首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
牛胚胎生殖细胞的分离与培养   总被引:2,自引:0,他引:2  
胚胎生殖细胞 (Embryonicgermcells,EG)是由生殖嵴原始生殖细胞 (Primordialgermcells,PGCs)中分离得到的一种未分化而多潜能的干细胞。牛EG细胞的研究在EG细胞核移植、转基因及建立生物反应器方面具有广阔的应用前景。本研究从 2 9- 70日龄牛胎儿PGCs分离得到EG细胞 ,经过抑制分化培养 ,其中一个细胞系传至 6代。所分离得到的EG细胞具有典型的EG细胞形态 ,AP及PAS染色呈阳性 ,核型正常 ,同时观察到这些细胞在体外进行自发性分化 ,可形成类胚体、成纤维样细胞及神经样细胞  相似文献   

2.
多潜能胚胎性干细胞来源有两条途经,从植入前的早期胚胎内细胞团(inner cell mass,ICM)分离出来的称胚胎干细胞(embryonic stem cells,ES);从原始生殖细胞(primordial germ cells,PGCs)分离得到的称胚胎生殖细胞(embryonic germ cells,EG)。这两种干细胞在小鼠嵌合体实验中,都证明具有参与生殖系传递的能力。这类干细胞在体外保持  相似文献   

3.
Pluripotent stem cells, termed embryonic germ (EG) cells, have been generated from both human and mouse primordial germ cells (PGCs). Like embryonic stem (ES) cells, EG cells have the potential to differentiate into all germ layer derivatives and may also be important for any future clinical applications. The development of PGCs in vivo is accompanied by major epigenetic changes including DNA demethylation and imprint erasure. We have investigated the DNA methylation pattern of several imprinted genes and repetitive elements in mouse EG cell lines before and after differentiation. Analysed cell lines were derived soon after PGC specification, “early”, in comparison with EG cells derived after PGC colonisation of the genital ridge, “late” and embryonic stem (ES) cell lines, derived from the inner cell mass (ICM). Early EG cell lines showed strikingly heterogeneous DNA methylation patterns, in contrast to the uniformity of methylation pattern seen in somatic cells (control), late EG cell and ES cell lines. We also observed that all analysed XX cell lines exhibited less methylation than XY. We suggest that this heterogeneity may reflect the changes in DNA methylation taking place in the germ cell lineage soon after specification.  相似文献   

4.
Huang B  Xie TS  Shi DS  Li T  Wang XL  Mo Y  Wang ZQ  Li MM 《Cell biology international》2007,31(10):1079-1088
There have been few studies done on the isolation and characterization of Chinese swamp buffalo embryonic germ cells (EG cells). Here, we first report on EG-like cells isolated from Chinese swamp buffalo fetuses. The results showed the cells grew in large, multilayered colonies, which were densely packed with an obvious border resembling mouse embryonic stem cells (ES cells) and EG cells. The buffalo EG-like cells expressed AP, SSEA-1, SSEA-3, SSEA-4 and OCT-4. By RT-PCR, we found that undifferentiated swamp buffalo EG-like cells expressed the OCT-4, NANOG, SOX2, FOXD3, GP130, STAT3, and HEB gene mRNA, but not Fgf4. When these cells were cultured for more than 2weeks without passage, they could differentiate into several types of cells including fibroblast-like, neuron-like, smooth muscle-like, and epithelial-like cells. Some cells formed simple embryoid bodies (EBs) and cystic EBs by suspension culture. By RT-PCR, we found cystic EBs expressed FOXD3, GP130, STAT3 and HEB gene mRNA, but not OCT-4, NANOG, and SOX2 gene mRNA, which could be detected in undifferentiated buffalo EG-like cells. At the same time, the expression of KERATIN-14 (Endoderm), GATA4, ACTA2 (Mesoderm) and TUBB3 (Ectoderm) gene mRNA were also detected in cystic EBs. The results suggested that these cells were capable of forming three germ layers in in vitro differentiation. The expression of OCT-4, NANOG and SOX2 might be essential for Chinese swamp buffalo EG-like cells in a pluripotent state. During the isolation and culture of Chinese swamp buffalo EG-like cells, we found the fetuses that were at 30-80days post-coitus were more efficient than others; and the mechanical method was better than trypsin digestion. The maximal passage of the mechanical method was eight, but the trypsin digestion was just three passages. So it seemed like that the buffalo EG-like cells were sensitive to trypsin. In summary, we were the first to isolate and characterize Chinese swamp buffalo EG-like cells that had morphology and characterization similar to those of established EG/EG-like cells in mouse and human.  相似文献   

