首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies of the impacts of climate change on lichens and fungi have focused largely on alpine and subalpine habitats, and have not investigated the potential impact on narrowly endemic species. Here, we estimate the impacts of climate change on high-elevation, endemic lichens in the southern Appalachians, a global diversity hotspot for many groups of organisms, including lichens. We conducted extensive field surveys in the high elevations of the region to accurately document the current distributions of eight narrowly endemic lichen species. Species distribution modeling was used to predict how much climatically suitable area will remain within, and north of, the current range of the target species under multiple climate change scenarios at two time points in the future. Our field work showed that target species ranged from extreme rarity to locally abundant. Models predicted over 93 % distributional loss for all species investigated and very little potentially suitable area north of their current distribution in the coming century. Our results indicate that climate change poses a significant threat to high-elevation lichens, and provide a case study in the application of current modeling techniques for rare, montane species.  相似文献   

2.
Vietnam is an important contributor to the world's food industry as a major exporter of rice, seafood, and coffee. Climate change poses a serious threat to Vietnam's agricultural sector since it adversely affects food security in Vietnam and globally. This study investigates the short- and long-term effects of climate change on Vietnam's agriculture, both in terms of production and values at the macro level. Using the Autoregressive Distributed Lag (ARDL) model and the Toda-Yamamoto (1995) Granger causality test with annual data from 1990 to 2019, we confirm the detrimental impacts of global warming on Vietnam's agricultural performance in both the short and long term. We also reveal the favorable effects of CO2 emissions, land, and fertilizer on Vietnam's agricultural production and economics. Other factors, including rainfall and labor, however, adversely affect Vietnam's agricultural output and economic performance. Based on the study's results, we provide policy recommendations to assist the government limit the negative effects of climate change on the national economy, thereby promoting poverty alleviation and sustainable development in Vietnam.  相似文献   

3.
Considerable efforts are focused on the consequences of climate change for tropical rainforests. However, potentially the greatest threats to tropical biodiversity (synergistic interactions between climatic changes and human land use) remain understudied. Key concerns are that aridification could increase the accessibility of previously non-arable or remote lands, elevate fire impacts and exacerbate ecological effects of habitat disturbance. The growing climatic change literature often fails to appreciate that, in coming decades, climate-land use interactions might be at least as important as abiotic changes per se for the fate of tropical biodiversity. In this review, we argue that protected area expansion along key ecological gradients, regulation of human-lit fires, strategic forest-carbon financing and re-evaluations of agricultural and biofuel subsidies could ameliorate some of these synergistic threats.  相似文献   

4.
Summary

By the 2050s the UK is projected to be about 1.6°C warmer, when the atmospheric CO2 concentration will be 525 ppmv. These changes will have profound effects on the Scottish flora and fauna. Vegetation primary productivity will increase, except in dry regions, and the productivity of upland forest plantations may increase by several Yield Classes. The spread of plant species may be less than expected, but a number of slow-growing ‘stress-tolerant’ species, including montane/alpine species, are likely to be lost. Nitrogen deposited as a result of emission of NOX from vehicles and NH3 from agriculture is now a major source of acidity, and problems of acidification and eutrophication are linked. Despite reductions in sulphur emissions, critical loads of acid deposition are likely to be exceeded for soils in most of the Scottish uplands until at least 2005. Critical levels affecting tree growth may be exceeded where forests are in cloud for 10% of the time in areas of the Great Glen. Much of the Scottish uplands receives 25–30 kg N ha-1 yr-1, which may be causing change in species composition. Background tropospheric ozone concentrations are increasing. Much of the Scottish uplands experiences mean summer ozone concentrations exceeding those in southern England, but with fewer exceedances of critical levels. However, many crops and some sensitive native species are probably being adversely affected.  相似文献   

