首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The membrane-proximal external region (MPER) of HIV-1, located at the C terminus of the gp41 ectodomain, is conserved and crucial for viral fusion. Three broadly neutralizing monoclonal antibodies (bnMAbs), 2F5, 4E10, and Z13e1, are directed against linear epitopes mapped to the MPER, making this conserved region an important potential vaccine target. However, no MPER antibodies have been definitively shown to provide protection against HIV challenge. Here, we show that both MAbs 2F5 and 4E10 can provide complete protection against mucosal simian-human immunodeficiency virus (SHIV) challenge in macaques. MAb 2F5 or 4E10 was administered intravenously at 50 mg/kg to groups of six male Indian rhesus macaques 1 day prior to and again 1 day following intrarectal challenge with SHIVBa-L. In both groups, five out of six animals showed complete protection and sterilizing immunity, while for one animal in each group a low level of viral replication following challenge could not be ruled out. The study confirms the protective potential of 2F5 and 4E10 and supports emphasis on HIV immunogen design based on the MPER region of gp41.Eliciting broadly neutralizing antibodies is an important goal of HIV vaccine design efforts, and the study of broadly neutralizing monoclonal antibodies (bnMAbs) can assist in that goal. Human bnMAbs against both gp120 and gp41 of the HIV-1 envelope spike have been described. Three bnMAbs to gp41, 2F5, 4E10, and Z13e1, have been identified and shown to recognize neighboring linear epitopes on the membrane proximal external (MPER) region of gp41 (3, 24, 25, 37, 47). In a comprehensive cross-clade neutralization study by Binley et al., 2F5 neutralized 67% and 4E10 neutralized 100% of a diverse panel of 90 primary isolates (2). Similar broad neutralization was seen against sexually transmitted isolates cloned from acutely infected patients (22). More recently, a comprehensive study showed that 2F5 neutralized 97 isolates from a 162-virus panel (60%) and that 4E10 neutralized 159 isolates (98%) (41). Although less potent, the monoclonal antibody Z13, isolated from an antibody phage display library derived from a bone marrow donor whose serum was broadly neutralizing (47), has cross-clade neutralizing activity. Z13e1 is an affinity-enhanced variant of the earlier-characterized MAb Z13 that is directed against an access-restricted epitope between and overlapping the epitopes of 2F5 and 4E10. Both MAbs 2F5 and 4E10 were originally obtained as IgG3 antibodies in hybridomas derived from peripheral blood mononuclear blood lymphocytes (PBMCs) of HIV-1-seropositive nonsymptomatic patients and were later class switched to IgG1 to enable large-scale manufacturing and to prolong in vivo half-life (3, 6, 32).Despite the interest in the MPER as a vaccine target, there is limited information on the ability of MPER antibodies to act antivirally in vivo either in established infection or prophylactically. A study using the huPBL-SCID mouse model showed limited impact from 2F5 when the antibody was administered in established infection (31). Passive administration of 2G12, 2F5, and 4E10 to a cohort of acutely and chronically infected HIV-1 patients provided little direct evidence of 2F5 or 4E10 antiviral activity, whereas the emergence of escape variants indicated unequivocally the ability of 2G12 to act antivirally (18, 39). Indirect evidence did, however, suggest that the MPER MAbs may have affected virus replication, as indicated by viral rebound suppression in a patient known to have a 2G12-resistant virus prior to passive immunization (39). Another study of 10 individuals passively administered 2G12, 2F5, and 4E10 before and after cessation of combination antiretroviral therapy (ART) showed similarly that 2G12 treatment could delay viral rebound, but antiviral activity by 2F5 and 4E10 was not clearly demonstrated (21). In prophylaxis, an early 2F5 passive transfer study with chimpanzees suggested that the antibody could delay or lower the magnitude of primary viremia following HIV-1 challenge (7). A study using gene transfer of 2F5 in a humanized SCID mouse model suggested that continuous plasma levels of approximately 1 μg/ml of 2F5 may significantly reduce viral loads in LAI- and MN-challenged mice (34). Protection studies of rhesus macaques using simian-human immunodeficiency virus SHIV89.6PD challenge did not provide definitive direct evidence for MPER antibody-mediated protection. One of three animals was protected against intravenous (i.v.) challenge when 2F5 was administered in a cocktail with HIVIG and 2G12 (19), but all three animals treated with 2F5 alone at high concentration became infected. In a vaginal challenge study with SHIV89.6PD (20), four of five animals were protected with a cocktail of HIVIG, 2F5, and 2G12, but a 2F5/2G12 combination protected only two of five animals. Further protection studies have used MPER MAbs in combination with other MAbs, leaving the individual contributions of these antibodies uncertain (1, 8).In our previous studies, we successfully used the SHIV/macaque model to demonstrate neutralizing antibody protection against mucosal challenge, and we have begun to explore how that protection is achieved (12, 30). Here, we conducted a protection study with the two broadly neutralizing MPER-directed antibodies 2F5 and 4E10. We show that the antibodies can prevent viral infection and thereby support the MPER as a vaccine target.  相似文献   

2.
Mutations were introduced into the ectodomain of the human immunodeficiency virus type 1 (HIV-1) transmembrane envelope glycoprotein, gp41, within a region immediately adjacent to the membrane-spanning domain. This region, which is predicted to form an α-helix, contains highly conserved hydrophobic residues and is unusually rich in tryptophan residues. In addition, this domain overlaps the epitope of a neutralizing monoclonal antibody, 2F5, as well as the sequence corresponding to a peptide, DP-178, shown to potently neutralize virus. Site-directed mutagenesis was used to create deletions, substitutions, and insertions centered around a stretch of 17 hydrophobic and uncharged amino acids (residues 666 to 682 of the HXB2 strain of HIV-1) in order to determine the role of this region in the maturation and function of the envelope glycoprotein. Deletion of the entire stretch of 17 amino acids abrogated the ability of the envelope glycoprotein to mediate both cell-cell fusion and virus entry without affecting the normal maturation, transport, or CD4-binding ability of the protein. This phenotype was also demonstrated by substituting alanine residues for three of the five tryptophan residues within this sequence. Smaller deletions, as well as multiple amino acid substitutions, were also found to inhibit but not block cell-cell fusion. These results demonstrate the crucial role of a tryptophan-rich motif in gp41 during a post-CD4-binding step of glycoprotein-mediated fusion. The basis for the invariant nature of the tryptophans, however, appears to be at the level of glycoprotein incorporation into virions. Even the substitution of phenylalanine for a single tryptophan residue was sufficient to reduce Env incorporation and drop the efficiency of virus entry approximately 10-fold, despite the fact that the same mutation had no significant effect on syncytium formation.  相似文献   

3.
