus and deaggregate virions. The deficiency in transmission and in cleavage of tethered substrates was overcome by increasing the stalk length of the NA protein. These observations suggest that H5N1 viruses that acquire a long-stalk NA through reassortment might be more likely to support transmission between humans. Phylogenetic analysis showed that reassortment with long-stalk NA occurred sporadically and as recently as 2011. However, all identified H5N1 viruses with a long-stalk NA lacked other mammalian adapting features and were thus several genetic steps away from becoming transmissible between humans.  相似文献   

3.
During the latter half of 2005 a widespread outbreak caused by influenza highly pathogenic H5N1 virus among wild and domestic birds occurred in Russia. As pathogenicity level is a polygenic feature and majority of individual genes of influenza A viruses contribute to pathogenicity of influenza viruses to birds, animals and humans. Nucleotide sequencing of the entire genome of influenza H5N1 virus isolates obtained in Kurgan region (Western Siberia) was performed. Structure of viral proteins was analyzed according to the predicted amino acid sequences. HA receptor-binding site of A/chicken/Kurgan/05/2005 and A/duck/Kurgan/08/2005 strains was typical for avian influenza viruses and contained Glu and Gly at positions 226 and 228, respectively. Structure of the cluster of positively charged amino acid residues at the cleavage site was identical for all isolates: QGERRRKKR. According to the data of neuraminidase structure analysis NA of the H5N1 isolates tested was suggested to belong to Z genotype. Amino acid residues typical for birds were revealed in 30 out of 32 positions of M1, M2, NP, PA and PB2 proteins determining host range specificity. One strain isolated in Kurgan contained lysine in position 627 of PB2 protein. Kurgan isolates was shown to have remantadine-sensitive genotype. Glutamic acid was found at position 92 of NS1 protein in both strains indicating virus resistance to interferon. Phylogenetic analyses allowed relating Kurgan isolates to subclade II of clade II of highly pathogenic H5N1 influenza viruses.  相似文献   

4.
The impact of avian influenza caused by H9N2 viruses in Pakistan is now significantly more severe than in previous years. Since all gene segments contribute towards the virulence of avian influenza virus, it was imperative to investigate the molecular features and genetic relationships of H9N2 viruses prevalent in this region. Analysis of the gene sequences of all eight RNA segments from 12 viruses isolated between 2005 and 2008 was undertaken. The hemagglutinin (HA) sequences of all isolates were closely related to H9N2 viruses isolated from Iran between 2004 and 2007 and contained leucine instead of glutamine at position 226 in the receptor binding pocket, a recognised marker for the recognition of sialic acids linked α2–6 to galactose. The neuraminidase (NA) of two isolates contained a unique five residue deletion in the stalk (from residues 80 to 84), a possible indication of greater adaptation of these viruses to the chicken host. The HA, NA, nucleoprotein (NP), and matrix (M) genes showed close identity with H9N2 viruses isolated during 1999 in Pakistan and clustered in the A/Quail/Hong Kong/G1/97 virus lineage. In contrast, the polymerase genes clustered with H9N2 viruses from India, Iran and Dubai. The NS gene segment showed greater genetic diversity and shared a high level of similarity with NS genes from either H5 or H7 subtypes rather than with established H9N2 Eurasian lineages. These results indicate that during recent years the H9N2 viruses have undergone extensive genetic reassortment which has led to the generation of H9N2 viruses of novel genotypes in the Indian sub-continent. The novel genotypes of H9N2 viruses may play a role in the increased problems observed by H9N2 to poultry and reinforce the continued need to monitor H9N2 infections for their zoonotic potential.  相似文献   

5.
We investigated the synergism between influenza virus and Streptococcus pneumoniae, particularly the role of deletions in the stalk region of the neuraminidase (NA) of H2N2 and H9N2 avian influenza viruses. Deletions in the NA stalk (ΔNA) had no effect on NA activity or on the adherence of S. pneumoniae to virus-infected human alveolar epithelial (A549) and mouse lung adenoma (LA-4) cells, although it delayed virus elution from turkey red blood cells. Sequential S. pneumoniae infection of mice previously inoculated with isogenic recombinant H2N2 and H9N2 influenza viruses displayed severe pneumonia, elevated levels of intrapulmonary proinflammatory responses, and death. No differences between the WT and ΔNA mutant viruses were detected with respect to effects on postinfluenza pneumococcal pneumonia as measured by bacterial growth, lung inflammation, morbidity, mortality, and cytokine/chemokine concentrations. Differences were observed, however, in influenza virus-infected mice that were treated with oseltamivir prior to a challenge with S. pneumoniae. Under these circumstances, mice infected with ΔNA viruses were associated with a better prognosis following a secondary bacterial challenge. These data suggest that the H2N2 and H9N2 subtypes of avian influenza A viruses can contribute to secondary bacterial pneumonia and deletions in the NA stalk may modulate its outcome in the context of antiviral therapy.  相似文献   