5.
Climate change can result in a slow disappearance of forests dominated by less drought-tolerant native European beech (Fagus sylvatica) and oak species (Quercus spp.) and further area expansion of more drought-tolerant non-native black locust (Robinia pseudoacacia) against those species in Hungary. We assumed that the shift in plant species composition was modified by selective ungulate browsing. Thus, we investigated which woody species are selected by browsing game. We have collected data on the species composition of the understory and the browsing impact on it in five different Hungarian even-aged forests between 2003 and 2005. Based on these investigations the non-native Robinia pseudoacacia living under more favourable climatic conditions was generally preferred (Jacobs’ selectivity index: D = 0.04 ± 0.77), while the native Fagus sylvatica and Quercus spp. (Q. petraea, Q. robur), both more vulnerable to increasing aridity, were avoided (D = ?0.37 ± 0.11; ?0.79 ± 0.56; ?0.9 ± 0.16; respectively) among target tree species. However, economically less or not relevant species, e.g. elderberry (Sambucus spp.), blackberry (Rubus spp.) or common dogwood (Cornus sanguinea) were the most preferred species (D = 0.01 ± 0.71; ?0.12 ± 0.58; ?0.2 ± 0.78, respectively). Our results imply that biodiversity conservation, i.e. maintaining or establishing a multi-species understory layer, can be a good solution to reduce the additional negative game impact on native target tree species suffering from drought. Due to preference for Robinia pseudoacacia selective browsing can decelerate the penetration of this species into native forest habitats. We have to consider the herbivorous pressure of ungulates and their feeding preferences in planning our future multifunctional forests in the light of climate change impacts.  相似文献   

6.
Rangelands are Earth's dominant land cover and are important providers of ecosystem services. Reliance on rangelands is projected to grow, thus understanding the sensitivity of rangelands to future climates is essential. We used a new ecosystem model of moderate complexity that allows, for the first time, to quantify global changes expected in rangelands under future climates. The mean global annual net primary production (NPP) may decline by 10 g C m?2 year?1 in 2050 under Representative Concentration Pathway (RCP) 8.5, but herbaceous NPP is projected to increase slightly (i.e., average of 3 g C m?2 year?1). Responses vary substantially from place‐to‐place, with large increases in annual productivity projected in northern regions (e.g., a 21% increase in productivity in the US and Canada) and large declines in western Africa (?46% in sub‐Saharan western Africa) and Australia (?17%). Soil organic carbon is projected to increase in Australia (9%), the Middle East (14%), and central Asia (16%) and decline in many African savannas (e.g., ?18% in sub‐Saharan western Africa). Livestock are projected to decline 7.5 to 9.6%, an economic loss of from $9.7 to $12.6 billion. Our results suggest that forage production in Africa is sensitive to changes in climate, which will have substantial impacts on the livelihoods of the more than 180 million people who raise livestock on those rangelands. Our approach and the simulation tool presented here offer considerable potential for forecasting future conditions, highlight regions of concern, and support analyses where costs and benefits of adaptations and policies may be quantified. Otherwise, the technical options and policy and enabling environment that are needed to facilitate widespread adaptation may be very difficult to elucidate.  相似文献   

7.
Altered species interactions are difficult to predict and yet may drive the response of ecological communities to climate change. We show that declining snowpack strengthens the impacts of a generalist herbivore, elk (Cervus elaphus), on a common tree species. Thick snowpack substantially reduces elk visitation to sites; aspen (Populus tremuloides) shoots in these areas experience lower browsing rates, higher survival and enhanced recruitment. Aspen inside herbivore exclosures have greatly increased recruitment, particularly at sites with thick snowpack. We suggest that long-term decreases in snowpack could help explain a widespread decline of aspen through previously unconsidered relationships. More generally, reduced snowpack across the Rocky Mountains, combined with rising elk populations, may remove the conditions needed for recruitment of this ecologically important tree species. These results highlight that herbivore behavioural responses to altered abiotic conditions are critical determinants of plant persistence. Predictions of climate change impacts must not overlook the crucial importance of species interactions.  相似文献   

