首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

2.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

3.
Accurate indicators of fecal pollution are needed in order to minimize public health risks associated with wastewater contamination in recreational waters. However, the bacterial indicators currently used for monitoring water quality do not correlate with the presence of pathogens. Here we demonstrate that the plant pathogen Pepper mild mottle virus (PMMoV) is widespread and abundant in wastewater from the United States, suggesting the utility of this virus as an indicator of human fecal pollution. Quantitative PCR was used to determine the abundance of PMMoV in raw sewage, treated wastewater, seawater exposed to wastewater, and fecal samples and/or intestinal homogenates from a wide variety of animals. PMMoV was present in all wastewater samples at concentrations greater than 1 million copies per milliliter of raw sewage. Despite the ubiquity of PMMoV in human feces, this virus was not detected in the majority of animal fecal samples tested, with the exception of chicken and seagull samples. PMMoV was detected in four out of six seawater samples collected near point sources of secondary treated wastewater off southeastern Florida, where it co-occurred with several other pathogens and indicators of fecal pollution. Since PMMoV was not found in nonpolluted seawater samples and could be detected in surface seawater for approximately 1 week after its initial introduction, the presence of PMMoV in the marine environment reflects a recent contamination event. Together, these data demonstrate that PMMoV is a promising new indicator of fecal pollution in coastal environments.Existing wastewater treatment practices are not always effective at removing the large number of pathogens (bacteria, protists, and viruses) present in human feces (17, 42, 47-49, 51). Therefore, wastewater discharges into the environment can have a negative impact on human health. Recreational waters throughout the United States are monitored for the presence of fecal pollution as a means of limiting public exposure to pathogens in areas impacted by wastewater discharges (44). The presence of pathogenic viruses in aquatic environments is an important parameter to consider in the evaluation of water quality. However, the bacterial indicators currently used to detect fecal contamination, such as fecal coliforms and enterococci, often do not correlate with the presence of feces-associated viruses and other pathogens (5, 10, 26, 33, 37, 51). In response, several researchers have proposed the use of viral indicators as a more effective method for monitoring wastewater contamination and the associated risks to public health (11, 14, 31).To date, the majority of the proposed viral indicators of fecal pollution are enteric viruses transmitted via the fecal-oral route (4). Enteric viruses present in raw sewage (including members of the families Adenoviridae, Caliciviridae, Picornaviridae, and Reoviridae and of the genus Anellovirus) have been used in several previous studies to identify fecal pollution in the environment (7, 8, 11, 12, 13, 18, 19, 27, 28, 32-36, 38, 50, 51). Of the enteric viruses that have been used as indicators, only the adenoviruses were ubiquitously found in raw sewage samples collected throughout the United States (41). Picobirnaviruses and Torque teno virus are abundant in raw sewage from some regions and thus have also been proposed as indicator viruses (15, 41). However, one potential problem with the use of human viruses as indicators is that their abundance in wastewater depends on the degree of infection and shedding in the human population at any given time.In addition to viruses infecting humans, other viruses shed in feces may be useful for indicating wastewater pollution. The plant pathogen Pepper mild mottle virus (PMMoV) was the most abundant virus found in a metagenomic survey of RNA viruses from human feces (52). PMMoV is a positive-sense, single-stranded RNA virus that belongs to the Tobamovirus genus and infects hot, bell, and ornamental peppers (Capsicum spp.) (9). The nonenveloped, rod-shaped PMMoV virions are extremely stable (9) and have been demonstrated to retain their infectivity for plants after passage through the human gut (52). PMMoV originates from processed pepper products (e.g., hot sauce and curry) and is excreted in human feces at concentrations of 1 million to 1 billion viruses per g (dry weight) (52). Since the presence of PMMoV in human feces is dietary in origin, this plant pathogen may be more abundant in the healthy human population than viruses that cause human disease.This study analyzed the presence of PMMoV in raw sewage and treated wastewater samples collected from wastewater treatment facilities throughout the coastal United States. To determine if PMMoV is a human-specific indicator useful for tracking the source of fecal pollution, fecal samples from numerous animals were tested for this virus. Finally, the presence of PMMoV in marine environments exposed to wastewater was determined and compared to that of other microbial indicators. The results of this work demonstrate that PMMoV is a promising indicator of fecal pollution.  相似文献   

4.
5.
