首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Simultaneous saccharification and fermentation (SSF) of d-lactic acid was performed using brown rice as both a substrate and a nutrient source. An engineered Lactobacillus plantarum NCIMB 8826 strain, in which the ʟ-lactate dehydrogenase gene was disrupted, produced 97.7 g/L d-lactic acid from 20% (w/v) brown rice without any nutrient supplementation. However, a significant amount of glucose remained unconsumed and the yield of lactic acid was as low as 0.75 (g/g-glucose contained in brown rice). Interestingly, the glucose consumption was significantly improved by adapting L. plantarum cells to the low-pH condition during the early stage of SSF (8–17 h). As a result, 117.1 g/L d-lactic acid was produced with a high yield of 0.93 and an optical purity of 99.6% after 144 h of fermentation. SSF experiments were repeatedly performed for ten times and d-lactic acid was stably produced using recycled cells (118.4–129.8 g/L). On average, d-lactic acid was produced with a volumetric productivity of 2.18 g/L/h over 48 h.

  相似文献   

2.
d-Galacturonic acid can be obtained by hydrolyzing pectin, which is an abundant and low value raw material. By means of metabolic engineering, we constructed fungal strains for the conversion of d-galacturonate to meso-galactarate (mucate). Galactarate has applications in food, cosmetics, and pharmaceuticals and as a platform chemical. In fungi d-galacturonate is catabolized through a reductive pathway with a d-galacturonate reductase as the first enzyme. Deleting the corresponding gene in the fungi Hypocrea jecorina and Aspergillus niger resulted in strains unable to grow on d-galacturonate. The genes of the pathway for d-galacturonate catabolism were upregulated in the presence of d-galacturonate in A. niger, even when the gene for d-galacturonate reductase was deleted, indicating that d-galacturonate itself is an inducer for the pathway. A bacterial gene coding for a d-galacturonate dehydrogenase catalyzing the NAD-dependent oxidation of d-galacturonate to galactarate was introduced to both strains with disrupted d-galacturonate catabolism. Both strains converted d-galacturonate to galactarate. The resulting H. jecorina strain produced galactarate at high yield. The A. niger strain regained the ability to grow on d-galacturonate when the d-galacturonate dehydrogenase was introduced, suggesting that it has a pathway for galactarate catabolism.d-Galacturonate is the main component of pectin, an abundant and cheap raw material. Sugar beet pulp and citrus peel are both rich in pectin residues. At present, these residues are mainly used as cattle feed. However, since energy-consuming drying and pelletizing of the residues is required to prevent them from rotting, it is not always economical to process the residues, and it is desirable to find alternative uses.Various microbes which live on decaying plant material have the ability to catabolize d-galacturonate using various, completely different pathways (19). Eukaryotic microorganisms use a reductive pathway in which d-galacturonate is first reduced to l-galactonate by an NAD(P)H-dependent reductase (12, 17). In the following steps a dehydratase, aldolase, and reductase convert the l-galactonate to pyruvate and glycerol (9, 11, 14).In Hypocrea jecorina (anamorph Trichoderma reesei) the gar1 gene codes for a strictly NADPH-dependent d-galacturonate reductase. In Aspergillus niger a homologue gene sequence, gar2, exists; however, a different gene, gaaA, is upregulated during growth on d-galacturonate containing medium (16). The gaaA codes for a d-galacturonate reductase with different kinetic properties than the H. jecorina enzyme, having a higher affinity toward d-galacturonate and using either NADH or NADPH as cofactor. It is not known whether gar2 codes for an active protein.Some bacteria, such as Agrobacterium tumefaciens or Pseudomonas syringae, have an oxidative pathway for d-galacturonate catabolism. In this pathway d-galacturonate is first oxidized to meso-galactarate (mucate) by an NAD-utilizing d-galacturonate dehydrogenase. Galactarate is then converted in the following steps to α-ketoglutarate. This route is sometimes called the α-ketoglutarate pathway (20). Galactarate can also be catabolized through the glycerate pathway (20). The products of this pathway are pyruvate and d-glycerate. These pathways have been described in prokaryotes, and it is not certain whether similar pathways also exist in fungi, some of which are able to metabolize galactarate.d-Galacturonate dehydrogenase (EC 1.1.1.203) has been described in Agrobacterium tumefaciens and in Pseudomonas syringae, and the enzymes from these organisms have been purified and characterized (3, 6, 22). Recently, the corresponding genes were also identified (4, 24). Both enzymes are specific for NAD as a cofactor but are not specific for the substrate. They oxidize d-galacturonate and d-glucuronate to meso-galactarate (mucate) and d-glucarate (saccharate), respectively. The reaction product is probably the hexaro-lactone which spontaneously hydrolyzes. The reverse reaction can only be observed at acidic pH where some of the galactarate is in the lactone form (22).We describe here strains of filamentous fungi that have been genetically engineered to produce galactarate by disruption of d-galacturonate reductase and expression of d-galacturonate dehydrogenase (Fig. (Fig.1).1). Galactarate is currently commercially produced from d-galactose by oxidation with nitric acid (1) or from d-galacturonate by electrolytic oxidation (8). Oxidation with nitric acid is expensive and produces toxic wastes. Galactarate is used as a chelator and in skin care products. It was formerly used as a leavening agent in self-rising flour (2) and has potential applications in polymer synthesis (10) and as a platform chemical (for a review, see reference 13).Open in a separate windowFIG. 1.Engineering the d-galacturonic acid pathway in fungi. Deletion of the gene encoding d-galacturonate reductase resulted in strains unable to utilize d-galacturonic acid as a carbon source. The expression of a bacterial udh gene, encoding an NAD-dependent d-galacturonate dehydrogenase, resulted in fungal strains, which were able to oxidize d-galacturonic acid to meso-galactaric acid (mucic acid). d-Galacturonate dehydrogenase forms a galactaro-lactone which spontaneously hydrolyzes.  相似文献   