8.
Climate variability and the rapid warming of seas undoubtedly have huge ramifications for biological processes such as reproduction. As such, gametogenesis and spawning were investigated at two sites over 200 km apart on the south coast of Ireland in an ecosystem engineer, the common cockle, Cerastoderma edule. Both sites are classed as Special Areas of Conservation (SACs), but are of different water quality. Cerastoderma edule plays a significant biological role by recycling nutrients and affecting sediment structure, with impacts upon assemblage biomass and functional diversity. It plays a key role in food webs, being a common foodstuff for a number of marine birds including the oystercatcher. Both before and during the study (early 2010–mid 2011), Ireland experienced its two coldest winters for 50 years. As the research demonstrated only slight variation in the spawning period between sites, despite site differences in water and environmental quality, temperature and variable climatic conditions were the dominant factor controlling gametogenesis. The most significant finding was that the spawning period in the cockle extended over a greater number of months compared with previous studies and that gametogenesis commenced over winter rather than in spring. Extremely cold winters may impact on the cockle by accelerating and extending the onset and development of gametogenesis. Whether this impact is positive or negative would depend on the associated events occurring on which the cockle depends, that is, presence of primary producers and spring blooms, which would facilitate conversion of this extended gametogenesis into successful recruitment.  相似文献   

9.
Abstract This review summarizes recent research in Australia on: (i) climate and geophysical trends over the last few decades; (ii) projections for climate change in the 21st century; (iii) predicted impacts from modelling studies on particular ecosystems and native species; and (iv) ecological effects that have apparently occurred as a response to recent warming. Consistent with global trends, Australia has warmed ~0.8°C over the last century with minimum temperatures warming faster than maxima. There have been significant regional trends in rainfall with the northern, eastern and southern parts of the continent receiving greater rainfall and the western region receiving less. Higher rainfall has been associated with an increase in the number of rain days and heavy rainfall events. Sea surface temperatures on the Great Barrier Reef have increased and are associated with an increase in the frequency and severity of coral bleaching and mortality. Sea level rises in Australia have been regionally variable, and considerably less than the global average. Snow cover and duration have declined significantly at some sites in the Snowy Mountains. CSIRO projections for future climatic changes indicate increases in annual average temperatures of 0.4–2.0°C by 2030 (relative to 1990) and 1.0–6.0°C by 2070. Considerable uncertainty remains as to future changes in rainfall, El Niño Southern Oscillation events and tropical cyclone activity. Overall increases in potential evaporation over much of the continent are predicted as well as continued reductions in the extent and duration of snow cover. Future changes in temperature and rainfall are predicted to have significant impacts on most vegetation types that have been modelled to date, although the interactive effect of continuing increases in atmospheric CO2 has not been incorporated into most modelling studies. Elevated CO2 will most likely mitigate some of the impacts of climate change by reducing water stress. Future impacts on particular ecosystems include increased forest growth, alterations in competitive regimes between C3 and C4 grasses, increasing encroachment of woody shrubs into arid and semiarid rangelands, continued incursion of mangrove communities into freshwater wetlands, increasing frequency of coral bleaching, and establishment of woody species at increasingly higher elevations in the alpine zone. Modelling of potential impacts on specific Australian taxa using bioclimatic analysis programs such as bioclim consistently predicts contraction and/or fragmentation of species' current ranges. The bioclimates of some species of plants and vertebrates are predicted to disappear entirely with as little as 0.5–1.0°C of warming. Australia lacks the long‐term datasets and tradition of phenological monitoring that have allowed the detection of climate‐change‐related trends in the Northern Hemisphere. Long‐term changes in Australian vegetation can be mostly attributed to alterations in fire regimes, clearing and grazing, but some trends, such as encroachment of rainforest into eucalypt woodlands, and establishment of trees in subalpine meadows probably have a climatic component. Shifts in species distributions toward the south (bats, birds), upward in elevation (alpine mammals) or along changing rainfall contours (birds, semiarid reptiles), have recently been documented and offer circumstantial evidence that temperature and rainfall trends are already affecting geographic ranges. Future research directions suggested include giving more emphasis to the study of climatic impacts and understanding the factors that control species distributions, incorporating the effects of elevated CO2 into climatic modelling for vegetation and selecting suitable species as indicators of climate‐induced change.  相似文献   