6.
Since 2003, H5N1-subtype avian influenza viruses (AIVs) with both a deletion of 20 amino acids in the stalk of the neuraminidase (NA) glycoprotein (A−) and a deletion of five amino acids at positions 80 to 84 in the non-structural protein NS1 (S−) have become predominant. To understand the influence of these double deletions in the NA and NS1 proteins on the pathogenicity of H5N1-subtype AIVs, we selected A/mallard/Huadong/S/2005 as a parental strain to generate rescued wild-type A−S− and three variants (A−S+ with a five-amino-acid insertion in the NS1 protein, A+S− with a 20-amino-acid insertion in the NA stalk, and A+S+ with insertions in both NA and NS1 proteins) and evaluated their biological characteristics and virulence. The titers of the AIVs with A− and/or S− replicated in DEF cells were higher than that of A+S+, and the A−S− virus exhibited a replication predominance when co-infected with the other variants in DEF cells. In addition, A−S− induced a more significant increase in the expression of immune-related genes in peripheral blood mononuclear cells of mallard ducks in vitro compared with the other variants. Furthermore, an insertion in the NA and/or NS1 proteins of AIVs resulted in a notable decrease in virulence in ducks, as determined by intravenous pathogenicity index, and the two insertions exerted a synergistic effect on the attenuation of pathogenicity in ducks. In addition, compared with A+S+ and A+S−, the A−S+ and A−S− viruses that were introduced via the intranasal inoculation route exhibited a faster replication ability in the lungs of ducks. These data indicate that both the deletions in the NA stalk and the NS1 protein contribute to the high pathogenicity of H5N1 AIVs in ducks.  相似文献   

7.
An H6N1 virus, A/teal/Hong Kong/W312/97 (W312), was isolated during the "bird flu" incident in Hong Kong in 1997. Genetic analysis suggested that this virus might be the progenitor of the A/Hong Kong/156/97 (HK/97) H5N1 virus, as seven of eight gene segments of those viruses had a common source. Continuing surveillance in Hong Kong showed that a W312-like virus was prevalent in quail and pheasants in 1999; however, the further development of H6N1 viruses has not been investigated since 2001. Here we report influenza virus surveillance data collected in southern China from 2000 to 2005 that show that H6N1 viruses have become established and endemic in minor poultry species and replicate mainly in the respiratory tract. Phylogenetic analysis indicated that all H6N1 isolates had W312-like hemagglutinin and neuraminidase genes. However, reassortment of internal genes between different subtype virus lineages, including H5N1, H9N2, and other avian viruses, generated multiple novel H6N1 genotypes in different types of poultry. These novel H6N1/N2 viruses are double, triple, or even quadruple reassortants. Reassortment between a W312-like H6N1 virus and an A/quail/Hong Kong/G1/97 (HK/97)-like H9N2 virus simultaneously generated novel H6N2 subtype viruses that were persistent in poultry. Molecular analyses suggest that W312-like viruses may not be the precursors of HK/97 virus but reassortants from an HK/97-like virus and another unidentified H6 subtype virus. These results provide further evidence of the pivotal role of the live poultry market system of southern China in generating increased genetic diversity in influenza viruses in this region.  相似文献   

8.
In late April of 2009, a global outbreak of human influenza was reported. The causative agent is a highly unusual reassortant H1N1 influenza virus carrying genetic segments derived from swine, human and avian influenza viruses. In this study, we compared the HA, NA and other gene segments of a swine H3N2 influenza A virus, A/Swine/Guangdong/z5/2003, which was isolated from pigs in 2003 in Guangdong Province, China, to the predominant human and swine H3N2 viruses. We found that the similarity of gene segments of A/Swine/Guangdong/z5/2003 was closer to Moscow/99-like human H3N2 virus than Europe swine H3N2 viruses during 1999-2002. These results suggest that A/Swine/Guangdong/z5/2003 may be porcine in origin, possibly being driven by human immune pressure induced by either natural H3N2 virus infection or use of A/Moscow/10/99 (H3N2)-based human influenza vaccine. The results further confirm that swine may play a dual role as a “shelter” for hosting influenza virus from humans or birds and as a “mixing vessel” for generating reassortant influenza viruses, such as the one causing current influenza pandemic.  相似文献   

