首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cell migration is critical for normal development and for pathological processes including cancer cell metastasis. Dynamic remodeling of focal adhesions and the actin cytoskeleton are crucial determinants of cell motility. The Rho family and the mitogen-activated protein kinase (MAPK) module consisting of MEK-extracellular signal-regulated kinase (ERK) are important regulators of these processes, but mechanisms for the integration of these signals during spreading and motility are incompletely understood. Here we show that ERK activity is required for fibronectin-stimulated Rho-GTP loading, Rho-kinase function, and the maturation of focal adhesions in spreading cells. We identify p190A RhoGAP as a major target for ERK signaling in adhesion assembly and identify roles for ERK phosphorylation of the C terminus in p190A localization and activity. These observations reveal a novel role for ERK signaling in adhesion assembly in addition to its established role in adhesion disassembly.Cell migration is a highly coordinated process essential for physiological and pathological processes (69). Signaling through Rho family GTPases (e.g., Rac, Cdc42, and Rho) is crucial for cell migration. Activated Rac and Cdc42 are involved in the production of a dominant lamellipodium and filopodia, respectively, whereas Rho-stimulated contractile forces are required for tail retraction and to maintain adhesion to the matrix (57, 58, 68). Rac- and Cdc42-dependent membrane protrusions are driven by the actin cytoskeleton and the formation of peripheral focal complexes; Rho activation stabilizes protrusions by stimulating the formation of mature focal adhesions and stress fibers. Active Rho influences cytoskeletal dynamics through effectors including the Rho kinases (ROCKs) (2, 3).Rho activity is stimulated by GEFs that promote GTP binding and attenuated by GTPase-activating proteins (GAPs) that enhance Rho''s intrinsic GTPase activity. However, due to the large number of RhoGEFs and RhoGAPs expressed in mammalian cells, the molecular mechanisms responsible for regulation of Rho activity in time and space are incompletely understood. p190A RhoGAP (hereafter p190A) is implicated in adhesion and migration signaling. p190A contains an N-terminal GTPase domain, a large middle domain juxtaposed to the C-terminal GAP domain, and a short C-terminal tail (74). The C-terminal tail of ∼50 amino acids is divergent between p190A and the closely related family member p190B (14) and thus may specify the unique functional roles for p190A and p190B revealed in gene knockout studies (10, 11, 41, 77, 78). p190A activity is dynamically regulated in response to external cues during cell adhesion and migration (5, 6, 59). Arthur et al. (5) reported that p190A activity is required for the transient decrease in RhoGTP levels seen in fibroblasts adhering to fibronectin. p190A activity is positively regulated by tyrosine phosphorylation (4, 5, 8, 17, 31, 39, 40, 42): phosphorylation at Y1105 promotes its association with p120RasGAP and subsequent recruitment to membranes or cytoskeleton (8, 17, 27, 31, 71, 75, 84). However, Y1105 phosphorylation is alone insufficient to activate p190A GAP activity (39). While the functions of p190A can be irreversibly terminated by ubiquitinylation in a cell-cycle-dependent manner (80), less is known about reversible mechanisms that negatively regulate p190A GAP activity during adhesion and motility.The integration of Rho family GTPase and extracellular signal-regulated kinase (ERK) signaling is important for cell motility (48, 50, 63, 76, 79). Several studies have demonstrated a requirement for ERK signaling in the disassembly of focal adhesions in migrating cells, in part through the activation of calpain proteases (36, 37) that can downregulate focal adhesion kinase (FAK) signaling (15), locally suppress Rho activity (52), and sever cytoskeletal linkers to focal adhesions (7, 33). Inhibition of ERK signaling increases focal adhesion size and retards disassembly of focal adhesions in adherent cells (57, 64, 85, 86). It is also recognized that ERK modulates Rho-dependent cellular processes, including membrane protrusion and migration (18, 25, 64, 86). Interestingly, ERK activated in response to acute fibronectin stimulation localizes not only to mature focal adhesions, but also to peripheral focal complexes (32, 76). Since these complexes can either mature or be turned over (12), ERK may play a distinct role in focal adhesion assembly. ERK is proposed to promote focal adhesion formation by activating myosin light chain kinase (MLCK) (21, 32, 50).Here we find that ERK activity is required for Rho activation and focal adhesion formation during adhesion to fibronectin and that p190A is an essential target of ERK signaling in this context. Inspection of the p190A C terminus reveals a number of consensus ERK sites and indeed p190A is phosphorylated by recombinant ERK only on its C terminus in vitro, and on the same C-terminal peptide in vivo. Mutation of the C-terminal ERK phosphorylation sites to alanine increases the biochemical and biological activity of p190A. Finally, inhibition of MEK or mutation of the C-terminal phosphorylation sites enhances retention of p190A in peripheral membranes during spreading on fibronectin. Our data support the conclusion that ERK phosphorylation inhibits p190A allowing increases in RhoGTP and cytoskeletal changes necessary for focal adhesion formation.  相似文献   

3.