Induction of broadly neutralizing antibodies (bNAbs) is an important goal for HIV-1 vaccine development. Two autoreactive bNAbs, 2F5 and 4E10, recognize a conserved region on the HIV-1 envelope glycoprotein gp41 adjacent to the viral membrane known as the membrane-proximal external region (MPER). They block viral infection by targeting a fusion-intermediate conformation of gp41, assisted by an additional interaction with the viral membrane. Another MPER-specific antibody, 10E8, has recently been reported to neutralize HIV-1 with potency and breadth much greater than those of 2F5 or 4E10, but it appeared not to bind phospholipids and might target the untriggered envelope spikes, raising the hope that the MPER could be harnessed for vaccine design without major immunological concerns. Here, we show by three independent approaches that 10E8 indeed binds lipid bilayers through two hydrophobic residues in its CDR H3 (third heavy-chain complementarity-determining region). Its weak affinity for membranes in general and preference for cholesterol-rich membranes may account for its great neutralization potency, as it is less likely than other MPER-specific antibodies to bind cellular membranes nonspecifically. 10E8 binds with high affinity to a construct mimicking the fusion intermediate of gp41 but fails to recognize the envelope trimers representing the untriggered conformation. Moreover, we can improve the potency of 4E10 without affecting its binding to gp41 by a modification of its lipid-interacting CDR H3. These results reveal a general mechanism of HIV-1 neutralization by MPER-specific antibodies that involves interactions with viral lipids.  相似文献   

4.
The entry of human immunodeficiency virus type 1 (HIV-1) into a target cell entails a series of conformational changes in the gp41 transmembrane glycoprotein that mediates the fusion of the viral and target cell membranes. A trimer-of-hairpins structure formed by the association of two heptad repeat (HR) regions of the gp41 ectodomain has been implicated in a late step of the fusion pathway. Earlier native and intermediate states of the protein are postulated to mediate the antiviral activity of the fusion inhibitor enfuvirtide and of broadly neutralizing monoclonal antibodies (NAbs), but the details of these structures remain unknown. Here, we report the identification and crystal structure of a dimerization domain in the C-terminal ectodomain of gp41 (residues 630 to 683, or C54). Two C54 monomers associate to form an asymmetric, antiparallel coiled coil with two distinct C-terminal α-helical overhangs. This dimer structure is conferred largely by interactions within a central core that corresponds to the sequence of enfuvirtide. The mutagenic alteration of the dimer interface severely impairs the infectivity of Env-pseudotyped viruses. Moreover, the C54 structure binds tightly to both the 2F5 and 4E10 NAbs and likely represents a potential intermediate conformation of gp41. These results should enhance our understanding of the molecular basis of the gp41 fusogenic structural transitions and thereby guide rational, structure-based efforts to design new fusion inhibitors and vaccine candidates intended to induce broadly neutralizing antibodies.The entry of human immunodeficiency virus type 1 (HIV-1) into its target cell to establish an infection requires the fusion of viral and cellular membranes, a process that is mediated by the viral envelope glycoprotein (Env) through interactions with receptors on the target cell membrane (CD4 and a coreceptor, such as CCR-5 or CXCR-4) (14). HIV-1 Env is synthesized as the glycoprotein precursor gp160, which oligomerizes in the endoplasmic reticulum and subsequently is cleaved by the cellular furin endoprotease to create a metastable state that is primed for the induction of membrane fusion activity (19). The resulting Env complex is a trimeric structure comprising three gp120 surface glycoproteins, each associated noncovalently with one of three subunits of the gp41 transmembrane glycoprotein (24, 27, 47, 48). This native (prefusion) Env spike protrudes from the virus surface and is the target for neutralizing antibodies (NAbs) (reviewed in reference 3). It is generally accepted that HIV-1 membrane fusion is promoted by a series of receptor binding-triggered conformational changes in the Env complex, culminating in the formation of an energetically stable trimer of α-helical hairpins in gp41 (10, 14).The core structure of the trimer-of-hairpins is an antiparallel six-helix bundle: a central, three-stranded coiled coil formed by the first heptad repeat (HRN) region of gp41 is sheathed by three α-helices derived from the second HR (HRC) (5, 27, 42, 44). HRN is immediately C terminal to the fusion peptide, while HRC is adjacent to the transmembrane helix anchored in the viral membrane. The interaction of gp120 with CD4 and a chemokine receptor is thought to alter intersubunit interactions in the native Env complex, leading to gp41 reorganization into a postulated prehairpin intermediate (reviewed in references 10 and 14). At this point, the N-terminal HRN coiled-coil trimer is formed, relocating the fusion peptides to allow them to insert into the cellular membrane. The HRC region then is thought to jackknife so as to pack against the inner coiled-coil core and form the postfusion trimer-of-hairpin structure that brings the attached target cell and viral membranes together. Evidence for the existence of these different gp41 conformational states in the fusion pathway is indirect, being inferred from the antiviral activity of peptides derived from the two HR regions of gp41 (20, 45). These peptide inhibitors likely act in a dominant-negative manner by binding to the prehairpin intermediate, preventing the formation of the trimer-of-hairpins (6, 13, 27, 31). This intermediate is relatively stable, with a half-life of many minutes, as detected by the capacity of such peptides to inhibit fusion once prefusion gp41 has undergone a conformational transition (21, 31). Although mounting evidence indicates that the prefusogenic and intermediate states are important targets for drug- and vaccine-elicited NAbs (reviewed in references 3 and 10), little is known about their structures and how they modulate gp41 fusogenicity or serve as targets for inhibition.The C-terminal part of the gp41 ectodomain consists of HRC (or C34) and the membrane-proximal external region (MPER) (Fig. (Fig.1).1). The C34 peptide is intrinsically disordered in isolation and forms an outer-layer α-helix only in the six-helix bundle (27, 29). Structural studies of the trimeric coiled-coil state of the MPER and of its bent helix conformation after binding to lipid membranes have begun to provide clues regarding the function of this unusual and important NAb-associated segment (25, 41). The MPER is the established target for two very rare but broadly reactive NAbs, 2F5 and 4E10/z13, which are elicited during natural human infection (50). These neutralizing epitopes seem to be poorly exposed on the surface of both HIV-1-infected cells and virions (reviewed in reference 3). Their exposure is enhanced or triggered by receptor binding but diminishes on the formation of the trimer-of-hairpins, suggesting that both of the NAbs target a more extended intermediate conformation rather than the native gp41 structure (8, 12). Despite extensive efforts, how structural aspects of the MPER explain its antigenicity and immunogenicity remains unclear. Here, we report the identification of the C-terminal dimerization domain of gp41 and present the 1.65-Å crystal structure of this domain. We characterize the role of this antiparallel two-stranded coiled-coil structure in NAb reactivity and viral function. Our study provides a potential structure for the fusion-intermediate state of gp41 and for the future design of new HIV-1 immunogens that may elicit broad and potent NAbs.Open in a separate windowFIG. 1.Structural and functional domains of HIV-1 gp41. (Upper) Schematic view of gp41 showing the location of the fusion peptide (FP), the two HR regions, the MPER, the transmembrane segment (TM), and the cytoplasmic region (CP). HRC and MPER are depicted in blue and green, respectively. (Lower) Sequences of the C56, C54, C54N656L, and C39 peptides employed in the study. The Asn-656→Leu mutation in C54N656L is shown in red. The sequences of T-20 and core epitopes recognized by the human 2F5 and 4E10 MAbs are indicated.  相似文献   

5.