9.
Molecular correlates of influenza A H5N1 virus pathogenesis in mice   总被引:19,自引:0,他引:19       下载免费PDF全文
Highly pathogenic avian influenza A H5N1 viruses caused an outbreak of human respiratory illness in Hong Kong. Of 15 human H5N1 isolates characterized, nine displayed a high-, five a low-, and one an intermediate-pathogenicity phenotype in the BALB/c mouse model. Sequence analysis determined that five specific amino acids in four proteins correlated with pathogenicity in mice. Alone or in combination, these specific residues are the likely determinants of virulence of human H5N1 influenza viruses in this model.  相似文献   

10.
A novel H1N1 influenza virus emerged in 2009 (pH1N1) to become the first influenza pandemic of the 21st century. This virus is now cocirculating with highly pathogenic H5N1 avian influenza viruses in many parts of the world, raising concerns that a reassortment event may lead to highly pathogenic influenza strains with the capacity to infect humans more readily and cause severe disease. To investigate the virulence of pH1N1-H5N1 reassortant viruses, we created pH1N1 (A/California/04/2009) viruses expressing individual genes from an avian H5N1 influenza strain (A/Hong Kong/483/1997). Using several in vitro models of virus replication, we observed increased replication for a reassortant CA/09 virus expressing the hemagglutinin (HA) gene of HK/483 (CA/09-483HA) relative to that of either parental CA/09 virus or reassortant CA/09 expressing other HK/483 genes. This increased replication correlated with enhanced pathogenicity in infected mice similar to that of the parental HK/483 strain. The serial passage of the CA/09 parental virus and the CA/09-483HA virus through primary human lung epithelial cells resulted in increased pathogenicity, suggesting that these viruses easily adapt to humans and become more virulent. In contrast, serial passage attenuated the parental HK/483 virus in vitro and resulted in slightly reduced morbidity in vivo, suggesting that sustained replication in humans attenuates H5N1 avian influenza viruses. Taken together, these data suggest that reassortment between cocirculating human pH1N1 and avian H5N1 influenza strains will result in a virus with the potential for increased pathogenicity in mammals.  相似文献   

11.
Although it is established that the cleavage site and glycosylation patterns in the hemagglutinin (HA) play important roles in determining the pathogenicity of H5 avian influenza viruses, some viruses exist that are not highly pathogenic despite possessing the known characteristics of high pathogenicity (i.e., their HA contains multiple basic amino acids at the cleavage site and has glycosylation patterns similar to that of the highly pathogenic H5 viruses). Currently little is known about the H5N1 viruses that fall into this intermediate category of pathogenicity. We have identified strains of H5N1 avian influenza viruses that have markers typical of high pathogenicity but distinctly differ in their ability to cause disease and death in chickens. By analyzing viruses constructed by reverse-genetic methods and containing recombinant HAs, we established that amino acids 97, 108, 126, 138, 212, and 217 of HA, in addition to those within the cleavage site, affect pathogenicity. Further investigation revealed that an additional glycosylation site within the neuraminidase (NA) protein globular head contributed to the high virulence of the H5N1 virus. Our findings are in agreement with previous observations that suggest that the activities of the HA and NA proteins are functionally linked.  相似文献   

12.
Between 2007 and 2009, oseltamivir resistance developed among seasonal influenza A/H1N1 (sH1N1) virus isolates at an exponential rate, without a corresponding increase in oseltamivir usage. We hypothesized that the oseltamivir-resistant neuraminidase (NA), in addition to being relatively insusceptible to the antiviral effect of oseltamivir, might confer an additional fitness advantage on these viruses by enhancing their transmission efficiency among humans. Here we demonstrate that an oseltamivir-resistant clinical isolate, an A/Brisbane/59/2007(H1N1)-like virus isolated in New York State in 2008, transmits more efficiently among guinea pigs than does a highly similar, contemporaneous oseltamivir-sensitive isolate. With reverse genetics reassortants and point mutants of the two clinical isolates, we further show that expression of the oseltamivir-resistant NA in the context of viral proteins from the oseltamivir-sensitive virus (a 7:1 reassortant) is sufficient to enhance transmissibility. In the guinea pig model, the NA is the critical determinant of transmission efficiency between oseltamivir-sensitive and -resistant Brisbane/59-like sH1N1 viruses, independent of concurrent drift mutations that occurred in other gene products. Our data suggest that the oseltamivir-resistant NA (specifically, one or both of the companion mutations, H275Y and D354G) may have allowed resistant Brisbane/59-like viruses to outtransmit sensitive isolates. These data provide in vivo evidence of an evolutionary mechanism that would explain the rapidity with which oseltamivir resistance achieved fixation among sH1N1 isolates in the human reservoir.  相似文献   