3.
Zheng  Lu  Liu  Mingqing  Sun  Jiaduo  Wu  Bin  He  Bingfang 《Applied microbiology and biotechnology》2017,101(9):3677-3687

Sporolactobacillus inulinus is a superior d-lactic acid-producing bacterium and proposed species for industrial production. The major pathway for d-lactic acid biosynthesis, glycolysis, is mainly regulated via the two irreversible steps catalyzed by the allosteric enzymes, phosphofructokinase (PFK) and pyruvate kinase. The activity level of PFK was significantly consistent with the cell growth and d-lactic acid production, indicating its vital role in control and regulation of glycolysis. In this study, the ATP-dependent PFK from S. inulinus was expressed in Escherichia coli and purified to homogeneity. The PFK was allosterically activated by both GDP and ADP and inhibited by phosphoenolpyruvate; the addition of activators could partly relieve the inhibition by phosphoenolpyruvate. Furthermore, monovalent cations could enhance the activity, and Na+ was the most efficient one. Considering this kind activation, NaOH was investigated as the neutralizer instead of the traditional neutralizer CaCO3. In the early growth stage, the significant accelerated glucose consumption was achieved in the NaOH case probably for the enhanced activity of Na+-activated PFK. Using NaOH as the neutralizer at pH 6.5, the fermentation time was greatly shortened about 22 h; simultaneously, the glucose consumption rate and the d-lactic acid productivity were increased by 34 and 17%, respectively. This probably contributed to the increased pH and Na+-promoted activity of PFK. Thus, fermentations by S. inulinus using the NaOH neutralizer provide a green and highly efficient d-lactic acid production with easy subsequent purification.

  相似文献   

4.

In this study, the effect of several organic nitrogen sources (namely peptone, meat extract—ME, yeast extract—YE, and corn steep liquor—CSL) on d-lactic acid production by Lactobacillus delbrueckii ssp. delbrueckii has been studied. While lactic acid bacteria (LAB) are well-known for their complex nutritional requirements, organic nitrogen source-related cost can be as high as 38% of total operational costs (OPEX), being its nature and concentration critical factors in the growth and productivity of the selected strain. Corn steep liquor (CSL) has been chosen for its adequacy, on the grounds of the d-lactic acid yield, productivity, and its cost per kilogram of product. Finally, orange peel waste hydrolysate supplemented with 37 g/l CSL has been employed for d-lactic acid production, reaching a final yield of 88% and a productivity of 2.35 g/l h. CSL cost has been estimated at 90.78$/ton of d-lactate.