Methanogens are of great importance in carbon cycling and alternative energy production, but quantitation with culture-based methods is time-consuming and biased against methanogen groups that are difficult to cultivate in a laboratory. For these reasons, methanogens are typically studied through culture-independent molecular techniques. We developed a SYBR green I quantitative PCR (qPCR) assay to quantify total numbers of methyl coenzyme M reductase α-subunit (mcrA) genes. TaqMan probes were also designed to target nine different phylogenetic groups of methanogens in qPCR assays. Total mcrA and mcrA levels of different methanogen phylogenetic groups were determined from six samples: four samples from anaerobic digesters used to treat either primarily cow or pig manure and two aliquots from an acidic peat sample stored at 4°C or 20°C. Only members of the Methanosaetaceae, Methanosarcina, Methanobacteriaceae, and Methanocorpusculaceae and Fen cluster were detected in the environmental samples. The three samples obtained from cow manure digesters were dominated by members of the genus Methanosarcina, whereas the sample from the pig manure digester contained detectable levels of only members of the Methanobacteriaceae. The acidic peat samples were dominated by both Methanosarcina spp. and members of the Fen cluster. In two of the manure digester samples only one methanogen group was detected, but in both of the acidic peat samples and two of the manure digester samples, multiple methanogen groups were detected. The TaqMan qPCR assays were successfully able to determine the environmental abundance of different phylogenetic groups of methanogens, including several groups with few or no cultivated members.Methanogens are integral to carbon cycling, catalyzing the production of methane and carbon dioxide, both potent greenhouse gases, during organic matter degradation in anaerobic soils and sediment (8). Methanogens are widespread in anaerobic environments, including tundra (36), freshwater lake and wetland sediments (9, 12), estuarine and marine sediments (2), acidic peatlands (4, 14), rice field soil (10, 16), animal guts (41), landfills (30), and anaerobic digesters treating animal manure (1), food processing wastewater (27), and municipal wastewater and solid waste (37, 57). Methane produced in anaerobic digesters may be captured and used for energy production, thus offsetting some or all of the cost of operation and reducing the global warming potential of methane release to the atmosphere.Methanogens are difficult to study through culture-based methods, and therefore many researchers have instead used culture-independent techniques to study methanogen populations. The 16S rRNA gene is the most widely used target for gene surveys, and a number of primers and probes have been developed to target methanogen groups (9, 11, 31, 36, 38, 40, 46, 48, 57). To eliminate potential problems with nonspecific amplification, some researchers have developed primers for the gene sequence of the α-subunit of the methyl coenzyme M reductase (mcrA) (17, 30, 49). The Mcr is exclusive to the methanogens with the exception of the methane-oxidizing Archaea (18) and shows mostly congruent phylogeny to the 16S rRNA gene, allowing mcrA analysis to be used in conjunction with, or independently of, that of the 16S rRNA gene (3, 30, 49). A number of researchers have examined methanogen communities with mcrA and have found uncultured clades quite different in sequence from cultured methanogen representatives (9, 10, 12, 14, 17, 22, 28, 47).Previous studies described methanogen communities by quantitation of different clades through the use of rRNA-targeted or rRNA gene-targeted probes with techniques such as dot blot hybridization (1, 27, 37, 38, 48) and fluorescent in situ hybridization (11, 40, 44, 57). Real-time quantitative PCR (qPCR) is an alternate technique capable of determining the copy number of a particular gene present in the DNA extracted from an environmental sample. Only a few studies have used qPCR to quantitatively examine different clades within methanogen communities, and most of these studies have exclusively targeted the 16S rRNA gene (19, 41, 42, 54-56). Far fewer researchers have used qPCR to quantify methanogen clades by targeting the mcrA (21, 34, 45), and these studies were limited to only a few phylogenetic groups.In this paper we present a methodology for determining methanogen gene copy numbers through the use of qPCR targeting the mcrA. Methanogens were quantified in total using methanogen-specific primers in SYBR green assays and also as members of nine different phylogenetic groups using TaqMan probes targeting specific subsets of methanogens.  相似文献   

6.
Human fecal matter contains a large number of viruses, and current bacterial indicators used for monitoring water quality do not correlate with the presence of pathogenic viruses. Adenoviruses and enteroviruses have often been used to identify fecal pollution in the environment; however, other viruses shed in fecal matter may more accurately detect fecal pollution. The purpose of this study was to develop a baseline understanding of the types of viruses found in raw sewage. PCR was used to detect adenoviruses, enteroviruses, hepatitis B viruses, herpesviruses, morbilliviruses, noroviruses, papillomaviruses, picobirnaviruses, reoviruses, and rotaviruses in raw sewage collected throughout the United States. Adenoviruses and picobirnaviruses were detected in 100% of raw sewage samples and 25% and 33% of final effluent samples, respectively. Enteroviruses and noroviruses were detected in 75% and 58% of raw sewage samples, respectively, and both viral groups were found in 8% of final effluent samples. This study showed that adenoviruses, enteroviruses, noroviruses, and picobirnaviruses are widespread in raw sewage. Since adenoviruses and picobirnaviruses were detected in 100% of raw sewage samples, they are potential markers of fecal contamination. Additionally, this research uncovered previously unknown sequence diversity in human picobirnaviruses. This baseline understanding of viruses in raw sewage will enable educated decisions to be made regarding the use of different viruses in water quality assessments.Millions of viruses and bacteria are excreted in human fecal matter (5, 17, 82), and current methods of sewage treatment do not always effectively remove these organisms (74, 76-78). The majority of treated wastewater, as well as untreated sewage, drains into the marine environment (1) and has the potential to threaten environmental (e.g., nutrients and chemicals) (45) and public (e.g., pathogen exposure via swimming and seafood consumption) (1, 24, 28, 29, 33, 44, 57, 63) health. Currently, the U.S. Environmental Protection Agency (EPA) mandates the use of bacterial indicators such as fecal coliforms and enterococci to assess water quality (75). Although monitoring of these bacteria is simple and inexpensive, it has been shown that fecal-associated bacteria are not ideal indicators of fecal pollution.Since fecal-associated bacteria are able to live in sediments in the absence of fecal pollution (18, 32, 55), their resuspension into the water column can result in false-positive results and mask correlations between their concentrations and the extent of recent fecal pollution. Another unfavorable characteristic of current bacterial indicators is their inability to predict or correlate with the presence of pathogenic viruses (25, 40, 41, 64, 80). Human-pathogenic viruses associated with feces are generally more robust than enteric bacteria and are not as easily eliminated by current methods of wastewater treatment (43, 80). For example, adenoviruses are more resilient to tertiary wastewater treatment and UV disinfection than are bacterial indicators of fecal pollution (74). Since bacterial indicators cannot accurately depict the risks to human health from fecal pollution, several studies have proposed the use of a viral indicator of wastewater contamination (35, 41, 61).While it is impractical to monitor the presence of all viral pathogens related to wastewater pollution, the development of an accurate viral indicator of sewage contamination is needed for enhanced water quality monitoring. Enteric viruses (including viruses belonging to the families Adenoviridae, Caliciviridae, Picornaviridae, and Reoviridae) are transmitted via the fecal-oral route and are known to be abundant in raw sewage. These viruses have been used to identify fecal pollution in coastal environments throughout the world (27, 35, 39, 40, 48, 50, 56, 57, 63, 64, 67-69, 71, 80). To determine which viruses are effective indicators of fecal pollution, it is first necessary to establish a broad, baseline understanding of the many diverse groups of eukaryotic viruses in raw sewage. Several studies have identified adenoviruses, noroviruses, reoviruses, rotaviruses, and other enteroviruses (e.g., polioviruses, coxsackie viruses, and echoviruses) in raw sewage in Australia, Europe, and South Africa (30, 47, 58, 76-78). However, no broad baseline data on the presence of eukaryotic viruses in raw sewage in the United States currently exist.This study determined the presence of 10 viral groups (adenoviruses, enteroviruses, hepatitis B viruses, herpesviruses, morbilliviruses, noroviruses, papillomaviruses, picobirnaviruses, reoviruses, and rotaviruses) in raw sewage samples collected throughout the United States. All viral groups that were detected in raw sewage were then examined further to determine if they were also present in final treated wastewater effluent. These 10 viral groups were chosen because of their potential to be transmitted via the fecal-oral route, suggesting that they might be found in raw sewage. Many of these viruses (excluding adenoviruses, enteroviruses, noroviruses, reoviruses, and rotaviruses) have not been studied in sewage despite their likely presence. Picobirnaviruses have been detected in individual fecal samples (12, 70, 79, 82); however, their presence has never been analyzed in collective waste, nor have they been proposed to be potential markers of fecal pollution. This study identified potential viral indicators of fecal pollution and will have important applications to water quality monitoring programs throughout the country.  相似文献   

7.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

8.