13.
Bats harbor many viruses, which are periodically transmitted to humans resulting in outbreaks of disease (e.g., Ebola, SARS-CoV). Recently, influenza virus-like sequences were identified in bats; however, the viruses could not be cultured. This discovery aroused great interest in understanding the evolutionary history and pandemic potential of bat-influenza. Using synthetic genomics, we were unable to rescue the wild type bat virus, but could rescue a modified bat-influenza virus that had the HA and NA coding regions replaced with those of A/PR/8/1934 (H1N1). This modified bat-influenza virus replicated efficiently in vitro and in mice, resulting in severe disease. Additional studies using a bat-influenza virus that had the HA and NA of A/swine/Texas/4199-2/1998 (H3N2) showed that the PR8 HA and NA contributed to the pathogenicity in mice. Unlike other influenza viruses, engineering truncations hypothesized to reduce interferon antagonism into the NS1 protein didn''t attenuate bat-influenza. In contrast, substitution of a putative virulence mutation from the bat-influenza PB2 significantly attenuated the virus in mice and introduction of a putative virulence mutation increased its pathogenicity. Mini-genome replication studies and virus reassortment experiments demonstrated that bat-influenza has very limited genetic and protein compatibility with Type A or Type B influenza viruses, yet it readily reassorts with another divergent bat-influenza virus, suggesting that the bat-influenza lineage may represent a new Genus/Species within the Orthomyxoviridae family. Collectively, our data indicate that the bat-influenza viruses recently identified are authentic viruses that pose little, if any, pandemic threat to humans; however, they provide new insights into the evolution and basic biology of influenza viruses.  相似文献   

14.
The A/teal/Hong Kong/W312/97 (H6N1) influenza virus and the human H5N1 and H9N2 influenza viruses possess similar genes encoding internal proteins, suggesting that H6N1 viruses could become novel human pathogens. The molecular epidemiology and evolution of H6 influenza viruses were characterized by antigenic and genetic analyses of 29 H6 influenza viruses isolated from 1975 to 1981 and 1997 to 2000. Two distinct groups were identified on the basis of their antigenic characteristics. Phylogenetic analysis revealed that all H6N1 viruses isolated from terrestrial poultry in 1999 and 2000 are closely related to A/teal/Hong Kong/W312/97 (H6N1), and the nucleotide sequences of these viruses and of A/Hong Kong/156/97 (H5N1) were more than 96% homologous. The hemagglutinin (HA) of the 1999 and 2000 terrestrial viruses does not have multiple basic amino acids at the site of cleavage of HA1 to HA2; however, a unique insertion of aspartic acid in HA1 between positions 144 and 145 (H3 numbering) was found. The neuraminidase of these terrestrial H6N1 viruses has a deletion of 19 amino acids characteristic of A/Hong Kong/156/97 (H5N1). Evolutionary analysis suggested that these H6N1 viruses coevolved with A/quail/Hong Kong/G1/97-like H9N2 viruses and became more adapted to terrestrial poultry. These terrestrial 1999 and 2000 A/teal/Hong Kong/W312/97 (H6N1)-like viruses, along with the H9N2 viruses, could have been involved in the genesis of the pathogenic H5N1 influenza viruses of 1997. The presence of H6N1 viruses in poultry markets in Hong Kong that possess seven of the eight genes of the A/Hong Kong/156/97 (H5N1) virus raises the following fundamental questions relevant to influenza pandemic preparedness: could the pathogenic H5N1 virus reemerge and could the H6N1 viruses directly cross the species barrier to mammals?  相似文献   