  相似文献   

5.

l-Lysine is an essential amino acid that can be produced by chemical processes from fossil raw materials, as well as by microbial fermentation, the latter being a more efficient and environmentally friendly procedure. In this work, the production process of l-lysine-HCl is studied using a systematic approach based on modeling and simulation, which supports decision making in the early stage of process design. The study considers two analysis stages: first, the dynamic analysis of the fermentation reactor, where the conversion of sugars from sugarcane molasses to l-lysine with a strain of Corynebacterium glutamicum is carried out. In this stage, the operation mode (either batch or fed batch) and operating conditions of the fermentation reactor are defined to reach the maximum technical criteria. Afterwards, the second analysis stage relates to the industrial production process of l-lysine-HCl, where the fermentation reactor, upstream processing, and downstream processing are included. In this stage, the influence of key parameters on the overall process performance is scrutinized through the evaluation of several technical, economic, and environmental criteria, to determine a profitable and sustainable design of the l-lysine production process. The main results show how the operating conditions, process design, and selection of evaluation criteria can influence in the conceptual design. The best plant design shows maximum product yield (0.31 g l-lysine/g glucose) and productivity (1.99 g/L/h), achieving 26.5% return on investment (ROI) with a payback period (PBP) of 3.8 years, decreasing water and energy consumption, and with a low potential environmental impact (PEI) index.

  相似文献   

6.
Peng  Shengjuan  Cao  Qing  Qin  Yuqi  Li  Xuezhi  Liu  Guodong  Qu  Yinbo 《Applied microbiology and biotechnology》2017,101(9):3627-3636

Efficient deconstruction of lignocellulose is achieved by the synergistic action of various hydrolytic and oxidative enzymes. However, the aldonolactones generated by oxidative enzymes have inhibitory effects on some cellulolytic enzymes. In this work, d-glucono-1,5-lactone was shown to have a much stronger inhibitory effect than d-glucose and d-gluconate on β-glucosidase, a vital enzyme during cellulose degradation. AltA, a secreted enzyme from Penicillium oxalicum, was identified as an aldonolactonase which can catalyze the hydrolysis of d-glucono-1,5-lactone to d-gluconic acid. In the course of lignocellulose saccharification conducted by cellulases from P. oxalicum or Trichoderma reesei, supplementation of AltA was able to relieve the decrease of β-glucosidase activity obviously with a stimulation of glucose yield. This boosting effect disappeared when sodium azide and ethylenediaminetetraacetic acid (EDTA) were added to the saccharification system to inhibit the activities of oxidative enzymes. In summary, we describe the first heterologous expression of a fungal secreted aldonolactonase and its application as an efficient supplement of cellulolytic enzyme system for lignocellulose biodegradation.

  相似文献   

7.
d-Galacturonic acid, the main monomer of pectin, is an attractive substrate for bioconversions, since pectin-rich biomass is abundantly available and pectin is easily hydrolyzed. l-Galactonic acid is an intermediate in the eukaryotic pathway for d-galacturonic acid catabolism, but extracellular accumulation of l-galactonic acid has not been reported. By deleting the gene encoding l-galactonic acid dehydratase (lgd1 or gaaB) in two filamentous fungi, strains were obtained that converted d-galacturonic acid to l-galactonic acid. Both Trichoderma reesei Δlgd1 and Aspergillus niger ΔgaaB strains produced l-galactonate at yields of 0.6 to 0.9 g per g of substrate consumed. Although T. reesei Δlgd1 could produce l-galactonate at pH 5.5, a lower pH was necessary for A. niger ΔgaaB. Provision of a cosubstrate improved the production rate and titer in both strains. Intracellular accumulation of l-galactonate (40 to 70 mg g biomass−1) suggested that export may be limiting. Deletion of the l-galactonate dehydratase from A. niger was found to delay induction of d-galacturonate reductase and overexpression of the reductase improved initial production rates. Deletion of the l-galactonate dehydratase from A. niger also delayed or prevented induction of the putative d-galacturonate transporter An14g04280. In addition, A. niger ΔgaaB produced l-galactonate from polygalacturonate as efficiently as from the monomer.  相似文献   