The flux of terrestrially derived pathogens to coastal waters presents a significant health risk to marine wildlife, as well as to humans who utilize the nearshore for recreation and seafood harvest. Anthropogenic changes in natural habitats may result in increased transmission of zoonotic pathogens to coastal waters. The objective of our work was to evaluate how human-caused alterations of coastal landscapes in California affect the transport of Toxoplasma gondii to estuarine waters. Toxoplasma gondii is a protozoan parasite that is excreted in the feces of infected felids and is thought to reach coastal waters in contaminated runoff. This zoonotic pathogen causes waterborne toxoplasmosis in humans and is a significant cause of death in threatened California sea otters. Surrogate particles that mimic the behavior of T. gondii oocysts in water were released in transport studies to evaluate if the loss of estuarine wetlands is contributing to an increased flux of oocysts into coastal waters. Compared to vegetated sites, more surrogates were recovered from unvegetated mudflat habitats, which represent degraded wetlands. Specifically, in Elkhorn Slough, where a large proportion of otters are infected with T. gondii, erosion of 36% of vegetated wetlands to mudflats may increase the flux of oocysts by more than 2 orders of magnitude. Total degradation of wetlands may result in increased Toxoplasma transport of 6 orders of magnitude or more. Destruction of wetland habitats along central coastal California may thus facilitate pathogen pollution in coastal waters with detrimental health impacts to wildlife and humans.Estuaries are recognized as being critically endangered worldwide. Pollution of estuarine waters is a significant threat to the health of aquatic life, as well as to humans who depend on coastal habitats (23). Contamination of nearshore waters with terrestrially derived, zoonotic pathogens has received little attention in the field of marine water pollution, which has primarily focused on chemical and nutrient pollutants (22, 42, 46, 55). Yet, studies have documented the presence of fecal pathogens from terrestrial animals in coastal waters and filter-feeding shellfish (7, 37, 48), as well as infections and deaths in aquatic wildlife and humans who become exposed through recreation activities or seafood (4, 18, 39). The zoonotic parasite Toxoplasma gondii is emerging as an important waterborne pathogen in both human and marine wildlife populations (2, 3, 6, 11, 15, 38). Consumption of raw oysters, clams, or mussels has recently been determined to be a risk factor for human exposure to T. gondii (24). Moreover, this parasite is an important cause of death in threatened Southern sea otters (Enhydra lutris nereis) (10, 29). Sea otter infection appears most likely to result from ingestion of environmentally resistant T. gondii oocysts that reach coastal waters in contaminated freshwater runoff (35, 36). These oocysts are shed in the feces of infected wild and domestic felids, with an individual cat capable of shedding up to 1 billion oocysts over several days postinfection (12).Elkhorn Slough, within Monterey Bay in California, is one of the high-risk sites for sea otter infection with T. gondii, with seroprevalence rates of 79% in otters sampled in this area (35). To date, the reasons for the high sea otter prevalence of infections with T. gondii at this site remain unknown. This estuarine habitat has been extensively altered by human activities and is listed as an impaired body of water by the State of California (9). Specifically, extensive degradation has been observed in the slough, with over one-third of vegetated wetlands converted to mudflats due to erosion (49). While the effect of this landscape alteration on the transport of waterborne pathogens is not currently known, such degradation may facilitate contamination of nearshore waters with T. gondii.Wetland habitats provide valuable ecosystem services, including improvement of effluent water quality characteristics through removal of a variety of pollutants (28, 50, 57). Artificially constructed wetlands are now used globally in water treatment facilities to remove nutrients, chemical pollutants, and fecal pathogens from contaminated waters before discharge into receiving water bodies (8, 17, 21, 26, 27). However, compared with freshwater and constructed wetlands, significantly less research has focused on the effects of natural, estuarine wetlands on water quality. In the few studies that investigated the impact of saltwater marshes on marine water quality, these habitats were shown to reduce concentrations of chemicals and nutrients that reach coastal waters in contaminated overland runoff (5, 51). In addition, the percentage of watershed-impervious surface coverage and reduction of natural coastal habitats due to anthropogenic changes has been associated with increased coastal water pollution (33, 34). Despite previous research suggesting a link between wetland degradation and coastal pathogen pollution (5, 33, 34, 51), the role estuarine wetlands play in the transport of terrestrial pathogens from land to sea has not been previously investigated.The overall goal of our research was to evaluate the effect of coastal wetland degradation on contamination of estuarine and coastal waters with terrestrially derived, zoonotic pathogens. Specifically, the objective of this study was to measure T. gondii oocyst transport through vegetated estuarine wetlands and nonvegetated mudflats to quantify the effect of vegetation loss on the flux of this zoonotic pathogen to coastal waters. Due to the biohazard risks associated with the release of environmentally resistant oocysts, experiments used previously validated surrogate microspheres and a specially designed flume that was deployed in vegetated and mudflat (nonvegetated) estuarine wetland habitats. The flume-in-field study design allowed for replication of experiments using specific hydrological parameters while conducting the study within a natural estuarine environment with in situ vegetation, substrate, and water. The two autofluorescent microspheres used in this study have similar physical and surface chemistry properties to T. gondii oocysts and have been previously evaluated as surrogate particles for this protozoan parasite (44). Our results provide novel insights into the consequences of changes in coastal habitat on the ecology of zoonotic infectious disease organisms in coastal marine ecosystems.  相似文献   

9.