10.
? The extent to which plants exert an influence over ecosystem processes, such as nitrogen cycling and fire regimes, is still largely unknown. It is also unclear how such processes may be dependent on the prevailing environmental conditions. ? Here, we applied mechanistic models of plant-environment interactions to palaeoecological time series data to determine the most likely functional relationships of Empetrum (crowberry) and Betula (birch) with millennial-scale changes in climate, fire activity, nitrogen cycling and herbivore density in an Irish heathland. ? Herbivory and fire activity preferentially removed Betula from the landscape. Empetrum had a positive feedback on fire activity, but the effect of Betula was slightly negative. Nitrogen cycling was not strongly controlled by plant population dynamics. Betula had a greater temperature-dependent population growth rate than Empetrum; thus climate warming promoted Betula expansion into the heathland and this led to reduced fire activity and greater herbivory, which further reinforced Betula dominance. ? Differences in population growth response to warming were responsible for an observed shift to an alternative community state with contrasting forms of ecosystem functioning. Self-reinforcing feedback mechanisms--which often protect plant communities from invasion--may therefore be sensitive to climate warming, particularly in arctic regions that are dominated by cold-adapted plant populations.  相似文献   

11.
Climate and land use change impacts on plant distributions in Germany   总被引:1,自引:0,他引:1  
We present niche-based modelling to project the distribution of 845 European plant species for Germany using three different models and three scenarios of climate and land use changes up to 2080. Projected changes suggested large effects over the coming decades, with consequences for the German flora. Even under a moderate scenario (approx. +2.2 degrees C), 15-19% (across models) of the species we studied could be lost locally-averaged from 2995 grid cells in Germany. Models projected strong spatially varying impacts on the species composition. In particular, the eastern and southwestern parts of Germany were affected by species loss. Scenarios were characterized by an increased number of species occupying small ranges, as evidenced by changes in range-size rarity scores. It is anticipated that species with small ranges will be especially vulnerable to future climate change and other ecological stresses.  相似文献   

12.
Understanding how species and ecosystems respond to climate change has become a major focus of ecology and conservation biology. Modelling approaches provide important tools for making future projections, but current models of the climate-biosphere interface remain overly simplistic, undermining the credibility of projections. We identify five ways in which substantial advances could be made in the next few years: (i) improving the accessibility and efficiency of biodiversity monitoring data, (ii) quantifying the main determinants of the sensitivity of species to climate change, (iii) incorporating community dynamics into projections of biodiversity responses, (iv) accounting for the influence of evolutionary processes on the response of species to climate change, and (v) improving the biophysical rule sets that define functional groupings of species in global models.  相似文献   

13.
The cultivation of grapevines for winemaking, known as viticulture, is widely cited as a climate‐sensitive agricultural system that has been used as an indicator of both historic and contemporary climate change. Numerous studies have questioned the viability of major viticulture regions under future climate projections. We review the methods used to study the impacts of climate change on viticulture in the light of what is known about the effects of climate and weather on the yields and quality of vineyard harvests. Many potential impacts of climate change on viticulture, particularly those associated with a change in climate variability or seasonal weather patterns, are rarely captured. Key biophysical characteristics of viticulture are often unaccounted for, including the variability of grapevine phenology and the exploitation of microclimatic niches that permit successful cultivation under suboptimal macroclimatic conditions. We consider how these same biophysical characteristics permit a variety of strategies by which viticulture can adapt to changing climatic conditions. The ability to realize these strategies, however, is affected by uneven exposure to risks across the winemaking sector, and the evolving capacity for decision‐making within and across organizational boundaries. The role grape provenance plays in shaping perceptions of wine value and quality illustrates how conflicts of interest influence decisions about adaptive strategies within the industry. We conclude by considering what lessons can be taken from viticulture for studies of climate change impacts and the capacity for adaptation in other agricultural and natural systems.  相似文献   