8.
9.
Li  XinYu  Ma  Jingrui  Xu  Jia  Zhu  DaShuai  Li  Anran  Che  YongZhe  Chen  DongYan  Feng  XiZeng 《Neurochemical research》2017,42(11):3268-3278

Glucocorticoid receptors (GRs) exert actions on the hippocampus that are important for memory formation. There are correlations between vascular dysfunctions and GR-related gene expression. Both vascular dysfunction and GR gene expression decline occur during the ageing process. Therefore, hypotensors, which have effects on improving vascular dysfunction, may be able to ameliorate GR gene expression decline in ageing mice and improve ageing-mediated memory deficits. In this study, we hypothesized that hypotensors could alleviate the decline of GR gene expression and ameliorate age-induced learning and memory deficits in a d-gal-induced ageing mice model. In line with our hypothesis, we found that chronic d-gal treatment decreased GR and DCX expression in the hippocampus, leading to learning and memory deficits. Amlodipine (AM) and puerarin (PU) treatment improved GR gene expression decline in the hippocampus and ameliorated the learning and memory deficits of d-gal-treated mice. These changes correlated with enhanced DCX expression and brain-derived neurotrophic factor (BDNF) expression in the hippocampus. Furthermore, PU treatment conveyed better effects than AM treatment, but combination therapy did not enhance the effects on improving GR expression. However, we did not find evidence of these changes in non-d-gal-treated mice that lacked GR gene expression decline. These results suggest that AM and PU could improve d-gal-induced behavioural deficits in correlation with GR gene expression.

  相似文献   

10.

A type D ferulic acid esterase (FAE) was identified in the culture supernatant of Streptomyces werraensis, purified, sequenced, and heterologously produced in E. coli BL21(DE3)Star by co-expressing chaperones groES-groEL (69 U L−1). The unique enzyme with a mass of about 48 kDa showed no similarity to other FAEs, and only moderate homology (78.5%) to a Streptomycete β-xylosidase. The purified reSwFAED exhibited a temperature optimum of 40 °C, a pH optimum in the range from pH seven to eight and a clear preference for bulky natural substrates, such as 5-O-trans-feruloyl-l-arabinofuranose (FA) and β-d-xylopyranosyl-(1→2)-5-O-trans-feruloyl-l-arabinofuranose (FAX), compared to the synthetic standard substrate methyl ferulate. Treatment of wheat dough with as little as 0.03 U or 0.3 U kg−1 reSwFAED activity resulted in a significant increase of the bun volume (8.0 or 9.7%, resp.) after baking when combined with polysaccharide-degrading enzymes from Aspergillus. For the first time, the long-standing, but rarely proven positive effect of a FAE in baking was confirmed.

  相似文献   

11.
Xu  Jing  Huai  Yaping  Meng  Nan  Dong  Yanhong  Liu  Zhijuan  Qi  Qianqian  Hu  Ming  Fan  Mingyue  Jin  Wei  Lv  Peiyuan 《Neurochemical research》2017,42(10):2968-2981

l-3-n-Butylphthalide (l-NBP) exerts neuroprotective effects in animal models of cerebral ischemia, but its potential benefits in repeated cerebral ischemia–reperfusion (RCIR) injury remain unknown. We investigated the effect of l-NBP on cognitive impairment induced by RCIR in mice. Male C57Bl/6 mice received sham surgery or bilateral common carotid artery occlusion (3 times, 20 min each) and were orally administered preoperative l-NBP (30 mg/kg/day, 7 days), postoperative l-NBP (30 or 60 mg/kg/day, 28 days) or postoperative vehicle (28 days). Learning and memory were assessed by the Morris water maze task and step-down passive avoidance test. Nissl staining was used to identify pathologic changes in the hippocampal CA1 region. The expressions of proteins associated with signaling, apoptosis and autophagy were assessed by quantitative PCR and western blot. RCIR induced deficits in learning and memory that were alleviated by preoperative or postoperative l-NBP administration. Pathologic lesions in the hippocampal CA1 region induced by RCIR were less severe in mice treated with l-NBP. Preoperative or postoperative l-NBP administration in mice receiving RCIR promoted hippocampal expression of phospho-Akt and phospho-mTOR (suggesting activation of Akt/mTOR signaling), increased the Bcl-2/Bax ratio (indicating suppression of apoptosis) and reduced the LC3-II/LC3-I ratio (implying inhibition of autophagy). Preoperative or postoperative l-NBP administration also depressed hippocampal levels of beclin-1 mRNA (indicating suppression of autophagy). These findings suggest that the effect of l-NBP to alleviate learning and memory deficits in mice following RCIR may involve activation of Akt/mTOR signaling and regulation of the expressions of proteins related to apoptosis and autophagy.

