首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
de Vries SJ  Bonvin AM 《PloS one》2011,6(3):e17695

Background

Macromolecular complexes are the molecular machines of the cell. Knowledge at the atomic level is essential to understand and influence their function. However, their number is huge and a significant fraction is extremely difficult to study using classical structural methods such as NMR and X-ray crystallography. Therefore, the importance of large-scale computational approaches in structural biology is evident. This study combines two of these computational approaches, interface prediction and docking, to obtain atomic-level structures of protein-protein complexes, starting from their unbound components.

Methodology/Principal Findings

Here we combine six interface prediction web servers into a consensus method called CPORT (Consensus Prediction Of interface Residues in Transient complexes). We show that CPORT gives more stable and reliable predictions than each of the individual predictors on its own. A protocol was developed to integrate CPORT predictions into our data-driven docking program HADDOCK. For cases where experimental information is limited, this prediction-driven docking protocol presents an alternative to ab initio docking, the docking of complexes without the use of any information. Prediction-driven docking was performed on a large and diverse set of protein-protein complexes in a blind manner. Our results indicate that the performance of the HADDOCK-CPORT combination is competitive with ZDOCK-ZRANK, a state-of-the-art ab initio docking/scoring combination. Finally, the original interface predictions could be further improved by interface post-prediction (contact analysis of the docking solutions).

Conclusions/Significance

The current study shows that blind, prediction-driven docking using CPORT and HADDOCK is competitive with ab initio docking methods. This is encouraging since prediction-driven docking represents the absolute bottom line for data-driven docking: any additional biological knowledge will greatly improve the results obtained by prediction-driven docking alone. Finally, the fact that original interface predictions could be further improved by interface post-prediction suggests that prediction-driven docking has not yet been pushed to the limit. A web server for CPORT is freely available at http://haddock.chem.uu.nl/services/CPORT.  相似文献   

3.

Background

Gene prediction is a challenging but crucial part in most genome analysis pipelines. Various methods have evolved that predict genes ab initio on reference sequences or evidence based with the help of additional information, such as RNA-Seq reads or EST libraries. However, none of these strategies is bias-free and one method alone does not necessarily provide a complete set of accurate predictions.

Results

We present IPred (Integrative gene Prediction), a method to integrate ab initio and evidence based gene identifications to complement the advantages of different prediction strategies. IPred builds on the output of gene finders and generates a new combined set of gene identifications, representing the integrated evidence of the single method predictions.

Conclusion

We evaluate IPred in simulations and real data experiments on Escherichia Coli and human data. We show that IPred improves the prediction accuracy in comparison to single method predictions and to existing methods for prediction combination.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1315-9) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

Since experimental techniques are time and cost consuming, in silico protein structure prediction is essential to produce conformations of protein targets. When homologous structures are not available, fragment-based protein structure prediction has become the approach of choice. However, it still has many issues including poor performance when targets’ lengths are above 100 residues, excessive running times and sub-optimal energy functions. Taking advantage of the reliable performance of structural class prediction software, we propose to address some of the limitations of fragment-based methods by integrating structural constraints in their fragment selection process.

Results

Using Rosetta, a state-of-the-art fragment-based protein structure prediction package, we evaluated our proposed pipeline on 70 former CASP targets containing up to 150 amino acids. Using either CATH or SCOP-based structural class annotations, enhancement of structure prediction performance is highly significant in terms of both GDT_TS (at least +2.6, p-values < 0.0005) and RMSD (−0.4, p-values < 0.005). Although CATH and SCOP classifications are different, they perform similarly. Moreover, proteins from all structural classes benefit from the proposed methodology. Further analysis also shows that methods relying on class-based fragments produce conformations which are more relevant to user and converge quicker towards the best model as estimated by GDT_TS (up to 10% in average). This substantiates our hypothesis that usage of structurally relevant templates conducts to not only reducing the size of the conformation space to be explored, but also focusing on a more relevant area.

Conclusions

Since our methodology produces models the quality of which is up to 7% higher in average than those generated by a standard fragment-based predictor, we believe it should be considered before conducting any fragment-based protein structure prediction. Despite such progress, ab initio prediction remains a challenging task, especially for proteins of average and large sizes. Apart from improving search strategies and energy functions, integration of additional constraints seems a promising route, especially if they can be accurately predicted from sequence alone.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0576-2) contains supplementary material, which is available to authorized users.  相似文献   

5.

Background:

Neisseria meningitidis, a life-threatening human pathogen with the potential to cause large epidemics, can be isolated from the nasopharynx of 5–15% of adults. The aim of the current study was to evaluate biophysical and biochemical properties and immunological aspects of chimeric acyl-carrier protein-macrophage infectivity potentiator protein-type IV pilus biogenesis protein antigen (ACP-MIP-PilQ) from N. meningitidis serogroup B strain.