The binding of neutralizing antibodies 2F5 and 4E10 to human immunodeficiency virus type 1 (HIV-1) gp41 involves both the viral membrane and gp41 membrane proximal external region (MPER) epitopes. In this study, we have used several biophysical tools to examine the secondary structure, orientation, and depth of immersion of gp41 MPER peptides in liposomes and to determine how the orientation of the MPER with lipids affects the binding kinetics of monoclonal antibodies (MAbs) 2F5 and 4E10. The binding of 2F5 and 4E10 both to their respective nominal epitopes and to a biepitope (includes 2F5 and 4E10 epitopes) MPER peptide-liposome conjugate was best described by a two-step encounter-docking model. Analysis of the binding kinetics and the effect of temperature on the binding stability of 2F5 and 4E10 to MPER peptide-liposome conjugates revealed that the docking of 4E10 was relatively slower and thermodynamically less favorable. The results of fluorescence-quenching and fluorescence resonance energy transfer experiments showed that the 2F5 epitope was more solvent exposed, whereas the 4E10 epitope was immersed in the polar-apolar interfacial region of the lipid bilayer. A circular dichroism spectroscopic study demonstrated that the nominal epitope and biepitope MPER peptides adopted ordered structures with differing helical contents when anchored to liposomes. Furthermore, anchoring of MPER peptides to the membrane via a hydrophobic anchor sequence was required for efficient MAb docking. These results support the model that the ability of 2F5 and 4E10 to bind to membrane lipid is required for stable docking to membrane-embedded MPER residues. These data have important implications for the design and use of peptide-liposome conjugates as immunogens for the induction of MPER-neutralizing antibodies.The two broadly neutralizing human monoclonal antibodies (MAbs) 2F5 and 4E10 target conserved core amino acid residues that lie in the membrane proximal external region (MPER) of human immunodeficiency virus type 1 (HIV-1) gp41 (6, 9, 18, 25, 29). Structural studies of 2F5 and 4E10 in complex with their nominal epitope peptides led to the proposition that the long hydrophobic heavy chain CDR3 (CDR H3) loop might be involved in binding to the virion membrane due to the lack of direct contact of the tip of the CDR H3 loop with their bound epitopes (6, 25). MAbs 2F5 and 4E10 indeed were found to have enhanced binding to gp41 MPER in the presence of membrane (12, 25). Subsequent studies have revealed the lipid reactivity of both the 2F5 and 4E10 MAbs (2, 14, 23, 27), emphasizing the need to understand how MAbs 2F5 and 4E10 recognize their epitopes in the context of a membrane-gp41 MPER interface.It has been hypothesized that the ability of MAbs 2F5 and 4E10 to interact with membrane lipids is required for binding to the membrane-bound gp41 MPER region and subsequent HIV-1 neutralization (2, 14, 15). The binding of both the 2F5 and 4E10 MAbs to their epitope peptides presented on synthetic liposomes was remarkably different from that of epitope peptides alone and was best described by a two-step “encounter-docking” model (2). In this model, neutralizing MPER MAbs make an initial encounter complex, and such an interaction is associated with faster association and dissociation rates. The formation of the encounter complex induces the formation of the final “docked” complex, which is associated with slower dissociation rates and provides the stability of the overall interaction. A more recent study has also observed the same mode of interaction for MAb 4E10 when it binds to MPER peptide in liposomal form (31). The studies of Sun et al. revealed that critical residues of the 4E10 epitope may be buried in the viral membrane and that interaction of 4E10 with lipids is important in extracting the immersed residues from the lipid bilayer. Although 2F5 binding was not described in the study, the model shows that the N-terminal helix of the “L”-shaped MPER structure projects away from the membrane and that residues K665 and W666 of the core 2F5 epitope (residues DKW) are placed on the surface and in the interfacial region, respectively, of the membrane lipid (31). Thus, as for MAb 4E10, stable docking of 2F5 would also require some level of conformational rearrangement of MPER to release critical residues within the core epitope. This is consistent with binding kinetics data that showed that the final docking of MAbs 2F5 and 4E10 to MPER peptide-lipid conjugates might require conformational rearrangements (2). It is also likely that the CD4 and coreceptor-mediated triggering of HIV-1 Env (10, 28) that leads to the formation of the fusion intermediate conformation might also expose critical residues for MPER MAb binding. Both the 4E10 and 2F5 MAbs bound strongly to a recombinant trimeric gp41 intermediate design and either bound weakly or failed to bind, respectively, to the trimeric gp140 (11) and a putative prefusion-state trimeric MPER (22). However, the orientation of the MPER sequence in a viral-lipid-bound form is not known and, thus, it is possible that in the early stages of the triggered intermediate state, MPER residues may be lying in the plane of the membrane head groups and interaction of MPER MAbs with lipids and extraction of critical residues may be essential for stable docking (31).In order to gain further understanding of the binding mechanism involved in the interaction of MAbs 2F5 and 4E10 with their epitopes presented in the membrane environment, we have constructed three different novel gp41 MPER peptide-liposome conjugates, including a 2F5 nominal epitope peptide, a 4E10 nominal epitope peptide, and a peptide having sequences of epitopes for both the 2F5 and 4E10 MAbs. Unlike our previously designed constructs (2), the MPER peptides used in the current study were anchored to the liposomes by a hydrophobic sequence (YKRWIILGLNKIVRMYS), named GTH1, placed at their carboxyl termini. Using these second-generation peptide-liposome conjugates, we addressed the following questions. (i) How do MAbs 2F5 and 4E10 bind to the different peptide-liposome conjugates? (ii) How do the kinetics of MAb binding vary with temperature? (iii) How are the peptides oriented in the liposomal membrane in each construct? (iv) How does antibody binding correlate with differences in the membrane orientation of peptides? (v) Is there any difference in the secondary structures adopted by the peptides in the peptide-liposome complex?Our study of antibody interactions with their membrane-anchored epitope peptides indicates that both the 2F5 and 4E10 MAbs bind to their nominal epitope peptide-liposome conjugates with high affinity. The results of tryptophan fluorescence-quenching and fluorescence resonance energy transfer (FRET) experiments showed that the nominal 2F5 peptide is exposed on the surface of the membrane close to the polar head group, whereas the nominal 4E10 peptide is immersed in the interfacial region of the lipid bilayer. Circular dichroism (CD) spectroscopic studies revealed that the nominal epitope and biepitope peptides adopted ordered structures when anchored to the liposomal membrane. The membrane orientation data and secondary structural features of MPER peptides correlated well with antibody binding characteristics, thus suggesting that membrane-anchored MPER peptide conformations are a physiologic component of the native 2F5 and 4E10 binding epitopes in HIV-1 virions.  相似文献   

6.
The human immunodeficiency virus type 1 transmembrane protein gp41 oligomer anchors the attachment protein, gp120, to the viral envelope and mediates viral envelope-cell membrane fusion following gp120-CD4 receptor-chemokine coreceptor binding. We have used mutation-directed chemical cross-linking with bis(sulfosuccinimidyl)suberate (BS3) to investigate the architecture of the gp41 oligomer. Treatment of gp41 with BS3 generates a ladder of four bands on sodium dodecyl sulfate-polyacrylamide gels, corresponding to monomers, dimers, trimers, and tetramers. By systematically replacing gp41 lysines with arginine and determining the mutant gp41 cross-linking pattern, we observed that gp41 N termini are cross-linked. Lysine 678, which is close to the transmembrane sequence, was readily cross-linked to Lys-678 on other monomers within the oligomeric structure. This arrangement appears to be facilitated by the close packing of membrane-anchoring sequences, since the efficiency of assembly of heterooligomers between wild-type and mutant Env proteins is improved more than twofold if the mutant contains the membrane-anchoring sequence. We also detected close contacts between Lys-596 and Lys-612 in the disulfide-bonded loop/glycan cluster of one monomer and lysines in the N-terminal amphipathic α-helical oligomerization domain (Lys-569 and Lys-583) and C-terminal α-helical sequence (Lys-650 and Lys-660) of adjacent monomers. Precursor-processing efficiency, gp120-gp41 association, soluble recombinant CD4-induced shedding of gp120 from cell surface gp41, and acquisition of gp41 ectodomain conformational antibody epitopes were unaffected by the substitutions. However, the syncytium-forming function was most dependent on the conserved Lys-569 in the N-terminal α-helix. These results indicate that gp160-derived gp41 expressed in mammalian cells is a tetramer and provide information about the juxtaposition of gp41 structural elements within the oligomer.  相似文献   

7.