  相似文献   

12.
Production of d-xylose and l-arabinose isomerases by lactic acid bacteria was greatly promoted by the addition of manganese ions in cultural medium. Effective concentration of the ions was 5 × 1O-3 m. Ferrous ions were also effective for the production of d-xylose isomerase and cobaltous ions were somewhat effective for the production of l-arabinose isomerase. Zinc and cadmium ions inhibited bacterial growth. It was possible to increase the production of isomerase by changing MnSO4 concentration to 5× 10-3 m (0.l1 %) in place of 0.001 per cent in the normal medium.

Column chromatographic procedures for the purification of pentose isomerases were carried out. Cation and anion exchange resins were not suitable because of their low exchange capacities and instability of the enzyme at acidic pH range. But the isomerases were successfully purified by DEAE-cellulose column chromatography with high recovery (85~90%). Using a Tris buffer, KCl concentration was increased in gradient. d-Xylose isomerase was eluted at pH 7.0 at 0~0.2 m KCl, and l-arabinose isomerase at pH 8.0 at 0~0.4 m KCl. The purified isomerases, d-xylose isomerase and l-arabinose isomerase, both required manganese ions specifically for their activities.

D-Xylose isomerase and l-arabinose isomerase are different enzymes which can be separated from each other with acetone fractionation at pH 4.8~5.0, heat treatment or chromatography on a colnmn of DEAE-cellulose. In DEAE-cellulose chromatography with a linear gradient elution method, d-xylose isomerase is recovered in the first peak at pH 7.0 (Tris bnffer) with 0~0.2 m KCl, and l-arabinose isomerase is eluted in the second peak at pH 8.0 (Tris buffer) with a larger ionic strength.  相似文献   

13.

The D-amino acid amidase-producing bacterium was isolated from soil samples using an enrichment culture technique in medium broth containing D-phenylalanine amide as a sole source of nitrogen. The strain exhibiting the strongest activity was identified as Delftia acidovorans strain 16. This strain produced intracellular D-amino acid amidase constitutively. The enzyme was purified about 380-fold to homogeneity and its molecular mass was estimated to be about 50 kDa, on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme was active preferentially toward D-amino acid amides rather than their L-counterparts. It exhibited strong amino acid amidase activity toward aromatic amino acid amides including D-phenylalanine amide, D-tryptophan amide and D-tyrosine amide, yet it was not specifically active toward low-molecular-weight D-amino acid amides such as D-alanine amide, L-alanine amide and L-serine amide. Moreover, it was not specifically active toward oligopeptides. The enzyme showed maximum activity at 40°C and pH 8.5 and appeared to be very stable, with 92.5% remaining activity after the reaction was performed at 45°C for 30 min. However, it was mostly inactivated in the presence of phenylmethanesulfonyl fluoride or Cd2+, Ag+, Zn2+, Hg2+ and As3+ . The NH2 terminal and internal amino acid sequences of the enzyme were determined; and the gene was cloned and sequenced. The enzyme gene damA encodes a 466-amino-acid protein (molecular mass 49,860.46 Da); and the deduced amino acid sequence exhibits homology to the D-amino acid amidase from Variovorax paradoxus (67.9% identity), the amidotransferase A subunit from Burkholderia fungorum (50% identity) and other enantioselective amidases.