14.
Human‐assisted introductions of exotic species are a leading cause of anthropogenic change in biodiversity; however, context dependencies and interactions with co‐occurring stressors impede our ability to predict their ecological impacts. The legacy of historical sportfish stocking in mountainous regions of western North America creates a unique, natural quasiexperiment to investigate factors moderating invasion impacts on native communities across broad geographic and environmental gradients. Here we synthesize fish stocking records and zooplankton relative abundance for 685 mountain lakes and ponds in the Cascade and Canadian Rocky Mountain Ranges, to reveal the effects of predatory sportfish introduction on multiple taxonomic, functional and phylogenetic dimensions of prey biodiversity. We demonstrate an innovative analytical approach, combining exploratory random forest machine learning with confirmatory multigroup analysis using multivariate partial least‐squares structural equation models, to generate and test hypotheses concerning environmental moderation of stocking impacts. We discovered distinct effects of stocking across different dimensions of diversity, including negligible (nonsignificant) impacts on local taxonomic richness (i.e. alpha diversity) and trophic structure, in contrast to significant declines in compositional uniqueness (i.e. beta diversity) and body size. Furthermore, we found that stocking impacts were moderated by cross‐scale interactions with climate and climate‐related land‐cover variables (e.g. factors linked to treeline position and glaciers). Interactions with physical morphometric and lithological factors were generally of lesser importance, though catchment slope and habitat size constraints were relevant in certain dimensions. Finally, applying space‐for‐time substitution, a strong antagonistic (i.e. dampening) interaction between sportfish predation and warmer temperatures suggests redundancy of their size‐selective effects, meaning that warming will lessen the consequences of introductions in the future and stocked lakes may be less impacted by subsequent warming. While both stressors drive biotic homogenization, our results have important implications for fisheries managers weighing the costs/benefits of stocking—or removing established non‐native populations—under a rapidly changing climate.  相似文献   

15.
In this paper, the influence of climate variability and change on the environment was studied over southern Africa using ground-based and remotely sensed data. A time series analysis of rainfall and temperature anomalies indicated that there was a high rainfall and temperature variability in the region. The influence of global teleconnections on rainfall patterns over southern Africa showed that in some areas there was a spatial variation in their strength, increasing from west to east. Maps of NDVI, from 1982 to 2004, showed that changes in vegetation cover were more apparent during the dry season than during the wet season. The study also revealed that climate variability and change are linked to decreasing rainfall and hence, decreasing regional water resources and biodiversity and increasing environmental degradation. With the regional population expected increase, this depletion of resources poses the greatest regional environmental challenge to humankind.  相似文献   

16.
It is widely accepted that climate change constrains biota. Yet, because of the lack of consistent multisite and multitaxon surveys, few studies have addressed general rules about how climate change impacts on structure and diversity of animal communities. Especially, the relative influence of nonclimatic anthropogenic disturbances on this impact is fairly unknown. Here, we present for the first time a meta-analysis assessing the effect of global warming on stream organisms. Fish communities of large rivers in France undergoing various anthropogenic pressures showed significant increase in proportions of warm-water species and of specific richness during the last 15–25 years. Conversely, the equitability decreased, indicating a gradual decrease of the number of dominant species. Finally, the total abundance increased, coupled with rejuvenation and changes in size-structure of the communities. Interestingly, most of these effects were not depressed by the strength of nonclimatic anthropogenic disturbances. Conversely, geographical location of communities and especially closeness of natural barriers to migration could influence their response to climate change. Indeed, increase in the proportion of southern species seemed hindered at sites located close to the southern limit of the European species' geographical ranges. This work provides new evidence that climate change have deep impacts on communities which, by overtaking the effects of nonclimatic anthropogenic disturbances, could be more substantial than previously thought. Overall, our results stress the importance of considering climate change impacts in studies addressing community dynamics, even in disturbed sites.  相似文献   