Methods:

Biochemical properties and multiple alignments were predicted by appropriate web servers. Secondary molecular structures were predicted based on Chou and Fasman, Garnier-Osguthorpe-Robson, and Neural Network methods. Tertiary modeling elucidated conformational properties of the chimeric protein. Proteasome cleavage and transporter associated with antigen processing (TAP) binding sites, and T- and B-cell antigenic epitopes, were predicted using bioinformatic web servers.

Results:

Based on our in silico and immunoinformatics analyses, the ACP-MIP-PilQ protein (AMP) can induce high-level cross-strain bactericidal activity. In addition, several immune proteasomal cleavage sites were detected. The 22 epitopes associated with MHC class I and class II (DR) alleles were confirmed in the AMP. Thirty linear B-cell epitopes as antigenic regions were predicted from the full-length protein.

Conclusion:

All predicted properties of the AMP indicate it could be a good candidate for further immunological in vitro and in vivo studies.Key Words: Chimeric protein, In silico, Neisseria meningitides, serogroup B, Vaccine  相似文献   

6.
Lee TS  Kantarjian H  Ma W  Yeh CH  Giles F  Albitar M 《PloS one》2011,6(8):e23396

Background

Mutations in the thrombopoietin receptor (MPL) may activate relevant pathways and lead to chronic myeloproliferative neoplasms (MPNs). The mechanisms of MPL activation remain elusive because of a lack of experimental structures. Modern computational biology techniques were utilized to explore the mechanisms of MPL protein activation due to various mutations.

Results

Transmembrane (TM) domain predictions, homology modeling, ab initio protein structure prediction, and molecular dynamics (MD) simulations were used to build structural dynamic models of wild-type and four clinically observed mutants of MPL. The simulation results suggest that S505 and W515 are important in keeping the TM domain in its correct position within the membrane. Mutations at either of these two positions cause movement of the TM domain, altering the conformation of the nearby intracellular domain in unexpected ways, and may cause the unwanted constitutive activation of MPL''s kinase partner, JAK2.

Conclusions

Our findings represent the first full-scale molecular dynamics simulations of the wild-type and clinically observed mutants of the MPL protein, a critical element of the MPL-JAK2-STAT signaling pathway. In contrast to usual explanations for the activation mechanism that are based on the relative translational movement between rigid domains of MPL, our results suggest that mutations within the TM region could result in conformational changes including tilt and rotation (azimuthal) angles along the membrane axis. Such changes may significantly alter the conformation of the adjacent and intrinsically flexible intracellular domain. Hence, caution should be exercised when interpreting experimental evidence based on rigid models of cytokine receptors or similar systems.  相似文献   

7.

Background

Complete genome annotation is a necessary tool as Anopheles gambiae researchers probe the biology of this potent malaria vector.

Results

We reannotate the A. gambiae genome by synthesizing comparative and ab initio sets of predicted coding sequences (CDSs) into a single set using an exon-gene-union algorithm followed by an open-reading-frame-selection algorithm. The reannotation predicts 20,970 CDSs supported by at least two lines of evidence, and it lowers the proportion of CDSs lacking start and/or stop codons to only approximately 4%. The reannotated CDS set includes a set of 4,681 novel CDSs not represented in the Ensembl annotation but with EST support, and another set of 4,031 Ensembl-supported genes that undergo major structural and, therefore, probably functional changes in the reannotated set. The quality and accuracy of the reannotation was assessed by comparison with end sequences from 20,249 full-length cDNA clones, and evaluation of mass spectrometry peptide hit rates from an A. gambiae shotgun proteomic dataset confirms that the reannotated CDSs offer a high quality protein database for proteomics. We provide a functional proteomics annotation, ReAnoXcel, obtained by analysis of the new CDSs through the AnoXcel pipeline, which allows functional comparisons of the CDS sets within the same bioinformatic platform. CDS data are available for download.

Conclusion

Comprehensive A. gambiae genome reannotation is achieved through a combination of comparative and ab initio gene prediction algorithms.  相似文献   

8.

Background

Most protein mass spectrometry (MS) experiments rely on searches against a database of known or predicted proteins, limiting their ability as a gene discovery tool.

Results

Using a search against an in silico translation of the entire human genome, combined with a series of annotation filters, we identified 346 putative novel peptides [False Discovery Rate (FDR)<5%] in a MS dataset derived from two human breast epithelial cell lines. A subset of these were then successfully validated by a different MS technique. Two of these correspond to novel isoforms of Heterogeneous Ribonuclear Proteins, while the rest correspond to novel loci.