15.
Highly pathogenic avian influenza (HPAI) H5N1 viruses are now endemic in many Asian countries, resulting in repeated outbreaks in poultry and increased cases of human infection. The immediate precursor of these HPAI viruses is believed to be A/goose/Guangdong/1/96 (Gs/GD)-like H5N1 HPAI viruses first detected in Guangdong, China, in 1996. From 2000 onwards, many novel reassortant H5N1 influenza viruses or genotypes have emerged in southern China. However, precursors of the Gs/GD-like viruses and their subsequent reassortants have not been fully determined. Here we characterize low-pathogenic avian influenza (LPAI) H5 subtype viruses isolated from poultry and migratory birds in southern China and Europe from the 1970s to the 2000s. Phylogenetic analyses revealed that Gs/GD-like virus was likely derived from an LPAI H5 virus in migratory birds. However, its variants arose from multiple reassortments between Gs/GD-like virus and viruses from migratory birds or with those Eurasian viruses isolated in the 1970s. It is of note that unlike HPAI H5N1 viruses, those recent LPAI H5 viruses have not become established in aquatic or terrestrial poultry. Phylogenetic analyses revealed the dynamic nature of the influenza virus gene pool in Eurasia with repeated transmissions between the eastern and western extremities of the continent. The data also show reassortment between influenza viruses from domestic and migratory birds in this region that has contributed to the expanded diversity of the influenza virus gene pool among poultry in Eurasia.  相似文献   

16.
Dong G  Xu C  Wang C  Wu B  Luo J  Zhang H  Nolte DL  Deliberto TJ  Duan M  Ji G  He H 《PloS one》2011,6(9):e25808
H9N2 influenza A viruses have become endemic in different types of terrestrial poultry and wild birds in Asia, and are occasionally transmitted to humans and pigs. To evaluate the role of black-billed magpies (Pica pica) in the evolution of influenza A virus, we conducted two epidemic surveys on avian influenza viruses in wild black-billed magpies in Guangxi, China in 2005 and characterized three isolated black-billed magpie H9N2 viruses (BbM viruses). Phylogenetic analysis indicated that three BbM viruses were almost identical with 99.7 to 100% nucleotide homology in their whole genomes, and were reassortants containing BJ94-like (Ck/BJ/1/94) HA, NA, M, and NS genes, SH/F/98-like (Ck/SH/F/98) PB2, PA, and NP genes, and H5N1-like (Ck/YN/1252/03, clade 1) PB1 genes. Genetic analysis showed that BbM viruses were most likely the result of multiple reassortments between co-circulating H9N2-like and H5N1-like viruses, and were genetically different from other H9N2 viruses because of the existence of H5N1-like PB1 genes. Genotypical analysis revealed that BbM viruses evolved from diverse sources and belonged to a novel genotype (B46) discovered in our recent study. Molecular analysis suggested that BbM viruses were likely low pathogenic reassortants. However, results of our pathogenicity study demonstrated that BbM viruses replicated efficiently in chickens and a mammalian mouse model but were not lethal for infected chickens and mice. Antigenic analysis showed that BbM viruses were antigenic heterologous with the H9N2 vaccine strain. Our study is probably the first report to document and characterize H9N2 influenza viruses isolated from black-billed magpies in southern China. Our results suggest that black-billed magpies were susceptible to H9N2 influenza viruses, which raise concerns over possible transmissions of reassortant H9N2 viruses among poultry and wild birds.  相似文献   

17.
Domestic ducks in southern China act as an important reservoir for influenza viruses and have also facilitated the establishment of multiple H6 influenza virus lineages. To understand the continuing evolution of these established lineages, 297 H6 viruses isolated from domestic ducks during 2006 and 2007 were genetically and antigenically analyzed. Phylogenetic analyses showed that group II duck H6 viruses had replaced the previously predominant group I lineage and extended their geographic distribution from coastal to inland regions. Group II H6 virus showed that the genesis and development of multiple types of deletions in the neuraminidase (NA) stalk region could occur in the influenza viruses from domestic ducks. A gradual replacement of the N2 NA subtype with N6 was observed. Significant antigenic changes occurred within group II H6 viruses so that they became antigenically distinguishable from group I and gene pool viruses. Gene exchange between group II H6 viruses and the established H5N1, H9N2, or H6N1 virus lineages in poultry in the region was very limited. These findings suggest that domestic ducks can facilitate significant genetic and antigenic changes in viruses established in this host and highlight gaps in our knowledge of influenza virus ecology and even the evolutionary behavior of this virus family in its aquatic avian reservoirs.  相似文献   