  相似文献   

14.
Ding  Qiang  Luo  Qiuling  Zhou  Jie  Chen  Xiulai  Liu  Liming 《Applied microbiology and biotechnology》2018,102(20):8739-8751

Microbial l-malate production from renewable feedstock is a promising alternative to petroleum-based chemical synthesis. However, high l-malate production of Aspergillus oryzae was achieved to date using organic nitrogen, with inorganic nitrogen still unable to meet industrial applications. In the current study, we constructed a screening system and nitrogen supply strategy to improve l-malate production with ammonium sulphate [(NH4)2SO4] as the sole nitrogen source. First, we generated and identified a high-producing mutant FMME218-37, which stably boosted l-malate production from 30.73 to 78.12 g/L, using a combined screening system with morphological characteristics. Then, by analyzing the fermentation parameters and physiological characteristics, we further speculated the key factor was the unbalance of carbon and nitrogen absorption. Finally, the titer and productivity of l-malate was increased to 95.2 g/L and 0.57 g/(L h) by regulating the nitrogen supply module to balance carbon and nitrogen absorption, which represented the highest level in A. oryzae with (NH4)2SO4 as nitrogen source achieved to date. Moreover, our findings using a low-cost substrate may lead to building an economical cell factory of A. oryzae for l-malate production.

  相似文献   

15.

We successfully expressed the l-aspartate oxidase homolog gene (accession no: OCC_06611) of Thermococcus litoralis DSM 5473 in the soluble fraction of Escherichia coli BL21 (DE3) using a pET21b vector with 6X His tag at its C-terminus. The gene product (Tl-LASPO) showed l-aspartate oxidase activity in the presence of FAD in vitro, and this report is the first that details an l-aspartate oxidase derived from a Thermococcus species. The homologs of Tl-LASPO existed mainly in archaea, especially in the genus of Thermococcus, Pyrococcus, Sulfolobus, and Halobacteria. The quaternary structure of Tl-LASPO was homotrimeric with a subunit molecular mass of 52 kDa. The enzyme activity of Tl-LASPO increased with temperature up to 70 °C. Tl-LASPO was active from pH 6.0 to 9.0, and its highest activity was at pH 8.0. Tl-LASPO was stable at 80 °C for 1 h. The highest k cat/K m value was observed in assays at 70 °C. Tl-LASPO was highly specific for l-aspartic acid. Tl-LASPO utilized fumaric acid, 2,6-dichlorophenolindophenol, and ferricyanide in addition to FAD as a cofactor under anaerobic conditions. The absorption spectrum of holo-Tl-LASPO exhibited maxima at 380 and 450 nm. The FAD dissociation constant, K d, of the FAD-Tl-LASPO complex was determined to be 5.9 × 10−9 M.

  相似文献   

16.

MeBglD2, a metagenomic β-glycosidase, is stimulated by various saccharides, including d-glucose, d-xylose, and maltose, and it promotes the enzymatic saccharification of plant biomass. To improve the thermostability of MeBglD2, its X-ray crystal structure was analyzed, and the amino acid residues responsible for its thermostability were identified using the structural information. Mutations in His8, Asn59, and Gly295 improved the thermostability of MeBglD2, and the combination of these mutations resulted in the highest thermostability. Compared with wild-type MeBglD2, thermostable MeBglD2 mutants promoted plant biomass saccharification using Trichoderma reesei cellulase. In addition to thermostability, the thermostable mutants exhibited higher tolerance to ethanol, dimethyl sulfoxide, and copper ions, indicating that the MeBglD2 mutants generated in this study were improved in their tolerance to not only high temperature but also to organic solvents and metal ions.

  相似文献   

17.

Dendritic nanomaterials are unique due to their flexible architectures. So far, many structural analogues of dendritic poly(l-lysine) have been developed. Since its monomer unit is a biodegradable amino acid, poly(l-lysine) derived nanocarriers are biocompatible and safe. In this overview, structural diversity of dendritic poly(l-lysine) scaffold and patents filed on them so far are described. Furthermore, biopharmaceutical properties and therapeutic activity modulations observed from their drug delivery applications are highlighted. Poly(l-lysine) based dendriplexes, dendrosomes and dendrisomes remain novel and nearly unexplored. Since structural modifications can control the biopharmaceutical properties of aforementioned scaffold, achieving programmed drug delivery is possible. Many such structures have demonstrated not only excellent carrier characteristics but few intrinsic therapeutic activities also. A poly(l-lysine) dendrimer product VivaGel is currently under consideration in a new drug application category of various regulatory bodies. As dendritic poly(l-lysine) scaffold is biocompatible unlike many other nanocarriers, its clinical utilization would prove considerably beneficial.