5.
胚胎生殖细胞(embryonic germ cell,EGC)是由胎儿原始生殖细胞(primordial germ cell,PGC)经体外驯化培养获得的一种多潜能干细胞。研究猪PGC生物学特性对于建立猪EGC及了解猪生殖细胞发育机制具有重要意义。该研究以原代培养的猪PGC为对象,探讨了其生长行为特征及其重编程过程中多能性、生殖系标志基因的表达模式。结果显示,26 d胚胎生殖嵴分离的PGC呈碱性磷酸酶阳性,细胞体积及核质比较大;体外培养初期呈现出较强的增殖及迁移能力,培养第5 d细胞增殖达到平台期,此时克隆高表达Oct4、Sox2、Nanog、c-Myc、Klf4和Ifi tm3(P〈0.05),低表达Blimp1(P〈0.05),Nanos1和Stella的表达水平与猪胎儿成纤维细胞无差异;猪PGC形成的原代克隆已经具有多向分化潜能。  相似文献   

6.
Monoclonal antibodies anti-SSEA-1 and EMA-1, and the lectins DBA and LTA, bound to the surface of large, round cells randomly distributed in the 26-day pig genital ridge. Other antibodies, SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81, did not react with any cells in the pig genital ridge. SSEA-1-positive cells displayed pseudopods and appeared to migrate from the dorsal mesentery of the hindgut (18-day) to the primordium of the gonad (day 23) and entered the genital ridge by 26 days. The number of SSEA-1-positive cells associated with the dorsal mesentery and genital ridge markedly increased from the 18-day to the 26-day pig embryo. It was concluded that the SSEA-1-positive cells were primordial germ cells (PGCs). Using these markers and alkaline phosphatase histochemistry, pig PGCs derived from the 26-day genital ridge showed no proliferation when grown in STO co-culture in the presence of human LIF, bFGF and SCF. Mol. Reprod. Dev. 46:567–580, 1997. Published 1997 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    7.
    原始生殖细胞(primordial germ cells, PGCs)是胚胎中最先出现的生殖细胞。PGCs来源于上胚层,最早出现在后肠,随后向生殖嵴迁移。这一过程伴随一系列复杂的分子调控机制,以及DNA甲基化重编程和组蛋白修饰等表观遗传过程。PGCs经过不断的分裂、发育及分化,最终形成配子。为了更好地研究PGCs发育与分化的调控和表观遗传过程,体外培养的研究变得越来越重要。本文以小鼠和人为例,介绍了哺乳动物PGCs的特化过程、PGCs特化过程中的表观遗传过程和PGCs的体外培养研究进展。  相似文献   

    8.
    This study was performed to culture and preliminarily identify the primordial germ cells (PGCs) isolated from the genital ridge of the Mongolian sheep fetus. The growth characteristics of the sheep PGCs were detected in different culture systems such as culture media, resources, and state and passages of feeder cells. The obtained embryonic germ (EG) cells were identified by morphology, enzymology, and immunofluorescence. The results showed that the sheep EG cell colonies were ridgy, typically nest like, and compact, and had regular edges. Alkaline phosphatase staining reaction was weakly positive. EG cells expressed Kit, Rex-1, Nanog, and Oct-4. Immunofluorescence detection was weakly positive for Oct3/4, whereas positive for SSEA-1, SSEA-3, SSEA-4, TRA-1-61, and TRA-1-80.  相似文献   