18.
Highly pathogenic avian influenza A viruses (HPAIV) of the H5N1 subtype occasionally transmit from birds to humans and can cause severe systemic infections in both hosts. PB1-F2 is an alternative translation product of the viral PB1 segment that was initially characterized as a pro-apoptotic mitochondrial viral pathogenicity factor. A full-length PB1-F2 has been present in all human influenza pandemic virus isolates of the 20(th) century, but appears to be lost evolutionarily over time as the new virus establishes itself and circulates in the human host. In contrast, the open reading frame (ORF) for PB1-F2 is exceptionally well-conserved in avian influenza virus isolates. Here we perform a comparative study to show for the first time that PB1-F2 is a pathogenicity determinant for HPAIV (A/Viet Nam/1203/2004, VN1203 (H5N1)) in both mammals and birds. In a mammalian host, the rare N66S polymorphism in PB1-F2 that was previously described to be associated with high lethality of the 1918 influenza A virus showed increased replication and virulence of a recombinant VN1203 H5N1 virus, while deletion of the entire PB1-F2 ORF had negligible effects. Interestingly, the N66S substituted virus efficiently invades the CNS and replicates in the brain of Mx+/+ mice. In ducks deletion of PB1-F2 clearly resulted in delayed onset of clinical symptoms and systemic spreading of virus, while variations at position 66 played only a minor role in pathogenesis. These data implicate PB1-F2 as an important pathogenicity factor in ducks independent of sequence variations at position 66. Our data could explain why PB1-F2 is conserved in avian influenza virus isolates and only impacts pathogenicity in mammals when containing certain amino acid motifs such as the rare N66S polymorphism.  相似文献   

19.
Zhao X  Sun Y  Pu J  Fan L  Shi W  Hu Y  Yang J  Xu Q  Wang J  Hou D  Ma G  Liu J 《PloS one》2011,6(7):e22091
Pandemic H1N1/2009 influenza virus, derived from a reassortment of avian, human, and swine influenza viruses, possesses a unique gene segment combination that had not been detected previously in animal and human populations. Whether such a gene combination could result in the pathogenicity and transmission as H1N1/2009 virus remains unclear. In the present study, we used reverse genetics to construct a reassortant virus (rH1N1) with the same gene combination as H1N1/2009 virus (NA and M genes from a Eurasian avian-like H1N1 swine virus and another six genes from a North American triple-reassortant H1N2 swine virus). Characterization of rH1N1 in mice showed that this virus had higher replicability and pathogenicity than those of the seasonal human H1N1 and Eurasian avian-like swine H1N1 viruses, but was similar to the H1N1/2009 and triple-reassortant H1N2 viruses. Experiments performed on guinea pigs showed that rH1N1 was not transmissible, whereas pandemic H1N1/2009 displayed efficient transmissibility. To further determine which gene segment played a key role in transmissibility, we constructed a series of reassortants derived from rH1N1 and H1N1/2009 viruses. Direct contact transmission studies demonstrated that the HA and NS genes contributed to the transmission of H1N1/2009 virus. Second, the HA gene of H1N1/2009 virus, when combined with the H1N1/2009 NA gene, conferred efficient contact transmission among guinea pigs. The present results reveal that not only gene segment reassortment but also amino acid mutation were needed for the generation of the pandemic influenza virus.  相似文献   

20.
In the second half of 2005, a large-scale outbreak of influenza in poultry and wild birds was caused by a highly pathogenic H5N1 influenza virus in Russia. The level of pathogenicity is a polygenic trait, and most individual genes contribute to the influenza A virus pathogenicity in birds, animals, and humans. The full-length nucleotide sequences were determined for H5N1 strains isolated in the Kurgan region (Western Siberia). The structure of viral proteins was analyzed using the deduced amino acid sequences. The receptor-binding site of hemagglutinin (HA) in strains A/chicken/Kurgan/05/2005 and A/duck/Kurgan/08/2005 was typical for avian influenza viruses and contained Glu and Gly at positions 226 and 228, respectively. The structure of the basic amino acid cluster located within the HA cleavage site was identical in all isolates: QGERRRKKR. According to the neuraminidase structure, all H5N1 isolates from the Kurgan region were assigned to the Z genotype. Amino acid residues typical for the avian influenza virus were revealed in 30 out of 32 positions of M1, M2, NP, PA, and PB2, determining the host range specificity. One of the strains contained Lys at position 627 of PB2. Isolates from the Kurgan region were shown to have a remantadine-sensitive genotype. Both strains contained Glu at position 92 of NS1, indicating that the virus is interferon-resistant. Phylogenetic analysis related the Kurgan isolates to subclade 2 of clade 2 of highly pathogenic H5N1 influenza viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号