To facilitate the release of infectious progeny virions, human immunodeficiency virus type 1 (HIV-1) exploits the Endosomal Sorting Complex Required for Transport (ESCRT) pathway by engaging Tsg101 and ALIX through late assembly (L) domains in the C-terminal p6 domain of Gag. However, the L domains in p6 are known to be dispensable for efficient particle production by certain HIV-1 Gag constructs that have the nucleocapsid (NC) domain replaced by a foreign dimerization domain to substitute for the assembly function of NC. We now show that one such L domain-independent HIV-1 Gag construct (termed ZWT) that has NC-p1-p6 replaced by a leucine zipper domain is resistant to dominant-negative inhibitors of the ESCRT pathway that block HIV-1 particle production. However, ZWT became dependent on the presence of an L domain when NC-p1-p6 was restored to its C terminus. Furthermore, when the NC domain was replaced by a leucine zipper, the p1-p6 region, but not p6 alone, conferred sensitivity to inhibition of the ESCRT pathway. In an authentic HIV-1 Gag context, the effect of an inhibitor of the ESCRT pathway on particle production could be alleviated by deleting a portion of the NC domain together with p1. Together, these results indicate that the ESCRT pathway dependence of HIV-1 budding is determined, at least in part, by the NC-p1 region of Gag.Human immunodeficiency virus type 1 (HIV-1) and other retroviruses hijack the cellular Endosomal Sorting Complex Required for Transport (ESCRT) pathway to promote the detachment of virions from the cell surface and from each other (3, 21, 42, 44, 47). The ESCRT pathway was initially identified based on its requirement for the sorting of ubiquitinated cargo into multivesicular bodies (MVB) (50, 51). During MVB biogenesis, the ESCRT pathway drives the membrane deformation and fission events required for the inward vesiculation of the limiting membrane of this organelle (26, 29, 50, 51). More recently, it emerged that the ESCRT pathway is also essential for the normal abscission of daughter cells during the final stage of cell division (10, 43). Most of the components of the ESCRT pathway are involved in the formation of four heteromeric protein complexes termed ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III. Additional components include ALIX, which interacts both with ESCRT-I and ESCRT-III, and the AAA ATPase Vps4, which mediates the disassembly of ESCRT-III (29, 42).The deformation and scission of endocytic membranes is thought to be mediated by ESCRT-III, which, together with Vps4, constitutes the most conserved element of the pathway (23, 26, 42). Indeed, it was recently shown that purified yeast ESCRT-III induces membrane deformation (52), and in another study three subunits of yeast ESCRT-III were sufficient to promote the formation of intralumenal vesicles in an in vitro assay (61). In mammals, ESCRT-III is formed by the charged MVB proteins (CHMPs), which are structurally related and tightly regulated through autoinhibition (2, 33, 46, 53, 62). The removal of an inhibitory C-terminal domain induces polymerization and association with endosomal membranes and converts CHMPs into potent inhibitors of retroviral budding (34, 46, 53, 60, 62). Alternatively, CHMPs can be converted into strong inhibitors of the ESCRT pathway and of HIV-1 budding through the addition of a bulky tag such as green fluorescent protein (GFP) or red fluorescent protein (RFP) (27, 36, 39, 54). Retroviral budding in general is also strongly inhibited by catalytically inactive Vps4 (22, 41, 55), or upon Vsp4B depletion (31), confirming the crucial role of ESCRT-III.Retroviruses engage the ESCRT pathway through the activity of so-called late assembly (L) domains in Gag. In the case of HIV-1, the primary L domain maps to a conserved PTAP motif in the C-terminal p6 domain of Gag (24, 28) and interacts with the ESCRT-I component Tsg101 (15, 22, 40, 58). HIV-1 p6 also harbors an auxiliary L domain of the LYPxnL type, which interacts with the V domain of ALIX (20, 35, 39, 54, 59, 63). Interestingly, Tsg101 binding site mutants of HIV-1 can be fully rescued through the overexpression of ALIX, and this rescue depends on the ALIX binding site in p6 (20, 56). In contrast, the overexpression of a specific splice variant of the ubiquitin