10.
11.
Adhesive pili on the surface of the serotype M1 Streptococcus pyogenes strain SF370 are composed of a major backbone subunit (Spy0128) and two minor subunits (Spy0125 and Spy0130), joined covalently by a pilin polymerase (Spy0129). Previous studies using recombinant proteins showed that both minor subunits bind to human pharyngeal (Detroit) cells (A. G. Manetti et al., Mol. Microbiol. 64:968-983, 2007), suggesting both may act as pilus-presented adhesins. While confirming these binding properties, studies described here indicate that Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role as a wall linker. Pili were localized predominantly to cell wall fractions of the wild-type S. pyogenes parent strain and a spy0125 deletion mutant. In contrast, they were found almost exclusively in culture supernatants in both spy0130 and srtA deletion mutants, indicating that the housekeeping sortase (SrtA) attaches pili to the cell wall by using Spy0130 as a linker protein. Adhesion assays with antisera specific for individual subunits showed that only anti-rSpy0125 serum inhibited adhesion of wild-type S. pyogenes to human keratinocytes and tonsil epithelium to a significant extent. Spy0125 was localized to the tip of pili, based on a combination of mutant analysis and liquid chromatography-tandem mass spectrometry analysis of purified pili. Assays comparing parent and mutant strains confirmed its role as the adhesin. Unexpectedly, apparent spontaneous cleavage of a labile, proline-rich (8 of 14 residues) sequence separating the N-terminal ∼1/3 and C-terminal ∼2/3 of Spy0125 leads to loss of the N-terminal region, but analysis of internal spy0125 deletion mutants confirmed that this has no significant effect on adhesion.The group A Streptococcus (S. pyogenes) is an exclusively human pathogen that commonly colonizes either the pharynx or skin, where local spread can give rise to various inflammatory conditions such as pharyngitis, tonsillitis, sinusitis, or erysipelas. Although often mild and self-limiting, GAS infections are occasionally very severe and sometimes lead to life-threatening diseases, such as necrotizing fasciitis or streptococcal toxic shock syndrome. A wide variety of cell surface components and extracellular products have been shown or suggested to play important roles in S. pyogenes virulence, including cell surface pili (1, 6, 32). Pili expressed by the serotype M1 S. pyogenes strain SF370 mediate specific adhesion to intact human tonsil epithelia and to primary human keratinocytes, as well as cultured keratinocyte-derived HaCaT cells, but not to Hep-2 or A549 cells (1). They also contribute to adhesion to a human pharyngeal cell line (Detroit cells) and to biofilm formation (29).Over the past 5 years, pili have been discovered on an increasing number of important Gram-positive bacterial pathogens, including Bacillus cereus (4), Bacillus anthracis (4, 5), Corynebacterium diphtheriae (13, 14, 19, 26, 27, 44, 46, 47), Streptococcus agalactiae (7, 23, 38), and Streptococcus pneumoniae (2, 3, 24, 25, 34), as well as S. pyogenes (1, 29, 32). All these species produce pili that are composed of a single major subunit plus either one or two minor subunits. During assembly, the individual subunits are covalently linked to each other via intermolecular isopeptide bonds, catalyzed by specialized membrane-associated transpeptidases that may be described as pilin polymerases (4, 7, 25, 41, 44, 46). These are related to the classical housekeeping sortase (usually, but not always, designated SrtA) that is responsible for anchoring many proteins to Gram-positive bacterial cell walls (30, 31, 33). The C-terminal ends of sortase target proteins include a cell wall sorting (CWS) motif consisting, in most cases, of Leu-Pro-X-Thr-Gly (LPXTG, where X can be any amino acid) (11, 40). Sortases cleave this substrate between the Thr and Gly residues and produce an intermolecular isopeptide bond linking the Thr to a free amino group provided by a specific target. In attaching proteins to the cell wall, the target amino group is provided by the lipid II peptidoglycan precursor (30, 36, 40). In joining pilus subunits, the target is the ɛ-amino group in the side chain of a specific Lys residue in the second subunit (14, 18, 19). Current models of pilus biogenesis envisage repeated transpeptidation reactions adding additional subunits to the base of the growing pilus, until the terminal subunit is eventually linked covalently via an intermolecular isopeptide bond to the cell wall (28, 41, 45).The major subunit (sometimes called the backbone or shaft subunit) extends along the length of the pilus and appears to play a structural role, while minor subunits have been detected either at the tip, the base, and/or at occasional intervals along the shaft, depending on the species (4, 23, 24, 32, 47). In S. pneumoniae and S. agalactiae one of the minor subunits acts as an adhesin, while the second appears to act as a linker between the base of the assembled pilus and the cell wall (7, 15, 22, 34, 35). It was originally suggested that both minor subunits of C. diphtheriae pili could act as adhesins (27). However, recent data showed one of these has a wall linker role (26, 44) and may therefore not function as an adhesin.S. pyogenes strain SF370 pili are composed of a major (backbone) subunit, termed Spy0128, plus two minor subunits, called Spy0125 and Spy0130 (1, 32). All three are required for efficient adhesion to target cells (1). Studies employing purified recombinant proteins have shown that both of the minor subunits, but not the major subunit, bind to Detroit cells (29), suggesting both might act as pilus-presented adhesins. Here we report studies employing a combination of recombinant proteins, specific antisera, and allelic replacement mutants which show that only Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role in linking pili to the cell wall.  相似文献   

12.