Conclusions

MS technology can be used for ab initio gene discovery in human data, which, since it is based on different underlying assumptions, identifies protein-coding genes not found by other techniques. As MS technology continues to evolve, such approaches will become increasingly powerful.  相似文献   

9.
Ab initio modeling of small proteins by iterative TASSER simulations   总被引:1,自引:0,他引:1  

Background  

Predicting 3-dimensional protein structures from amino-acid sequences is an important unsolved problem in computational structural biology. The problem becomes relatively easier if close homologous proteins have been solved, as high-resolution models can be built by aligning target sequences to the solved homologous structures. However, for sequences without similar folds in the Protein Data Bank (PDB) library, the models have to be predicted from scratch. Progress in the ab initio structure modeling is slow. The aim of this study was to extend the TASSER (threading/assembly/refinement) method for the ab initio modeling and examine systemically its ability to fold small single-domain proteins.  相似文献   

10.

Background

Protein sequence profile-profile alignment is an important approach to recognizing remote homologs and generating accurate pairwise alignments. It plays an important role in protein sequence database search, protein structure prediction, protein function prediction, and phylogenetic analysis.

Results

In this work, we integrate predicted solvent accessibility, torsion angles and evolutionary residue coupling information with the pairwise Hidden Markov Model (HMM) based profile alignment method to improve profile-profile alignments. The evaluation results demonstrate that adding predicted relative solvent accessibility and torsion angle information improves the accuracy of profile-profile alignments. The evolutionary residue coupling information is helpful in some cases, but its contribution to the improvement is not consistent.

Conclusion

Incorporating the new structural information such as predicted solvent accessibility and torsion angles into the profile-profile alignment is a useful way to improve pairwise profile-profile alignment methods.  相似文献   

11.
12.

Background

Prediction of protein structures from their sequences is still one of the open grand challenges of computational biology. Some approaches to protein structure prediction, especially ab initio ones, rely to some extent on the prediction of residue contact maps. Residue contact map predictions have been assessed at the CASP competition for several years now. Although it has been shown that exact contact maps generally yield correct three-dimensional structures, this is true only at a relatively low resolution (3–4 Å from the native structure). Another known weakness of contact maps is that they are generally predicted ab initio, that is not exploiting information about potential homologues of known structure.

Results

We introduce a new class of distance restraints for protein structures: multi-class distance maps. We show that C α trace reconstructions based on 4-class native maps are significantly better than those from residue contact maps. We then build two predictors of 4-class maps based on recursive neural networks: one ab initio, or relying on the sequence and on evolutionary information; one template-based, or in which homology information to known structures is provided as a further input. We show that virtually any level of sequence similarity to structural templates (down to less than 10%) yields more accurate 4-class maps than the ab initio predictor. We show that template-based predictions by recursive neural networks are consistently better than the best template and than a number of combinations of the best available templates. We also extract binary residue contact maps at an 8 Å threshold (as per CASP assessment) from the 4-class predictors and show that the template-based version is also more accurate than the best template and consistently better than the ab initio one, down to very low levels of sequence identity to structural templates. Furthermore, we test both ab-initio and template-based 8 Å predictions on the CASP7 targets using a pre-CASP7 PDB, and find that both predictors are state-of-the-art, with the template-based one far outperforming the best CASP7 systems if templates with sequence identity to the query of 10% or better are available. Although this is not the main focus of this paper we also report on reconstructions of C α traces based on both ab initio and template-based 4-class map predictions, showing that the latter are generally more accurate even when homology is dubious.

Conclusion

Accurate predictions of multi-class maps may provide valuable constraints for improved ab initio and template-based prediction of protein structures, naturally incorporate multiple templates, and yield state-of-the-art binary maps. Predictions of protein structures and 8 Å contact maps based on the multi-class distance map predictors described in this paper are freely available to academic users at the url http://distill.ucd.ie/.  相似文献   

13.

Background

A large number of gene prediction programs for the human genome exist. These annotation tools use a variety of methods and data sources. In the recent ENCODE genome annotation assessment project (EGASP), some of the most commonly used and recently developed gene-prediction programs were systematically evaluated and compared on test data from the human genome. AUGUSTUS was among the tools that were tested in this project.

Results

AUGUSTUS can be used as an ab initio program, that is, as a program that uses only one single genomic sequence as input information. In addition, it is able to combine information from the genomic sequence under study with external hints from various sources of information. For EGASP, we used genomic sequence alignments as well as alignments to expressed sequence tags (ESTs) and protein sequences as additional sources of information. Within the category of ab initio programs AUGUSTUS predicted significantly more genes correctly than any other ab initio program. At the same time it predicted the smallest number of false positive genes and the smallest number of false positive exons among all ab initio programs. The accuracy of AUGUSTUS could be further improved when additional extrinsic data, such as alignments to EST, protein and/or genomic sequences, was taken into account.