8.
Human immunodeficiency virus type 1 (HIV-1) entry into cells is mediated by the surface-exposed envelope protein (SU) gp120, which binds to cellular CD4 and chemokine receptors, triggering the membrane fusion activity of the transmembrane (TM) protein gp41. The core of gp41 comprises an N-terminal triple-stranded coiled coil and an antiparallel C-terminal helical segment which is packed against the exterior of the coiled coil and is thought to correspond to a fusion-activated conformation. The available gp41 crystal structures lack the conserved disulfide-bonded loop region which, in human T-lymphotropic virus type 1 (HTLV-1) and murine leukemia virus TM proteins, mediates a chain reversal, connecting the antiparallel N- and C-terminal regions. Mutations in the HTLV-1 TM protein gp21 disulfide-bonded loop/chain reversal region adversely affected fusion activity without abolishing SU-TM association (A. L. Maerz, R. J. Center, B. E. Kemp, B. Kobe, and P. Poumbourios, J. Virol. 74:6614-6621, 2000). We now report that in contrast to our findings with HTLV-1, conservative substitutions in the HIV-1 gp41 disulfide-bonded loop/chain reversal region abolished association with gp120. While the mutations affecting gp120-gp41 association also affected cell-cell fusion activity, HIV-1 glycoprotein maturation appeared normal. The mutant glycoproteins were processed, expressed at the cell surface, and efficiently immunoprecipitated by conformation-dependent monoclonal antibodies. The gp120 association site includes aromatic and hydrophobic residues on either side of the gp41 disulfide-bonded loop and a basic residue within the loop. The HIV-1 gp41 disulfide-bonded loop/chain reversal region is a critical gp120 contact site; therefore, it is also likely to play a central role in fusion activation by linking CD4 plus chemokine receptor-induced conformational changes in gp120 to gp41 fusogenicity. These gp120 contact residues are present in diverse primate lentiviruses, suggesting conservation of function.  相似文献   

9.
10.
The gp41 envelope protein of human immunodeficiency virus type 1 (HIV-1) contains an alpha-helical core structure responsible for mediating membrane fusion during viral entry. Recent studies suggest that a conserved hydrophobic cavity in the coiled coil of this core plays a distinctive structural role in maintaining the fusogenic conformation of the gp41 molecule. Here we investigated the importance of this cavity in determining the structure and biological activity of the gp41 core by using the N34(L6)C28 model. The high-resolution crystal structures of N34(L6)C28 of two HIV-1 gp41 fusion-defective mutants reveal that each mutant sequence is accommodated in the six-helix bundle structure by forming the cavity with different sets of atoms. Remarkably, the mutant N34(L6)C28 cores are highly effective inhibitors of HIV-1 infection, with 5- to 16-fold greater activity than the wild-type molecule. The enhanced inhibitory activity by fusion-defective mutations correlates with local structural perturbations close to the cavity that destabilize the six-helix bundle. Taken together, these results indicate that the conserved hydrophobic coiled-coil cavity in the gp41 core is critical for HIV-1 entry and its inhibition and provides a potential antiviral drug target.  相似文献   

11.
A synthetic peptide, DP178, containing amino acids 127 to 162 of the human immunodeficiency virus type 1 (HIV-1) gp41 Env glycoprotein, is a potent inhibitor of virus infection and virus mediated cell-to-cell fusion (C. Wild, T. Greenwell, and T. Matthews, AIDS Res. Hum. Retroviruses 9:1051–1053, 1993). In an effort to understand the mechanism of action of this peptide, we derived resistant variants of HIV-1IIIB and NL4-3 by serial virus passage in the presence of increasing doses of the peptide. Sequence analysis of the resistant isolates suggested that a contiguous 3-amino-acid sequence within the amino-terminal heptad repeat motif of gp41 was associated with resistance. Site-directed mutagenesis studies confirmed this observation and indicated that changes in two of these three residues were necessary for development of the resistant phenotype. Direct binding of DP178 to recombinant protein and synthetic peptide analogs containing the wild-type and mutant heptad repeat sequences revealed a strong correlation between DP178 binding and the biological sensitivity of the corresponding virus isolates to DP178. The results are discussed from the standpoints of the mechanism of action of DP178 and recent crystallographic information for a core structure of the gp41 ectodomain.  相似文献   

12.
13.
We have examined mutations in the ectodomain of the human immunodeficiency virus type 1 transmembrane glycoprotein gp41 within a region immediately adjacent to the membrane-spanning domain for their effect on the outcome of the fusion cascade. Using the recently developed three-color assay (I. Muñoz-Barroso, S. Durell, K. Sakaguchi, E. Appella, and R. Blumenthal, J. Cell Biol. 140:315–323, 1998), we have assessed the ability of the mutant gp41s to transfer lipid and small solutes from susceptible target cells to the gp120-gp41-expressing cells. The results were compared with the syncytium-inducing capabilities of these gp41 mutants. Two mutant proteins were incapable of mediating both dye transfer and syncytium formation. Two mutant proteins mediated dye transfer but were less effective at inducing syncytium formation than was wild-type gp41. The most interesting mutant proteins were those that were not capable of inducing syncytium formation but still mediated dye transfer, indicating that the fusion cascade was blocked beyond the stage of small fusion pore formation. Fusion mediated by the mutant gp41s was inhibited by the peptides DP178 and C34.