    9.
    In mouse embryos at mid-gestation, primordial germ cells (PGCs) undergo licensing to become gametogenesis-competent cells (GCCs), gaining the capacity for meiotic initiation and sexual differentiation. GCCs then initiate either oogenesis or spermatogenesis in response to gonadal cues. Germ cell licensing has been considered to be a cell-autonomous and gonad-independent event, based on observations that some PGCs, having migrated not to the gonad but to the adrenal gland, nonetheless enter meiosis in a time frame parallel to ovarian germ cells -- and do so regardless of the sex of the embryo. Here we test the hypothesis that germ cell licensing is cell-autonomous by examining the fate of PGCs in Gata4 conditional mutant (Gata4 cKO) mouse embryos. Gata4, which is expressed only in somatic cells, is known to be required for genital ridge initiation. PGCs in Gata4 cKO mutants migrated to the area where the genital ridge, the precursor of the gonad, would ordinarily be formed. However, these germ cells did not undergo licensing and instead retained characteristics of PGCs. Our results indicate that licensing is not purely cell-autonomous but is induced by the somatic genital ridge.  相似文献   

    10.
    人多潜能胚胎生殖细胞的分离和培养(简报)   总被引:1,自引:0,他引:1  
    To establish human pluripotent embryonic germ (EG) cell lines, human primordial germ cells (PGCs) of embryos aborted in 5-9 week were cultured on inactive mouse STO fibroblast feeder. The medium contained human leukemia inhibitory factor (hLIF), human basic fibroblast growth factor (hbFGF) and forskolin. The EG cells could be passaged continuously until 12 generations. Most cells were positive in alkaline phosphatase staining and expressed cell surface antigen SSEA-3 and pluripotent marker Oct-4. These EG cell populations that retained normal karyotype could form embryoid body in culture and differentiate further into neuron-like cells, mucous epithelial cells, epithelial cells and other types of the cells spontaneously. These results indicated the cell clones derived from human PGCs resemble pluripotent EG cells from mouse PGCs in appearance or nature.  相似文献   

    11.
    不同时期鸡胚原始生殖细胞分离的研究   总被引:1,自引:1,他引:0  
    采用Ficoll密度梯度离心,酶解离两种方法在鸡胚孵化的第14期、19期、28期,分离、培养鸡胚中的原始生殖细胞(PGCs)。探索PGCs分离、培养的适宜时期及方法,以期获得较多数量,较高活力的PGCs作介导生产转基因鸡。结果表明:1.提取、分离PGCs的最佳时期依次为19期、28期。2.两种分离方法均能分离到一定数量的PGCs细胞。但在19期和28期,酶解离法分离到的PGCs的相对数量较多,存活时间较长,是一种较适宜的分离方法。  相似文献   

    12.
    13.
    We have isolated and cultured human primordial germ cells (PGCs) from early embryos. The PGCs expressed embryonic germ (EG) cell-specific surface markers, including Oct4 and Nanos. We derived a cell population from these PGCs that we termed embryoid body-derived (EBD) cells. EBD cells can be extensively expanded in vitro for more than 50 passages and express lineage markers from all three primary germ layers. The myogenic potential of the EBD cells was examined both in vitro and in vivo.In vitro, the EBD cells can be induced to form multinucleated myotubes, which express late skeletal muscle-specific markers, including MHC and dystrophin, when exposed to human galectin-1. In vivo, the EBD cells gave rise to all the myogenic lineages, including the skeletal muscle stem cells known as satellite cells. Strikingly, these cells were able to partially restore degenerated muscles in the SCID/mdx mouse, an animal model of the Duchenne’s muscular dystrophy. These results indicate the EBD cells may be a promising source of myogenic stem cells for cell-based therapies for muscle degenerative disorders.  相似文献   

    14.
    15.
    Tsung HC  Du ZW  Rui R  Li XL  Bao LP  Wu J  Bao SM  Yao Z 《Cell research》2003,13(3):195-202
    As a part of a basic research project on Xeno-transplantion, we have been engaged in the derivation of embryonic stem cell lines from Chinese mini swine. Here, we reported for the first time the establishment of two porcine EG cell lines (BPEG1 and BPEG2) from primordial germ cells of genital ridges of a 28 anda 27 d embryos respectively. Their pluripotent nature has been identified by colony morphology, marker characterization as well as by in vitro and in vivo differentiation. These porcine EG cells are potentially useful for further basic studies.  相似文献   