Newly designed primers for [Fe-Fe]-hydrogenases indicated that (i) fermenters, acetogens, and undefined species in a fen harbor hitherto unknown hydrogenases and (ii) Clostridium- and Thermosinus-related primary fermenters, as well as secondary fermenters related to sulfate or iron reducers might be responsible for hydrogen production in the fen. Comparative analysis of [Fe-Fe]-hydrogenase and 16S rRNA gene-based phylogenies indicated the presence of homologous multiple hydrogenases per organism and inconsistencies between 16S rRNA gene- and [Fe-Fe]-hydrogenase-based phylogenies, necessitating appropriate qualification of [Fe-Fe]-hydrogenase gene data for diversity analyses.Molecular hydrogen (H2) is important in intermediary ecosystem metabolism (i.e., processes that link input to output) in wetlands (7, 11, 12, 33) and other anoxic habitats like sewage sludges (34) and the intestinal tracts of animals (9, 37). H2-producing fermenters have been postulated to form trophic links to H2-consuming methanogens, acetogens (i.e., organisms capable of using the acetyl-coenzyme A [CoA] pathway for acetate synthesis) (7), Fe(III) reducers (17), and sulfate reducers in a well-studied moderately acidic fen in Germany (11, 12, 16, 18, 22, 33). 16S rRNA gene analysis revealed the presence of Clostridium spp. and Syntrophobacter spp., which represent possible primary and secondary fermenters, as well as H2 producers in this fen (11, 18, 33). However, H2-producing bacteria are polyphyletic (30, 31, 29). Thus, a structural marker gene is required to target this functional group by molecular methods. [Fe-Fe]-hydrogenases catalyze H2 production in fermenters (19, 25, 29, 30, 31), and genes encoding [Fe-Fe]-hydrogenases represent such a marker gene. The objectives of this study were to (i) develop primers specific for highly diverse [Fe-Fe]-hydrogenase genes, (ii) analyze [Fe-Fe]-hydrogenase genes in pure cultures of fermenters, acetogens, and a sulfate reducer, (iii) assess [Fe-Fe]-hydrogenase gene diversity in H2-producing fen soil enrichments, and (iv) evaluate the limitations of the amplified [Fe-Fe]-hydrogenase fragment as a phylogenetic marker.  相似文献   

13.
14.
15.
Factors potentially contributing to the lower incidence of Lyme borreliosis (LB) in the far-western than in the northeastern United States include tick host-seeking behavior resulting in fewer human tick encounters, lower densities of Borrelia burgdorferi-infected vector ticks in peridomestic environments, and genetic variation among B. burgdorferi spirochetes to which humans are exposed. We determined the population structure of B. burgdorferi in over 200 infected nymphs of the primary bridging vector to humans, Ixodes pacificus, collected in Mendocino County, CA. This was accomplished by sequence typing the spirochete lipoprotein ospC and the 16S-23S rRNA intergenic spacer (IGS). Thirteen ospC alleles belonging to 12 genotypes were found in California, and the two most abundant, ospC genotypes H3 and E3, have not been detected in ticks in the Northeast. The most prevalent ospC and IGS biallelic profile in the population, found in about 22% of ticks, was a new B. burgdorferi strain defined by ospC genotype H3. Eight of the most common ospC genotypes in the northeastern United States, including genotypes I and K that are associated with disseminated human infections, were absent in Mendocino County nymphs. ospC H3 was associated with hardwood-dominated habitats where western gray squirrels, the reservoir host, are commonly infected with LB spirochetes. The differences in B. burgdorferi population structure in California ticks compared to the Northeast emphasize the need for a greater understanding of the genetic diversity of spirochetes infecting California LB patients.In the United States, Lyme borreliosis (LB) is the most commonly reported vector-borne illness and is caused by infection with the spirochete Borrelia burgdorferi (3, 9, 52). The signs and symptoms of LB can include a rash, erythema migrans, fever, fatigue, arthritis, carditis, and neurological manifestations (50, 51). The black-legged tick, Ixodes scapularis, and the western black-legged tick, Ixodes pacificus, are the primary vectors of B. burgdorferi to humans in the United States, with the former in the northeastern and north-central parts of the country and the latter in the Far West (9, 10). These ticks perpetuate enzootic transmission cycles together with a vertebrate reservoir host such as the white-footed mouse, Peromyscus leucopus, in the Northeast and Midwest (24, 35), or the western gray squirrel, Sciurus griseus, in California (31, 46).B. burgdorferi is a spirochete species with a largely clonal population structure (14, 16) comprising several different strains or lineages (8). The polymorphic ospC gene of B. burgdorferi encodes a surface lipoprotein that increases expression within the tick during blood feeding (47) and is required for initial infection of mammalian hosts (25, 55). To date, approximately 20 North American ospC genotypes have been described (40, 45, 49, 56). At least four, and possibly up to nine, of these genotypes are associated with B. burgdorferi invasiveness in humans (1, 15, 17, 49, 57). Restriction fragment length polymorphism (RFLP) and, subsequently, sequence analysis of the 16S-23S rRNA intergenic spacer (IGS) are used as molecular typing tools to investigate genotypic variation in B. burgdorferi (2, 36, 38, 44, 44, 57). The locus maintains a high level of variation between related species, and this variation reflects the heterogeneity found at the genomic level of the organism (37). The IGS and ospC loci appear to be linked (2, 8, 26, 45, 57), but the studies to date have not been representative of the full range of diversity of B. burgdorferi in North America.Previous studies in the northeastern and midwestern United States have utilized IGS and ospC genotyping to elucidate B. burgdorferi evolution, host strain specificity, vector-reservoir associations, and disease risk to humans. In California, only six ospC and five IGS genotypes have been described heretofore in samples from LB patients or I. pacificus ticks (40, 49, 56) compared to approximately 20 ospC and IGS genotypes identified in ticks, vertebrate hosts, or humans from the Northeast and Midwest (8, 40, 45, 49, 56). Here, we employ sequence analysis of both the ospC gene and IGS region to describe the population structure of B. burgdorferi in more than 200 infected I. pacificus nymphs from Mendocino County, CA, where the incidence of LB is among the highest in the state (11). Further, we compare the Mendocino County spirochete population to populations found in the Northeast.  相似文献   

16.