The human immunodeficiency virus type 1 (HIV-1) gp120-gp41 fusion machine consists of an assembly of viral envelope glycoprotein oligomers which forms a molecular scaffold responsible for bringing the viral membrane close to the target cell membrane and creating the architecture that enables lipid bilayers to merge (7). The fusion reaction undergoes multiple steps before the final event occurs which allows delivery of the nucleocapsid into the cell. In the case of influenza virus hemagglutinin (HA), we have dissected these steps kinetically and analyzed the molecular features of the kinetic intermediates (1). In order to examine the modus operandi of the fusion machine, mutations in various domains of viral envelope glycoproteins have been examined for their effect on the outcome of the fusion cascade. For instance, replacement of the membrane-spanning domain of influenza virus HA with a glycosylphosphatidylinositol anchor results in a very stable hemifusion intermediate (6). Moreover, single-site mutations in the fusion peptide of HA significantly affect fusion pore dilation (9). Recently, cytoplasmic tail acylation mutants of influenza virus HA were identified which induce transfer of lipids and small aqueous molecules but do not induce syncytium formation (4a).High-resolution crystallographic determinations (4, 10, 11) of gp41 fragments from HIV-1 have revealed a bent-in-half, antiparallel, heterotrimeric coiled-coil structure. This is made up of a triple-stranded coiled coil of α-helices from the leucine zipper-like 4-3 repeat domain in gp41 close to the N-terminal fusion peptide termed HR1 (8) flanked by α-helices from the domain in gp41 close to the C-terminal membrane anchor termed HR2 (8). Comparison with the crystal structure of the influenza virus HA2 subunits in a low-pH-induced conformation (2) reveals common structural motifs which provide growing support for the “spring-loaded” type of mechanistic models (3). In this scenario, activation of the fusion protein results in release of the fusion peptide and extension of the central coiled-coil structure. The new positioning of the fusion peptides at the tip of the stalk provides for easy contact with the target cell membrane. A small group of proximal fusion proteins which are simultaneously inserted into both the viral and target membranes would constitute a potential fusion site. A concerted collapse of this protein complex, actuated by the bending in half of the stalks at a central hinge region, would presumably position the C-terminal transmembrane anchors and N-terminal fusion peptides on top of each other in the center, bring the two membranes into contact, and thus allow formation of the fusion pore (7). In this study, we examined the effects on the various stages of the fusion reaction of mutations in the region between HR2 and the transmembrane (TM) anchor (Fig. (Fig.1)1) described in detail by Salzwedel et al. (8a). Open in a separate windowFIG. 1Amino acid sequence and mutations in gp41. FP is the predicted fusion peptide region, and HR1 and HR2 (8) represent, respectively, the N-terminal and C-terminal α-helices of the triple-stranded coiled coil (4, 11). Mutations in the region between HR2 and the TM anchor include deletions of amino acids 665 to 682 and 678 to 682, insertion of a FLAG sequence (YKDDDD), insertion of a DAF sequence (PNKGSGTTS), scrambling of the underlined sequence to SC7 (INNWNFT), and replacement of the five tryptophans with alanines [W(1-5)A]. Peptide C34 represents HR2 amino acids 628 to 663, and peptide DP178 represents amino acids 638 to 673.Mutagenesis of HIV-1 env, construction of plasmids, cell surface expression, CD4 binding, and cell fusion were performed as previously described (8a). The simian virus 40-based env expression plasmids (1 μg of DNA) were transfected into COS-1 cells in 35-mm-diameter plates by using DEAE-dextran (1 mg/ml). At 14 h posttransfection, the cells were replated, and starting at 36 to 48 h posttransfection, they were incubated with 20 μM CMAC (7-amino-4-chloromethylcoumarin) in Dulbecco modified Eagle medium overnight at 37°C. All constructs expressed similar amounts of envelope glycoprotein on the cell surface (8a). The transfected cells were then washed and incubated in fresh medium for 2 h at 37°C before addition of HeLa-CD4 cells which were labeled in the membrane with octadecyl indocarbocyanine (DiI) and in the cytosol with calcein as previously described (7). The method used to detect cell-cell fusion was a three-color assay (7) based on the redistribution of fluorescent probes between effector and target cells upon fusion. The application of three different probes was used to monitor lipid versus cytosolic mixing in the same cell population. Fluorescently labeled gp120-gp41-expressing cells and CD4+ cells were cocultured at a 1:10 ratio for 2 h at 37°C in uncoated microwells (MatTek Corp., Ashland, Mass.). Bright-field and fluorescent images were acquired with an Olympus IX70 microscope coupled to a charge-coupled device camera (Princeton Instruments, Trenton, N.J.) with a 40× UplanApo oil immersion objective. Fluorescein isothiocyanate (exciter, BP470-490; beam splitter, DM505; emitter, BA515-550), rhodamine (exciter, BP530-550; beam splitter, DM570; emitter, BA590), and 4′,6-diamidino-2-phenylindole (DAPI) (exciter, D360/40; beam splitter, 400DCLP; emitter, D450/60) optical filter cubes were carefully chosen to avoid spillover when observing the fluorescence of the three dyes. For each sample, three or four different fields were collected, and data were analyzed by overlaying the images using Metamorph software (Universal Imaging Corporation, West Chester, Pa.). The percentage of lipid mixing and cytoplasmic mixing was calculated as 100 times the number of COS-1 cells stained with DiI and calcein divided by the total number of COS-1–HeLa-CD4 conjugates. Although not all COS-1 cells express env since the transfection efficiency is not 100%, env-expressing COS-1 cells are more likely to adhere to HeLa-CD4 cells.Figure Figure22 shows a montage of video images taken 2 h following incubation of COS-1 cells expressing wild-type (WT), W(1-5)A, and +DAF env with HeLa-CD4 cells at 37°C. As described in detail in the legend to Fig. Fig.2,2, we clearly observed COS-1 cells attached to HeLa-CD4 cells, which showed continuity of all three dyes (CMAC, calcein, and DiI). We know that for +DAF and W(1-5)A env-expressing COS-1 cells, these images do not represent syncytia since even small heterokaryons will show up in the MAGI cell assay (6a), which is based on the transfer of HIV-1 Tat coexpressed with env in COS-1 cells to HeLa-CD4 cells as a result of cell fusion. This transfer induces the expression of a β-galactosidase reporter gene engineered in HeLa-CD4 (MAGI) cells under the control of the viral long terminal repeat promoter (8a). Because the β-galactosidase has been modified to contain a nuclear targeting signal, the nuclei of the resulting heterokaryons stain dark blue with 5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside (X-Gal) in situ. The MAGI assay is extremely sensitive and clearly identifies syncytia as small as two nuclei. Such nuclei were common for the Δ678-682 mutant, which produced syncytia with an average size of ∼5 nuclei (Fig. (Fig.3).3). The assay can detect even a few of these fusion events per 100,000 cells. In the MAGI assay, we did not observe any blue nuclei with the W(1-5)A and +DAF constructs, an experiment repeated several times. The three-color assay therefore reveals a distinct phenotype exhibited by the +DAF and W(1-5)A mutant envelope glycoproteins, which form small fusion pores allowing movement of lipids and small molecules (<1,000 Da) but not of large molecules (HIV-1 Tat is about 14 kDa [4b]). Open in a separate windowFIG. 