    16.
    Nuclear transfer embryonic stem cells (ntESCs) show stem cell characteristics such as pluripotency but cause no immunological disorders. Although ntESCs are able to differentiate into somatic cells, the ability of ntESCs to differentiate into primordial germ cells (PGCs) has not been examined. In this work, we examined the capacity of mouse ntESCs to differentiate into PGCs in vitro. ntESCs aggregated to form embryoid bodies (EB) in EB culture medium supplemented with bone morphogenetic protein 4(BMP4) as the differentiation factor. The expression level of specific PGC genes was compared at days 4 and 8 using real time PCR. Flow cytometry and immunocytochemical staining were used to detect Mvh as a specific PGC marker. ntESCs expressed particular genes related to different stages of PGC development. Flow cytometry and immunocytochemical staining confirmed the presence of Mvh protein in a small number of cells. There were significant differences between cells that differentiated into PGCs in the group treated with Bmp4 compared to non-treated cells. These findings indicate that ntESCs can differentiate into putative PGCs. Improvement of ntESC differentiation into PGCs may be a reliable means of producing mature germ cells.  相似文献   

    17.
    Although the avian primordial germ cells (PGCs) have been used to produce transgenic birds, their characteristics largely remain unknown. The isolation, culture, biological characterization, and directed neural differentiation of duck EG cells were assayed in this study. The Results showed that the EG cells were got by isolating embryonic gonad and surrounding tissue from 7-day-old duck embryo. The PGCs co-cultured with their gonadal somatic cells were well grown. After passaging, the EG cells were incubated in medium with cytokines and Mitomycin C on inactivated duck embryonic fibroblasts (DEFs) feeder layers. After several passages, alkaline phosphatase (ALP) and periodic acid-Schiff (PAS) resulted positive, cellular markers detection positive for SSEA-1, SSEA-4, TRA-1-60, and TRA-1-81. Karyotype analysis showed the EG cells kept diploid condition and the hereditary feature was stable in accordance with varietal characteristics of duck. These cells grew continuously for 11 passages on DEFs. Under induction of medium with BME, RA, and IBMX, the EG cells lost undifferentiated state, large amount of neural cells appeared with the formation of neural cells networks. Special Nissl body was found by toluidine blue stain after induced for 7 days. Immunofluorescence staining results indicated that differentiated EG cells expressed Nestin, NSE, and GFAP positive. The expression of Nestin, NSE, and GFAP mRNA were positive by RT-PCR. The results revealed that RA can obviously promote the directed differentiation of duck EG cells into neural lineage. The duck EG cells will be useful for the production of transgenic birds, for cell replacement therapy and for studies of germ cell differentiation.  相似文献   

    18.
    为探讨原始生殖细胞(primordial germ cells,PGCs)在体外长期增殖、生长并长期保持分化潜能的新方法,我们将PGCs分别与睾丸支持细胞(Sertoli cells,SCs)和同源生殖嵴成纤维细胞共培养。结果与SCs共培养的PGCs集落明显多于同源生殖嵴成纤维细胞共培养PGCs集落,传代次数也显著多于同源生殖嵴成纤维细胞.目前与SCs共培养的PGCs已成功传代培养至了第51代。因此我们认为PGCs与SCs共培养,可有效提高原始生殖细胞在体外的增殖能力并可长期维持干细胞的特性。  相似文献   

    19.
    培养原始生殖细胞的新方法   总被引:1,自引:0,他引:1  
    为探讨原始生殖细胞(primordial germ cells,PGCs)在体外长期增殖、生长并长期保持分化潜能的新方法,我们将PGCs分别与睾丸支持细胞(Sertoli cells,SCs)和同源生殖嵴成纤维细胞共培养。结果与SCs共培养的PGCs集落明显多于同源生殖嵴成纤维细胞共培养PGCs集落,传代次数也显著多于同源生殖嵴成纤维细胞,目前与SCs共培养的PGCs已成功传代培养至了第51代。因此我们认为PGCs与SCs共培养.可有效提高原始生殖细胞在体外的增殖能力并可长期维持干细胞的特性。  相似文献   

    20.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号