Conclusion

AUGUSTUS turned out to be the most accurate ab initio gene finder among the tested tools. Moreover it is very flexible because it can take information from several sources simultaneously into consideration.
  相似文献   

14.

Background  

Structural properties of proteins such as secondary structure and solvent accessibility contribute to three-dimensional structure prediction, not only in the ab initio case but also when homology information to known structures is available. Structural properties are also routinely used in protein analysis even when homology is available, largely because homology modelling is lower throughput than, say, secondary structure prediction. Nonetheless, predictors of secondary structure and solvent accessibility are virtually always ab initio.  相似文献   

15.
16.
17.

Background

Protein inter-residue contact maps provide a translation and rotation invariant topological representation of a protein. They can be used as an intermediary step in protein structure predictions. However, the prediction of contact maps represents an unbalanced problem as far fewer examples of contacts than non-contacts exist in a protein structure. In this study we explore the possibility of completely eliminating the unbalanced nature of the contact map prediction problem by predicting real-value distances between residues. Predicting full inter-residue distance maps and applying them in protein structure predictions has been relatively unexplored in the past.

Results

We initially demonstrate that the use of native-like distance maps is able to reproduce 3D structures almost identical to the targets, giving an average RMSD of 0.5Å. In addition, the corrupted physical maps with an introduced random error of ±6Å are able to reconstruct the targets within an average RMSD of 2Å. After demonstrating the reconstruction potential of distance maps, we develop two classes of predictors using two-dimensional recursive neural networks: an ab initio predictor that relies only on the protein sequence and evolutionary information, and a template-based predictor in which additional structural homology information is provided. We find that the ab initio predictor is able to reproduce distances with an RMSD of 6Å, regardless of the evolutionary content provided. Furthermore, we show that the template-based predictor exploits both sequence and structure information even in cases of dubious homology and outperforms the best template hit with a clear margin of up to 3.7Å. Lastly, we demonstrate the ability of the two predictors to reconstruct the CASP9 targets shorter than 200 residues producing the results similar to the state of the machine learning art approach implemented in the Distill server.

Conclusions

The methodology presented here, if complemented by more complex reconstruction protocols, can represent a possible path to improve machine learning algorithms for 3D protein structure prediction. Moreover, it can be used as an intermediary step in protein structure predictions either on its own or complemented by NMR restraints.  相似文献   

18.
19.
Kapoor A  Shandilya M  Kundu S 《PloS one》2011,6(10):e26509

Background

Human dopamine β-hydroxylase (DBH) is an important therapeutic target for complex traits. Several single nucleotide polymorphisms (SNPs) have also been identified in DBH with potential adverse physiological effect. However, difficulty in obtaining diffractable crystals and lack of a suitable template for modeling the protein has ensured that neither crystallographic three-dimensional structure nor computational model for the enzyme is available to aid rational drug design, prediction of functional significance of SNPs or analytical protein engineering.

Principal Findings

Adequate biochemical information regarding human DBH, structural coordinates for peptidylglycine alpha-hydroxylating monooxygenase and computational data from a partial model of rat DBH were used along with logical manual intervention in a novel way to build an in silico model of human DBH. The model provides structural insight into the active site, metal coordination, subunit interface, substrate recognition and inhibitor binding. It reveals that DOMON domain potentially promotes tetramerization, while substrate dopamine and a potential therapeutic inhibitor nepicastat are stabilized in the active site through multiple hydrogen bonding. Functional significance of several exonic SNPs could be described from a structural analysis of the model. The model confirms that SNP resulting in Ala318Ser or Leu317Pro mutation may not influence enzyme activity, while Gly482Arg might actually do so being in the proximity of the active site. Arg549Cys may cause abnormal oligomerization through non-native disulfide bond formation. Other SNPs like Glu181, Glu250, Lys239 and Asp290 could potentially inhibit tetramerization thus affecting function.

Conclusions

The first three-dimensional model of full-length human DBH protein was obtained in a novel manner with a set of experimental data as guideline for consistency of in silico prediction. Preliminary physicochemical tests validated the model. The model confirms, rationalizes and provides structural basis for several biochemical data and claims testable hypotheses regarding function. It provides a reasonable template for drug design as well.  相似文献   

20.

Background  

Predicting protein residue-residue contacts is an important 2D prediction task. It is useful for ab initio structure prediction and understanding protein folding. In spite of steady progress over the past decade, contact prediction remains still largely unsolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号