17.
Understanding the mechanisms underlying potential altered susceptibility to human immunodeficiency virus type 1 (HIV-1) infection in highly exposed seronegative (ES) individuals and the later clinical consequences of breakthrough infection can provide insight into strategies to control HIV-1 with an effective vaccine. From our Seattle ES cohort, we identified one individual (LSC63) who seroconverted after over 2 years of repeated unprotected sexual contact with his HIV-1-infected partner (P63) and other sexual partners of unknown HIV-1 serostatus. The HIV-1 variants infecting LSC63 were genetically unrelated to those sequenced from P63. This may not be surprising, since viral load measurements in P63 were repeatedly below 50 copies/ml, making him an unlikely transmitter. However, broad HIV-1-specific cytotoxic T-lymphocyte (CTL) responses were detected in LSC63 before seroconversion. Compared to those detected after seroconversion, these responses were of lower magnitude and half of them targeted different regions of the viral proteome. Strong HLA-B27-restricted CTLs, which have been associated with disease control, were detected in LSC63 after but not before seroconversion. Furthermore, for the majority of the protein-coding regions of the HIV-1 variants in LSC63 (except gp41, nef, and the 3′ half of pol), the genetic distances between the infecting viruses and the viruses to which he was exposed through P63 (termed the exposed virus) were comparable to the distances between random subtype B HIV-1 sequences and the exposed viruses. These results suggest that broad preinfection immune responses were not able to prevent the acquisition of HIV-1 infection in LSC63, even though the infecting viruses were not particularly distant from the viruses that may have elicited these responses.Understanding the mechanisms of altered susceptibility or control of human immunodeficiency virus type 1 (HIV-1) infection in highly exposed seronegative (ES) persons may provide invaluable information aiding the design of HIV-1 vaccines and therapy (9, 14, 15, 33, 45, 57, 58). In a cohort of female commercial sex workers in Nairobi, Kenya, a small proportion of individuals remained seronegative for over 3 years despite the continued practice of unprotected sex (12, 28, 55, 56). Similarly, resistance to HIV-1 infection has been reported in homosexual men who frequently practiced unprotected sex with infected partners (1, 15, 17, 21, 61). Multiple factors have been associated with the resistance to HIV-1 infection in ES individuals (32), including host genetic factors (8, 16, 20, 37-39, 44, 46, 47, 49, 59, 63), such as certain HLA class I and II alleles (41), as well as cellular (1, 15, 26, 55, 56), humoral (25, 29), and innate immune responses (22, 35).Seroconversion in previously HIV-resistant Nairobi female commercial sex workers, despite preexisting HIV-specific cytotoxic T-lymphocyte (CTL) responses, has been reported (27). Similarly, 13 of 125 ES enrollees in our Seattle ES cohort (1, 15, 17) have become late seroconverters (H. Zhu, T. Andrus, Y. Liu, and T. Zhu, unpublished observations). Here, we analyze the virology, genetics, and immune responses of HIV-1 infection in one of the later seroconverting subjects, LSC63, who had developed broad CTL responses before seroconversion.  相似文献   

18.
Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding to CD4 and a chemokine receptor, most commonly CCR5. CXCR4 is a frequent alternative coreceptor (CoR) in subtype B and D HIV-1 infection, but the importance of many other alternative CoRs remains elusive. We have analyzed HIV-1 envelope (Env) proteins from 66 individuals infected with the major subtypes of HIV-1 to determine if virus entry into highly permissive NP-2 cell lines expressing most known alternative CoRs differed by HIV-1 subtype. We also performed linear regression analysis to determine if virus entry via the major CoR CCR5 correlated with use of any alternative CoR and if this correlation differed by subtype. Virus pseudotyped with subtype B Env showed robust entry via CCR3 that was highly correlated with CCR5 entry efficiency. By contrast, viruses pseudotyped with subtype A and C Env proteins were able to use the recently described alternative CoR FPRL1 more efficiently than CCR3, and use of FPRL1 was correlated with CCR5 entry. Subtype D Env was unable to use either CCR3 or FPRL1 efficiently, a unique pattern of alternative CoR use. These results suggest that each subtype of circulating HIV-1 may be subject to somewhat different selective pressures for Env-mediated entry into target cells and suggest that CCR3 may be used as a surrogate CoR by subtype B while FPRL1 may be used as a surrogate CoR by subtypes A and C. These data may provide insight into development of resistance to CCR5-targeted entry inhibitors and alternative entry pathways for each HIV-1 subtype.Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding first to CD4 and then to a coreceptor (CoR), of which C-C chemokine receptor 5 (CCR5) is the most common (6, 53). CXCR4 is an additional CoR for up to 50% of subtype B and D HIV-1 isolates at very late stages of disease (4, 7, 28, 35). Many other seven-membrane-spanning G-protein-coupled receptors (GPCRs) have been identified as alternative CoRs when expressed on various target cell lines in vitro, including CCR1 (76, 79), CCR2b (24), CCR3 (3, 5, 17, 32, 60), CCR8 (18, 34, 38), GPR1 (27, 65), GPR15/BOB (22), CXCR5 (39), CXCR6/Bonzo/STRL33/TYMSTR (9, 22, 25, 45, 46), APJ (26), CMKLR1/ChemR23 (49, 62), FPLR1 (67, 68), RDC1 (66), and D6 (55). HIV-2 and simian immunodeficiency virus SIVmac isolates more frequently show expanded use of these alternative CoRs than HIV-1 isolates (12, 30, 51, 74), and evidence that alternative CoRs other than CXCR4 mediate infection of primary target cells by HIV-1 isolates is sparse (18, 30, 53, 81). Genetic deficiency in CCR5 expression is highly protective against HIV-1 transmission (21, 36), establishing CCR5 as the primary CoR. The importance of alternative CoRs other than CXCR4 has remained elusive despite many studies (1, 30, 70, 81). Expansion of CoR use from CCR5 to include CXCR4 is frequently associated