  相似文献   

18.
During the course of studies on the oxidative metabolism of d-sorbitol by acetic acid bacteria, it was found that d-sorbitol was almost quantitatively converted to 5-keto-d-fructose via l-sorbose by a certain strain of Gluconobacter suboxydans. In addition to 5-keto-d-fructose, three γ-pyrone compounds, kojic acid, 5-oxymaltol, and 3-oxykojic acid, 2-keto-l-gulonate, and several organic acids such as succinic, glycolic, and glyceric acids were confirmed in the culture filtrate of this bacterium.
  • The most suitable carbon source for 5-ketofructose fermentation by Gluconobacter suboxydans Strain 1 was confirmed to be d-sorbitol or l-sorbose using growing and resting cells. d-Fructose had little effect on the formation of this dicarbonylhexose.

  • The optimal pH for the formation from l-sorbose by intact cells was found to be at 4.2.

  • The activity of the pentose phosphate cycle in the resting cells was calculated as 13~17 μatoms/hr/mg of dry cells by the use of the manometric techniques.

  • There was no strain tested so far which could accumulate a large amount of 5- keto-d-fructose from d-sorbitol except this bacterium.

  • The experimental results shown in this paper makes the prediction that a certain dehydrogenating system of l-sorbose is functional in the organism, and the metabolic pathways of d-sorbitol via l-sorbose and 5-keto-d-fructose is proposed.

  相似文献   

19.
  1. The 1C conformation was estimated for α-d-galactopyranosiduronic acid moiety of pectic acid in the permethylated derivative dissolved in 1 n NaOD-D2O and in the peracetylated derivative dissolved in dimethyl sulfoxide-d6, and the C1 conformation was estimated for some derivatives of d-galactopyranuronic acid in chloroform-d by NMR spectroscopy.

  2. Random conformation of the whole macromolecule was estimated for pectic acid in water on the basis of no appearance of any induced Cotton effects in the 200 ~ 700 mμ region in the ORD spectra of pectic acid-anionic dye complexes.

  3. The conformation was supported by the fact that the rate of periodate oxidation of pectic acid at 5° was slightly decreased in comparison with that of amylase in 7 m urea solution.

  相似文献   

20.
A water-soluble polysaccharide isolated from Dalbergia sissoo Roxb. leaves was purified and major homogeneous fraction obtained by GPC. Complete hydrolysis of the polysaccharide followed by paper chromatography and GLC analysis indicated the presence of l-rhamnose, d-glucuronic acid, d-galactose and d-glucose in molar ratio of 1:1:2:2.33, respectively. Partial hydrolysis of the polysaccharide furnished one tri-[I], one hepta-[II] and one nona-[III] saccharides. Hydrolysis of the oligosaccharide I, II and III followed by GLC analysis furnished d-glucose and l-rhamnose (2:1); l-rhamnose, d-galactose and d-glucuronic acid (1:3:3); and l-rhamnose, d-galactose and d-glucose (1:3:5), respectively. Methylation analysis and periodate oxidation of the oligosaccharide I indicated the presence of two non reducing glucose units linked to rhamnose by 1→2 and 1→4 linkages, respectively. Oligosaccharide II is a branched molecule with a main chain consisting of 1,3-linked β-d-galactopyranosyl (2 mol), 1,3,4 linked α-l-rhamnopyranosyl (1 mol) and 1,4,6 linked β-d-galactopyranosyl unit (1 mol) and non reducing β-d-glucuronic acid at the end along with side chains of β-d-glucouronopyranosyl units (2 mol). Oligosaccharide III is also a branched molecule with a main chain consisting of 1,3,4 linked α-l-rhamnopyranosyl (1 mol), 1,2,4 linked β-d-glucopyranosyl (1 mol), 1,3 and 1,4 linked β-d-galactopyranosyl (2 and 1 mol, respectively) having β-d-glucopyranosyl as a non reducing end.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号