2Three-color assay for WT and mutant HIV-1 gp41s. Simian virus 40-based env expression plasmids (1 μg) containing WT (A to D), W(1-5)A (E to H), and +DAF (I to L) env genes were transfected into COS-1 cells in 35-mm plates using DEAE-dextran (1 μg/ml). At 14 h posttransfection, the cells were replated, and starting at 36 to 48 h posttransfection they were incubated with 20 μM CMAC in Dulbecco modified Eagle medium overnight at 37°C. All constructs expressed similar amounts of envelope glycoprotein on the cell surface (8a). The transfected cells were then washed and incubated in fresh medium for 2 h at 37°C before addition of HeLa-CD4 cells which were labeled in the membrane with DiI and in the cytosol with calcein as previously described (7). The COS-1 cells, labeled with CMAC, were cocultured 1:10 at 37°C for 2 h with HeLa-CD4 cells labeled with DiI and calcein, and images were examined by bright-field microscopy (A, E, and I) and fluorescence microscopy for CMAC staining (B, F, and J), for DiI staining (C, G, and K), and for calcein staining (D, H, and L). CMAC is a fluorescent chloromethyl derivative that freely diffuses through the membranes of live cells. Once inside the cell, this mildly thiol-reactive probe undergoes what is believed to be a glutathione S-transferase-mediated reaction to produce membrane-impermeant fluorescent dye adducts with glutathione, as well as with other intracellular components. Staining of COS-1 cells with CMAC gives rise to bright fluorescence due to reaction with proteins in the perinuclear, endoplasmic reticulum, and Golgi regions, which are immobile, as well as to weaker fluorescence due to the fluorescent glutathione adduct (molecular mass, ∼600 Da) in the cytosol, which is able to diffuse through small fusion pores. The COS-1 cells identified by CMAC staining (B, F, and J) are large and often appear multinuclear, although we do not know whether the round granular structures seen by bright-field microscopy of the COS-1 cells are nuclei or large granules. Panels A to D show one large cell triple stained with CMAC, DiI, and calcein (indicated by a star). DiI is internalized after 2 h at 37°C and appears punctate with nuclear sparing due to its localization in membranes of intracellular organelles. Calcein (465 Da) is evenly distributed throughout the cell (D). One large, granular COS-1 cell (A, left) is only stained with CMAC (B); its lack of staining with DiI (C) and calcein (D) indicates that it has not fused with HeLa-CD4 cells. In panel F, a large structure is seen which seems in continuity with CMAC. However, since the bottom left part of this structure is not in continuity with DiI (G) and calcein (H), it represent two cells. The top right cell (indicated by a star) is in continuity with CMAC, DiI, and calcein. Since COS-1 cells expressing W(1-5)A env do not produce blue nuclei when incubated with MAGI cells (see Fig. Fig.3),3), which requires transfer of the 14-kDa HIV-1 Tat protein (see text), we conclude that this COS-1–HeLa-CD4 conjugate represents a phenotype in which small fusion pores form, allowing movement of lipids and small molecules (<1,000 Da) but not of large molecules. The same phenotype is seen with COS-1 cells expressing DAF env: the COS-1–HeLa-CD4 conjugate indicated by a star in panels J, K, and L is in continuity with CMAC, DiI, and calcein but does not allow transfer of HIV-1 Tat (see Fig. Fig.33).Open in a separate windowFIG. 3Fusogenic activity of WT and mutant HIV-1 gp41s. The three-color assay was performed as described in the legend to Fig. Fig.2.2. Since multiple rounds of fusion may interfere with quantitation in the case of WT and mutant env genes which produce a large number of blue nuclei after 24 h at 37°C (grey bars), incubations were done for 2 h at 37°C. Black bars represent 100 times the number of COS-1 cells stained with DiI and calcein over the total number of COS-1–HeLa-CD4 conjugates measured in the three-color assay. The data are representative of five separate experiments. In each experiment, a total of 30 to 50 COS-1–HeLa-CD4 conjugates were counted. The number of nuclei per syncytium (grey bars) was obtained from the MAGI assay (8a) and represents the ability of HIV-1 Tat to transfer from COS-1 cells to HeLa-CD4 cells.We tallied data from many cell pairs similar to those shown in Fig. Fig.22 and plotted the average percentage of COS-1 cells stained with DiI and calcein. Figure Figure33 shows the data for the WT and a number of mutants described by Salzwedel et al. (8a). The data fall into three groups, in which the envelope glycoproteins mediate (i) both dye and HIV-1 Tat redistribution (WT, Δ678-682, and SC7), (ii) neither dye nor HIV-1 Tat redistribution (Δ665-682 and +FLAG), or (iii) dye but not HIV-1 Tat redistribution [W(1-5)A and +DAF]. The latter represents a nonexpanding fusion pore phenotype.Dye redistribution induced by WT and mutant gp41s was inhibited by the peptide inhibitors DP178 and C34 (Fig. (Fig.4).4). The latter peptide is from the HR2 sequence (residues 628 to 663) which forms the flanking peptide of the heterotrimeric coiled coil in the crystal structure. DP178 is frameshifted 10 amino acids toward the C terminus (residues 638 to 673). The inhibition data indicate that dye redistribution mediated by WT and mutant gp41 molecules is specific for the gp120-gp41-induced fusion reaction and not due to nonspecific transfer. Interestingly, W(1-5)A and SC7 exhibited greater sensitivity than the WT to DP178 inhibition. In the case of C34, inhibition was about the same for the WT and the two mutants. We observed no inhibition by DP178 or C34 of HIV-2 env-mediated fusion at up to 100 nM peptide (data not shown). Open in a separate windowFIG. 4Inhibition of cell-cell fusion by DP178 and C34 peptides. Cell fusion was calculated as a percentage of the control by using the three-color assay method shown in Fig. Fig.22 and and33 and described in the text for the WT, W(1-5)A, and SC7.Although the crystal structure of the gp41 core (4, 11) is based on the HR1-HR2 coiled coil, it is possible that in intact gp41 the bundle is extended to include amino acids downstream from HR2 and upstream from HR1. Extension of the coiled coil might lead to tilting of the TM anchor, which is presumably important for producing sufficient lipid curvature to form a fusion junction (1). Removal of amino acids 665 to 682 may leave no possibility to form this extended coiled coil. Similarly, insertion of the FLAG sequence, which contains four aspartic acid residues, would presumably insert charged residues into a hydrophobic domain, which could also prevent extension of the coiled coil. The other mutations presumably allow extended coiled-coil formation but reduce its efficiency because of weaker interactions between the amino acids in the extended region. The coiled-coil structure might be so frail in mutant gp41s W(1-5)A and +DAF that it is not present for a sufficient amount of time to create the fusion pore dilation necessary to allow transfer of HIV-1 Tat. Since the Δ678-682 and SC7 proteins are, to a limited extent, capable of inducing syncytium formation and dye transfer, we surmise that they possess intermediate extended coiled-coil-forming propensities.Based on the structural information about the gp41 core (4, 10, 11), it has been proposed that the binding site for the peptide inhibitors is in the HR1 bundle. The C34 and DP178 peptides presumably bind in the same way as the corresponding amino acid sequence regions of the three HR2 helices in the crystal structures. At this position, the peptides would sterically block the regular binding of the HR2 helices to the inner core of HR1 helices and thus prevent formation of the bent-in-half, antiparallel, heterotrimeric coiled-coil structure presumably required to bring the viral and target cell membranes into contact for fusion. Since C34 corresponds to HR2 with no amino acids in the extended region, we do not expect any enhanced inhibitory effect on fusion mediated by the mutant gp41s. Figure Figure4b4b shows that this is the case. Since DP178 does contain 10 amino acids downstream from HR2 whose interaction with amino acids upstream from HR1 is weaker in the mutants, we expect greater sensitivity to DP178 inhibition in the mutant proteins. This does seem to be the case, as shown in Fig. Fig.44a.The recent high-resolution X-ray crystallographic determination of the structure of the gp41 core from HIV-1 provides well-defined landmarks in the terrain the viral envelope glycoproteins navigate following CD4 and coreceptor-induced conformational changes (5). The structures include neither fusion peptides and TM anchors nor regions between those domains and HR1 and HR2, respectively, which are crucial for fusion activity. Therefore, mutagenesis of those undetermined domains combined with sensitive assays for the activity of the modified proteins will lead to refinement of our thinking about the HIV-1 gp120-gp41 fusion machine.  相似文献   

14.