17.
18.
气候变化对无定河流域生态水文过程的影响   总被引:4,自引:0,他引:4  
莫兴国  林忠辉  刘苏峡 《生态学报》2007,27(12):4999-5007
建立分布式生态水文过程模式,模拟分析了黄土高原无定河流域近40a来及未来气候变化情景下水循环和植被生产力的演变特征。结果显示,无定河流域近40a来温度上升,而降水量没有明显的下降趋势,但年际波动幅度变小。与之相应,地表蒸散量也没有明显的变化趋势。然而,因大气CO2浓度的上升,植被净生产力明显增加,速率约为0.6gCm^-2a^-1,水分利用效率随之提高。该流域生态系统对HadCM3气候变化情景的响应显著,蒸散、地表径流和植被净第一性生产力(NPP)均增加,植被水分利用效率明显提高。  相似文献   

19.
West Nile virus (WNV), the most widely distributed virus of the encephalitic flaviviruses, is a vector-borne pathogen of global importance. The transmission cycle exists in rural and urban areas where the virus infects birds, humans, horses and other mammals. Multiple factors impact the transmission and distribution of WNV, related to the dynamics and interactions between pathogen, vector, vertebrate hosts and environment. Hence, among other drivers, weather conditions have direct and indirect influences on vector competence (the ability to acquire, maintain and transmit the virus), on the vector population dynamic and on the virus replication rate within the mosquito, which are mostly weather dependent. The importance of climatic factors (temperature, precipitation, relative humidity and winds) as drivers in WNV epidemiology is increasing under conditions of climate change. Indeed, recent changes in climatic conditions, particularly increased ambient temperature and fluctuations in rainfall amounts, contributed to the maintenance (endemization process) of WNV in various locations in southern Europe, western Asia, the eastern Mediterranean, the Canadian Prairies, parts of the USA and Australia. As predictions show that the current trends are expected to continue, for better preparedness, any assessment of future transmission of WNV should take into consideration the impacts of climate change.  相似文献   

20.
Climate change is likely to impact multiple dimensions of biodiversity. Species range shifts are expected and may drive changes in the composition of species assemblages. In some regions, changes in climate may precipitate the loss of geographically restricted, niche specialists and facilitate their replacement by more widespread, niche generalists, leading to decreases in β-diversity and biotic homogenization. However, in other regions climate change may drive local extinctions and range contraction, leading to increases in β-diversity and biotic heterogenization. Regional topography should be a strong determinant of such changes as mountainous areas often are home to many geographically restricted species, whereas lowlands and plains are more often inhabited by widespread generalists. Climate warming, therefore, may simultaneously bring about opposite trends in β-diversity in mountainous highlands versus relatively flat lowlands. To test this hypothesis, we used species distribution modelling to map the present-day distributions of 2669 Neotropical anuran species, and then generated projections of their future distributions assuming future climate change scenarios. Using traditional metrics of β-diversity, we mapped shifts in biotic homogenization across the entire Neotropical region. We used generalized additive models to then evaluate how changes in β-diversity were associated with shifts in species richness, phylogenetic diversity and one measure of ecological generalism. Consistent with our hypothesis, we find increasing biotic homogenization in most highlands, associated with increased numbers of generalists and, to a lesser extent, losses of specialists, leading to an overall increase in alpha diversity, but lower mean phylogenetic diversity. In the lowlands, biotic heterogenization was more common, and primarily driven by local extinctions of generalists, leading to lower α-diversity, but higher mean phylogenetic diversity. Our results suggest that impacts of climate change on β-diversity are likely to vary regionally, but will generally lead to lower diversity, with increases in β-diversity offset by decreases in α-diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号