with the ability to use additional alternative CoRs for viral entry (8, 16, 20, 63, 79) in most but not all studies (29, 33, 40, 77, 78). This finding suggests that the sequence changes in HIV-1 env required for use of CXCR4 as an additional or alternative CoR (14, 15, 31, 37, 41, 57) are likely to increase the potential to use other alternative CoRs.We have used the highly permissive NP-2/CD4 human glioma cell line developed by Soda et al. (69) to classify virus entry via the alternative CoRs CCR1, CCR3, CCR8, GPR1, CXCR6, APJ, CMKLR1/ChemR23, FPRL1, and CXCR4. Full-length molecular clones of 66 env genes from most prevalent HIV-1 subtypes were used to generate infectious virus pseudotypes expressing a luciferase reporter construct (19, 57). Two types of analysis were performed: the level of virus entry mediated by each alternative CoR and linear regression of entry mediated by CCR5 versus all other alternative CoRs. We thus were able to identify patterns of alternative CoR use that were subtype specific and to determine if use of any alternative CoR was correlated or independent of CCR5-mediated entry. The results obtained have implications for the evolution of env function, and the analyses revealed important differences between subtype B Env function and all other HIV-1 subtypes.  相似文献   

19.
In their vertebrate hosts, arboviruses such as Semliki Forest virus (SFV) (Togaviridae) generally counteract innate defenses and trigger cell death. In contrast, in mosquito cells, following an early phase of efficient virus production, a persistent infection with low levels of virus production is established. Whether arboviruses counteract RNA interference (RNAi), which provides an important antiviral defense system in mosquitoes, is an important question. Here we show that in Aedes albopictus-derived mosquito cells, SFV cannot prevent the establishment of an antiviral RNAi response or prevent the spread of protective antiviral double-stranded RNA/small interfering RNA (siRNA) from cell to cell, which can inhibit the replication of incoming virus. The expression of tombusvirus siRNA-binding protein p19 by SFV strongly enhanced virus spread between cultured cells rather than virus replication in initially infected cells. Our results indicate that the spread of the RNAi signal contributes to limiting virus dissemination.In animals, RNA interference (RNAi) was first described for Caenorhabditis elegans (27). The production or introduction of double-stranded RNA (dsRNA) in cells leads to the degradation of mRNAs containing homologous sequences by sequence-specific cleavage of mRNAs. Central to RNAi is the production of 21- to 26-nucleotide small interfering RNAs (siRNAs) from dsRNA and the assembly of an RNA-induced silencing complex (RISC), followed by the degradation of the target mRNA (23, 84). RNAi is a known antiviral strategy of plants (3, 53) and insects (21, 39, 51). Study of Drosophila melanogaster in particular has given important insights into RNAi responses against pathogenic viruses and viral RNAi inhibitors (31, 54, 83, 86, 91). RNAi is well characterized for Drosophila, and orthologs of antiviral RNAi genes have been found in Aedes and Culex spp. (13, 63).Arboviruses, or arthropod-borne viruses, are RNA viruses mainly of the families Bunyaviridae, Flaviviridae, and Togaviridae. The genus Alphavirus within the family Togaviridae contains several mosquito-borne pathogens: arboviruses such as Chikungunya virus (16) and equine encephalitis viruses (88). Replication of the prototype Sindbis virus and Semliki Forest virus (SFV) is well understood (44, 71, 74, 79). Their genome consists of a positive-stranded RNA with a 5′ cap and a 3′ poly(A) tail. The 5′ two-thirds encodes the nonstructural polyprotein P1234, which is cleaved into four replicase proteins, nsP1 to nsP4 (47, 58, 60). The structural polyprotein is encoded in the 3′ one-third of the genome and cleaved into capsid and glycoproteins after translation from a subgenomic mRNA (79). Cytoplasmic replication complexes are associated with cellular membranes (71). Viruses mature by budding at the plasma membrane (35).In nature, arboviruses are spread by arthropod vectors (predominantly mosquitoes, ticks, flies, and midges) to vertebrate hosts (87). Little is known about how arthropod cells react to arbovirus infection. In mosquito cell cultures, an acute phase with efficient virus production is generally followed by the establishment of a persistent infection with low levels of virus production (9). This is fundamentally different from the cytolytic events following arbovirus interactions with mammalian cells and pathogenic insect viruses with insect cells. Alphaviruses encode host response antagonists for mammalian cells (2, 7, 34, 38).RNAi has been described for mosquitoes (56) and, when induced before infection, antagonizes arboviruses and their replicons (1, 4, 14, 15, 29, 30, 32, 42, 64, 65). RNAi is also functional in various mosquito cell lines (1, 8, 43, 49, 52). In the absence of RNAi, alphavirus and flavivirus replication and/or dissemination is enhanced in both mosquitoes and Drosophila (14, 17, 31, 45, 72). RNAi inhibitors weakly enhance SFV replicon replication in tick and mosquito cells (5, 33), posing the questions of how, when, and where RNAi interferes with alphavirus infection in mosquito cells.Here we use an A. albopictus-derived mosquito cell line to study RNAi responses to SFV. Using reporter-based assays, we demonstrate that SFV cannot avoid or efficiently inhibit the establishment of an RNAi response. We also demonstrate that the RNAi signal can spread between mosquito cells. SFV cannot inhibit cell-to-cell spread of the RNAi signal, and spread of the virus-induced RNAi signal (dsRNA/siRNA) can inhibit the replication of incoming SFV in neighboring cells. Furthermore, we show that SFV expression of a siRNA-binding protein increases levels of virus replication mainly by enhancing virus spread between cells rather than replication in initially infected cells. Taken together, these findings suggest a novel mechanism, cell-to-cell spread of antiviral dsRNA/siRNA, by which RNAi limits SFV dissemination in mosquito cells.  相似文献   

20.