15.
Chimpanzees infected with the primary isolate DH012 mount potent neutralizing antibodies. This DH012 neutralizing activity is highly strain specific. Immune sera from guinea pigs immunized with recombinant DH012 gp120 could also neutralize this primary isolate. The neutralizing activity in chimpanzee and guinea pig sera against wild-type DH012 appears to be independent of a linear epitope in the V3 region of gp120. Interestingly, the neutralization escape mutant derived from growing DH012 in the presence of the potent neutralizing chimpanzee serum is at least 50-fold more sensitive than wild-type DH012 to neutralization by guinea pig immune sera. The unusually potent neutralizing activity against the DH012 neutralization-resistant virus is due to the presence of anti-V3 antibodies in guinea pig sera. These results suggested that recombinant gp120 could induce neutralizing antibodies against primary isolate DH012. The V3 of wild-type DH012 is poorly immunogenic in infected chimpanzees and is not accessible to neutralizing V3 antibodies. It is likely that this cryptic V3 region became exposed when the virus escaped the neutralizing activity of the chimpanzee serum.  相似文献   

16.
17.
The transmembrane subunit (TM) of human immunodeficiency virus type 1 (HIV-1) envelope protein contains four well-conserved sites for the attachment of N-linked carbohydrates. To study the contribution of these N-glycans to the function of TM, we systematically mutated the sites individually and in all combinations and measured the effects of each on viral replication in culture. The mutants were derived from SHIV-KB9, a simian immunodeficiency virus/HIV chimera with an envelope sequence that originated from a primary HIV-1 isolate. The attachment site mutants were generated by replacing the asparagine codon of each N-X-S/T motif with a glutamine codon. The mobilities of the variant transmembrane proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis suggested that all four sites are utilized for carbohydrate attachment. Transfection of various cell lines with the resulting panel of mutant viral constructs revealed that the N-glycan attachment sites are largely dispensable for viral replication. Fourteen of the 15 mutants were replication competent, although the kinetics of replication varied depending on the mutant and the cell type. The four single mutants (g1, g2, g3, and g4) and all six double mutants (g12, g13, g14, g23, g24, and g34) replicated in both human and rhesus monkey T-cell lines, as well as in primary rhesus peripheral blood mononuclear cells. Three of the four triple mutants (g124, g134, and g234) replicated in all cell types tested. The triple mutant g123 replicated poorly in immortalized rhesus monkey T cells (221 cells) and did not replicate detectably in CEMx174 cells. However, at 3 weeks posttransfection of 221 cells, a variant of g123 emerged with a new N-glycan attachment site which compensated for the loss of sites 1, 2, and 3 and resulted in replication kinetics similar to those of the parental virus. The quadruple mutant (g1234) did not replicate in any cell line tested, and the g1234 envelope protein was nonfunctional in a quantitative cell-cell fusion assay. The synthesis and processing of the quadruple mutant envelope protein appeared similar in transient assays to those of the parental SHIV-KB9 envelope. Given their high degree of conservation, the four N-linked carbohydrate attachment sites on the external domain of gp41 are surprisingly dispensable for viral replication. The viral variants described in this report should prove useful for investigation of the contribution of carbohydrate moieties on gp41 to recognition by antibodies, shielding from antibody-mediated neutralization, and structure-function relationships.  相似文献   

18.
19.
The membrane-proximal external region (MPER) of the human immunodeficiency virus (HIV) envelope glycoprotein (gp41) is critical for viral fusion and infectivity and is the target of three of the five known broadly neutralizing HIV type 1 (HIV-1) antibodies, 2F5, Z13, and 4E10. Here, we report the crystal structure of the Fab fragment of Z13e1, an affinity-enhanced variant of monoclonal antibody Z13, in complex with a 12-residue peptide corresponding to the core epitope (W670NWFDITN677) at 1.8-Å resolution. The bound peptide adopts an S-shaped conformation composed of two tandem, perpendicular helical turns. This conformation differs strikingly from the α-helical structure adopted by an overlapping MPER peptide bound to 4E10. Z13e1 binds to an elbow in the MPER at the membrane interface, making relatively few interactions with conserved aromatics (Trp672 and Phe673) that are critical for 4E10 recognition. The comparison of the Z13e1 and 4E10 epitope structures reveals a conformational switch such that neutralization can occur by the recognition of the different conformations and faces of the largely amphipathic MPER. The Z13e1 structure provides significant new insights into the dynamic nature of the MPER, which likely is critical for membrane fusion, and it has significant implications for mechanisms of HIV-1 neutralization by MPER antibodies and for the design of HIV-1 immunogens.The continued spread of human immunodeficiency virus (HIV) worldwide and, in particular, in sub-Saharan Africa, where an estimated 22 million people currently are living with HIV/AIDS, underscores the urgent need for a preventative vaccine. However, despite nearly 25 years of intense international research, a vaccine is not yet available. Passive immunization with broadly neutralizing antibodies can confer sterilizing protection against infection in animal models (4, 12, 39-41, 51, 64), providing encouragement for the development of an antibody-inducing component of an HIV type 1 (HIV-1) vaccine. Such a vaccine should elicit neutralizing antibodies with activity against the broadest range of primary circulating isolates. However, a lack of understanding of how to raise potent, cross-reactive antibodies by immunization, the so-called neutralizing antibody problem, is a major hurdle in this effort (6, 24, 72). Thus, an understanding of the structure and presentation of neutralizing epitopes on the virus and the antibodies that recognize them is vital for vaccine development.The targets of antibody neutralization are the surface envelope (Env) glycoprotein trimers (gp120/gp41) that mediate the fusion of the viral membrane with that of the host. The majority of antibodies elicited during natural infection or immunization show limited or no cross-reactivity against diverse isolates. However, a few rare, broadly neutralizing, monoclonal antibodies have been isolated from HIV-1-infected individuals and exhibit activity against a wide range of isolates by binding to functionally conserved epitopes exposed on native gp120/gp41 trimers. These epitopes include the CD4 binding site, recognized by antibody b12, and a relatively well-conserved cluster of N-linked glycans, located on the outer domain of gp120, that is recognized by antibody 2G12 (12, 13, 71, 76). V3-directed antibodies, which are common in natural infection, also are able to sporadically neutralize across clades, as exemplified by 447-52D and F425-B4e8 (7, 16, 49, 66). The identification of three broadly neutralizing antibodies, 2F5, Z13, and 4E10, that target the conserved tryptophan-rich membrane-proximal external region (MPER) of gp41 has implicated this region as a highly promising vaccine target and has, therefore, spurred interest in its structural characterization (15, 35, 45, 47, 48, 50, 80).The MPER plays a critical, but not fully understood, role in membrane fusion and is situated between the C-terminal heptad repeat (CHR) and the transmembrane domain (TM) of gp41 (Fig. (Fig.1).1). Following the binding of gp120 to the cell surface receptors CD4 and CXCR4/CCR5, the gp41 glycoprotein undergoes a series of conformational changes that trigger the membrane fusion activity. Notably, a relatively long-lived prehairpin intermediate of gp41 is formed, in which the coiled-coil of the N-terminal heptad repeats (NHR) extends so as to enable the fusion peptides to embed into the target membrane. In the postfusion or fusogenic state, the CHR and NHR reassemble into an antiparallel 6-helix bundle in a process that drives membrane fusion (18). The MPER contains several functionally conserved tryptophan residues that are critical for membrane fusion and viral entry, although the structural basis for their specific role has not been firmly established (22, 44, 58). Their mutation to alanine leads to the attenuation of viral infectivity, which is most pronounced for Trp666 and Trp672 (numbered according to the HXB2 isolate) (46, 58, 78). In addition, peptides based on the MPER can induce membrane leakage (68). Such membrane-disrupting properties of the MPER have been suggested to be functionally important in the expansion of the fusion pore created after receptor engagement (42, 44, 58, 68, 77).Open in a separate windowFIG. 