ligase Nedd4-2 has been shown to rescue the release and infectivity of HIV-1 mutants lacking all known L domains in p6 (12, 57). Nedd4 family ubiquitin ligases had previously been implicated in the function of PPxY-type L domains, which also depend on an intact ESCRT pathway for function (4, 32, 38). However, HIV-1 Gag lacks PPxY motifs, and the WW domains of Nedd4-2, which mediate its interaction with PPxY motifs, are dispensable for the rescue of HIV-1 L domain mutants (57).ALIX also interacts with the nucleocapsid (NC) region of HIV-1 Gag (18, 49), which is located upstream of p6 and the p1 spacer peptide. ALIX binds HIV-1 NC via its Bro1 domain, and the capacity to interact with NC and to stimulate the release of a minimal HIV-1 Gag construct is shared among widely divergent Bro1 domain proteins (48). Based on these findings and the observation that certain mutations in NC cause a phenotype that resembles that of L domain mutants, it has been proposed that NC cooperates with p6 to recruit the machinery required for normal HIV-1 budding (18, 49).NC also plays a role in Gag polyprotein multimerization, and this function of NC depends on its RNA-binding activity (5-8). It has been proposed that the role of the NC-nucleic acid interaction during assembly is to promote the formation of Gag dimers (37), and HIV-1 assembly in the absence of NC can indeed be efficiently rescued by leucine zipper dimerization domains (65). Surprisingly, in this setting the L domains in p6 also became dispensable, since particle production remained efficient even when the entire NC-p1-p6 region of HIV-1 Gag was replaced by a leucine zipper (1, 65). These findings raised the possibility that the reliance of wild-type (WT) HIV-1 Gag on a functional ESCRT pathway is, at least in part, specified by NC-p1-p6. However, it also remained possible that the chimeric Gag constructs engaged the ESCRT pathway in an alternative manner.In the present report, we provide evidence supporting the first of those two possibilities. Particle production became independent of ESCRT when the entire NC-p1-p6 region was replaced by a leucine zipper, and reversion to ESCRT dependence was shown to occur as a result of restoration of p1-p6 but not of p6 alone. Furthermore, although the deletion of p1 alone had little effect in an authentic HIV-1 Gag context, the additional removal of a portion of NC improved particle production in the presence of an inhibitor of the ESCRT pathway. Together, these data imply that the NC-p1 region plays an important role in the ESCRT-dependence of HIV-1 particle production.  相似文献   

4.
The lipid phosphatase PTEN functions as a tumor suppressor by dephosphorylating the D3 position of phosphoinositide-3,4,5-trisphosphate, thereby negatively regulating the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway. In mammalian cells, PTEN exists either as a monomer or as a part of a >600-kDa complex (the PTEN-associated complex [PAC]). Previous studies suggest that the antagonism of PI3K/AKT signaling by PTEN may be mediated by a nonphosphorylated form of the protein resident within the multiprotein complex. Here we show that PTEN associates with p85, the regulatory subunit of PI3K. Using newly generated antibodies, we demonstrate that this PTEN-p85 association involves the unphosphorylated form of PTEN engaged within the PAC and also includes the p110β isoform of PI3K. The PTEN-p85 association is enhanced by trastuzumab treatment and linked to a decline in AKT phosphorylation in some ERBB2-amplified breast cancer cell lines. Together, these results suggest that integration of p85 into the PAC may provide a novel means of downregulating the PI3K/AKT pathway.The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway regulates glucose/nutrient homeostasis and cell survival and plays a central role in both normal metabolism and cancer. The PTEN tumor suppressor gene (29, 30, 54) negatively regulates the PI3K/AKT pathway by dephosphorylating the D3 hydroxyl subunit of phosphoinositide-3,4,5-trisphosphate, a key membrane phosphatidylinositol generated by PI3K (34). PTEN undergoes genetic or epigenetic inactivation in many malignancies, including glioblastoma, melanoma, and endometrial, prostate, and breast cancers, among others (6, 13, 22, 23, 47, 49-51, 55, 