Methods for rapid detection and quantification of infectious viruses in the environment are urgently needed for public health protection. A fluorescence-activated cell-sorting (FACS) assay was developed to detect infectious adenoviruses (Ads) based on the expression of viral protein during replication in cells. The assay was first developed using recombinant Ad serotype 5 (rAd5) with the E1A gene replaced by a green fluorescent protein (GFP) gene. Cells infected with rAd5 express GFP, which is captured and quantified by FACS. The results showed that rAd5 can be detected at concentrations of 1 to 104 PFU per assay within 3 days, demonstrating a linear correlation between the viral concentration and the number of GFP-positive cells with an r2 value of >0.9. Following the same concept, FACS assays using fluorescently labeled antibodies specific to the E1A and hexon proteins, respectively, were developed. Assays targeting hexon showed greater sensitivity than assays targeting E1A. The results demonstrated that as little as 1 PFU Ads was detected by FACS within 3 days based on hexon protein, with an r2 value greater than 0.9 over a 4-log concentration range. Application of this method to environmental samples indicated positive detection of infectious Ads in 50% of primary sewage samples and 33% of secondary treated sewage samples, but none were found in 12 seawater samples. The infectious Ads ranged in quantity between 10 and 165 PFU/100 ml of sewage samples. The results indicate that the FACS assay is a rapid quantification tool for detecting infectious Ads in environmental samples and also represents a considerable advancement for rapid environmental monitoring of infectious viruses.Waterborne viral infection is one of the most important causes of human morbidity in the world. There are hundreds of different types of human viruses present in human sewage, which, if improperly treated, may become the source of contamination in drinking and recreational waters (6, 12, 19). Furthermore, as water scarcity intensifies in the nation, so has consideration of wastewater reuse as a valid and essential alternative for resolving water shortages (31).Currently, routine viral monitoring is not required for drinking or recreational waters, nor is it required for wastewater that is discharged into the environment. This lack of a monitoring effort is due largely to the lack of methods that can rapidly and sensitively detect infectious viruses in environmental samples. In the past 20 years, tremendous progress has been made in detection of viruses in the environment based on molecular technology (32, 33, 35). PCR and quantitative real-time PCR (qPCR) methods have improved both the speed and sensitivity of viral detection compared with detection by the traditional tissue culture method (2, 11, 17, 18). However, they provide little information on viral infectivity, which is crucial for human health risk assessment (22-24, 35). Our previous work using a real-time PCR assay to detect human adenoviruses (Ads) in sewage could not differentiate the infectious viruses in the secondary treated sewage from those killed by chlorination disinfection (15). In this research, we pursued an innovative approach to detecting infectious viruses in water using fluorescence-activated cell sorting (FACS). This method is rapid and sensitive, with an established record in microbiological research (29, 34, 39).FACS is a specialized type of flow cytometry which provides a method for counting and sorting a heterogeneous mixture of biological cells into two or more kinds, one cell at a time, based upon the specific light-scattering and fluorescent characteristics of each cell (4, 25, 34, 38). It is a useful method since it provides fast and quantitative recording of fluorescent signals from individual cells (14, 16, 34, 47). The FACS viral assay is based on the expression of viral protein inside the recipient cell during viral replication (16). Specific antibody labeled with fluorescence is bound to the target viral protein, which results in fluorescence emission from infected cells. Viral particles outside the cell will not be captured, because the size of virus is below the detection limit of flow cytometry. Therefore, detection of cells, which can be captured with fluorescently labeled viral antibody, is a definitive indication of the presence of infectious virus.This research used human Ads as the target for development of the FACS method. The rationale for this choice is as follows. (i) Ads are important human pathogens that may be transmitted by water consumption and water spray (aerosols) (26, 32). The health hazard associated with exposure to Ads has been demonstrated by epidemiological data and clinical research (1, 7, 9, 35, 40, 43). (ii) Ads are among the most prevalent human viruses identified in human sewage and are frequently detected in marine waters and the Great Lakes (17, 32, 33, 35). (iii) Ads are more resistant to UV disinfection than any other bacteria or viruses (3, 5, 10, 24, 41, 42, 44). Thus, they may survive wastewater treatment as increasing numbers of wastewater treatment facilities switch from chlorination to UV to avoid disinfection by-products. (iv) Some serotypes of Ads, including enteric Ad 40 and 41, are fastidious. They are difficult to detect by plaque assay, and a routine assay of infectivity takes 7 to 14 days (8, 20).In this study, recombinant Ad serotype 5 (rAd5) with the E1A gene (the first transcribed gene after infection) replaced by a green fluorescent protein (GFP) gene was first used to test for sensitivity and speed of the assay. Two other viral proteins were then used as targets for development of FACS assays using Ad serotype 2 (Ad2) and Ad41. This study demonstrated the feasibility, sensitivity, and reliability of the assay for detection of infectious Ads in environmental samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号