1.Major features of gp41 include the fusion peptide (FP), NHR, CHR, TM, and cytoplasmic domain (CD). The MPER is located between the CHR and TM regions of gp41. The core epitopes of 2F5 (green), Z13e1 (yellow), and 4E10 (orange) are indicated. The epitope of Z13e1 is located between those of 2F5 and 4E10, but it overlaps more closely with 4E10.From initial explorations using solution nuclear magnetic resonance, the structure of a 19-residue MPER peptide (residues 665 to 683) was found to be helical in dodecylphosphocholine micelles, with the hydrophobic and hydrophilic residues distributed evenly around the helix axis (62). Another study found that an MPER peptide comprising residues 659 to 671 adopts a 310-helix in water (10). More recently, the structure of an MPER peptide (residues 662 to 683) in liposomes was elucidated by a combination of nuclear magnetic resonance and spin-label electron paramagnetic resonance (69), and it was found to adopt a kinked, amphipathic structure composed of two helices connected by a short hinge (Phe673 and Asn674). Crystal structures of Fab 2F5 in complex with a 7-mer (E662LDKWAS668) and 17-mer encompassing residues 654 to 670 previously had revealed a mostly extended conformation characterized by a central β-turn involving Asp664, Lys665, and Trp666 (47, 48). This motif is the key recognition determinant for 2F5 and becomes deeply buried in the antibody combining site, suggesting that it is exposed at some stage in viral entry (45, 47, 78). The crystal structure of Fab 4E10 in complex with peptide-spanning residues W670NWFDITNW678 revealed an amphipathic α-helical structure with a narrow hydrophilic face (15). The N terminus of the 4E10 epitope forms a 310-helix that transitions into a regular α-helix at residue Asp674 and continues to Lys683, which constitutes the end of the gp41 ectodomain (14). Thus, while the structure of the MPER within functional, membrane-embedded Env trimers is not known, the observation that unconstrained peptides are able to adopt more than one defined structure suggests an inherent degree of flexibility.Like 4E10, Z13 was identified from an HIV-1-infected individual, the former being isolated from an immortalized B-cell line and the latter from a bone marrow RNA phage display library (80). The epitope of MAb Z13 spans residues S668LWNWFDITN677, as determined by peptide mapping, scanning mutagenesis, and antibody competition studies (46, 80). This region lies between the 2F5 and 4E10 epitopes but overlaps more closely with 4E10 (Fig. (Fig.1).1). 4E10 and Z13 are both able to neutralize primary as well as laboratory-adapted isolates; nevertheless, Z13 is not as broadly neutralizing as 4E10, which has the greatest breadth of any HIV-1 antibody described to date (9). Z13e1 is an affinity-enhanced variant of Z13 and was evolved by randomizing the complementarity determining region (CDR) L3 loop sequence to identify tighter-binding mutants using phage display (46). Z13e1 displays higher affinity for both peptide and recombinant gp41 substrates, as well as increased neutralization potency, suggesting that the L3 mutations optimize binding to the linear MPER epitope. The neutralization breadth of Z13e1 is limited by the requirement for Asn671 and Asp674 in the MPER, which are approximately 71 and 58% conserved, respectively, among sequences in the Los Alamos HIV sequence database (80). Based on the clear relationship between Env trimer binding and neutralization, the neutralizing activity of Z13e1 derives from binding to a functional trimer (8, 20, 25, 43, 52, 55, 60, 73, 74). While Z13e1 and 4E10 have identical affinities for optimized linear peptides, Z13e1 is still about an order of magnitude less potent than 4E10 against a variety of primary isolates. Although the occlusion of the Z13e1 epitope on virion-associated trimers is thought to be the major limitation (46), the structural basis for the lower potency of Z13e1 relative to those of 2F5 and 4E10 is unclear.Whereas neutralization by 4E10 depends critically on Trp672 and Phe673, Z13e1 instead requires the flanking Asn671 and Asp674 residues (46). Based on a helical model of the MPER, it was predicted that Z13e1 binds the narrow hydrophilic face that displays Asn671, Asp674, and Asn677 that is opposite that recognized by 4E10. As Z13e1 and 4E10 bind to functional trimers, both epitopes must be exposed at some stage before membrane fusion (20). To examine how Z13e1 recognizes its MPER epitope, we determined the crystal structure of Fab Z13e1 in complex with a 12-residue peptide corresponding to the core epitope with C-terminal flanking lysines to aid peptide solubility (W670NWFDITN677KKKK). The crystal structure at 1.8-Å resolution uncovers a conformation of the MPER that is distinct from that visualized in complex with 4E10. Our findings show that Z13e1 and 4E10 recognize different conformers of the MPER and reveal a novel conformational switch that is relevant for HIV-1 neutralization and membrane fusion.  相似文献   

20.
The envelope glycoprotein (Env) of human immunodeficiency virus mediates virus entry into cells by undergoing conformational changes that lead to fusion between viral and cellular membranes. A six-helix bundle in gp41, consisting of an interior trimeric coiled-coil core with three exterior helices packed in the grooves (core structure), has been proposed to be part of a fusion-active structure of Env (D. C. Chan, D. Fass, J. M. Berger, and P. S. Kim, Cell 89:263–273, 1997; W. Weissenhorn, A. Dessen, S. C. Harrison, J. J. Skehel, and D. C. Wiley, Nature 387:426–430, 1997; and K. Tan, J. Liu, J. Wang, S. Shen, and M. Lu, Proc. Natl. Acad. Sci. USA 94:12303, 1997). We analyzed the effects of amino acid substitutions of arginine or glutamic acid in residues in the coiled-coil (heptad repeat) domain that line the interface between the helices in the gp41 core structure. We found that mutations of leucine to arginine or glutamic acid in position 556 and of alanine to arginine in position 558 resulted in undetectable levels of Env expression. Seven other mutations in six positions completely abolished fusion activity despite incorporation of the mutant Env into virions and normal gp160 processing. Single-residue substitutions of glutamic acid at position 570 or 577 resulted in the only viable mutants among the 16 mutants studied, although both viable mutants exhibited impaired fusion activity compared to that of the wild type. The glutamic acid 577 mutant was more sensitive than the wild type to inhibition by a gp41 coiled-coil peptide (DP-107) but not to that by another peptide corresponding to the C helix in the gp41 core structure (DP-178). These results provide insight into the gp41 fusion mechanism and suggest that the DP-107 peptide may inhibit fusion by binding to the homologous region in gp41, probably by forming a peptide-gp41 coiled-coil structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号