68). Similarly, germ line mutations of PTEN are associated with the development of hamartomatous neoplasias such as Cowden disease and Bannayan-Zonana syndrome (17, 21, 41).The tumor suppressor function of PTEN undergoes dynamic regulation involving both C-terminal phosphorylation and protein-protein interactions. Phosphorylation of serine and threonine residues at the PTEN C-terminal tail, mediated by kinases such as CK2 and glycogen synthase kinase 3β, alters its conformational structure and association with PDZ domain-containing proteins and attenuates PTEN enzymatic activity (1, 11, 20, 32, 45, 61-63, 66, 67, 71). Conversely, PTEN function is promoted in large part through its stabilization in unphosphorylated form by incorporation into a high-molecular-weight protein complex (the PTEN-associated complex [PAC]) (66). We first demonstrated the existence of the PAC through gel filtration studies of rat liver extracts, which identified PTEN within a high-molecular-mass peak (>600 kDa), as well as a low-molecular-mass peak (40 to 100 kDa) in which PTEN is monomeric and phosphorylated (66). Subsequently, several PDZ domain-containing proteins were shown to interact with PTEN, including MAGI-1b, MAGI-2, MAGI-3, ghDLG, hMAST205, MSP58/MCRS1, NHERF1, and NHERF2, which mediate indirect binding with platelet-derived growth factor (PDGF) receptor β (25, 36, 42, 57, 66). More recently, LKB1, a serine/threonine kinase tumor suppressor (7), was also found to interact with and phosphorylate PTEN in vitro (36). In aggregate, these data suggest that PTEN functional output is controlled by a complex interplay of protein interactions and regulation of C-terminal phosphorylation.Beyond these interactions, there is also evidence to support additional regulatory mechanisms by which the tumor suppressor function of PTEN is mediated. The herpesvirus-associated ubiquitin-specific protease was shown to interact directly with PTEN and promote its nuclear entry (53). Both ubiquitination and relocalization into the nucleus constitute important PTEN regulatory mechanisms (53, 64). In many tumors, PTEN nuclear exclusion has been associated with poor cancer prognosis and more aggressive cancer development (15, 44, 56). Moreover, successful treatment of acute promyelocytic leukemia was shown to be associated with an increase in monoubiquitinylation and relocation of PTEN into the nucleus (53).Like PTEN, the p85 regulatory subunit of PI3K serves as a prominent modulator of PI3K/AKT signaling. p85, which exists in three isoforms (α, β, and γ), targets the catalytic (110-kDa) PI3K subunit to the membrane, which brings it into proximity with membrane-associated phosphatidylinositol lipids. In the steady state, p85 forms a tight association with the catalytic PI3K subunit, usually p110α or p110β in nonhematopoietic cells, with p110δ predominating in leukocytes (19). Consistent with this notion, p85 and p110 exist in equimolar ratios in a wide variety of mammalian cell lines and tissues (19), although some studies have suggested a role for free p85 in cell signaling (33, 65).Several recent lines of evidence have begun to support a possible regulatory relationship between PTEN and p85 (reviewed in references 3 and 53). For example, liver-specific deletion of PIK3R1, which encodes the p85α regulatory subunit, reduces both the activation of PI3K and PTEN enzymatic activity in this context. As a result, p85α-deficient hepatic cells express elevated levels of phosphoinositide trisphosphate and exhibit prolonged AKT activation (60). In addition, both PTEN and p85 are regulated by small GTPase proteins such as RhoA, but PTEN coimmunoprecipitates with the RhoA effector Rock only in the presence of PI3K (18, 31, 37). Although only correlative in nature, these findings may suggest a possible role for PTEN in p85 regulation or vice versa, in addition to its known function as a direct antagonist of the PI3K/AKT pathway (3, 9, 52, 57, 60).In the present study, we demonstrate an endogenous association between p85 and PTEN. Using newly generated antibodies that selectively recognize the PTEN C-terminal tail in its unphosphorylated form, we demonstrate that this PTEN-p85 association preferentially involves the unphosphorylated form of PTEN. The specificity of this interaction was confirmed using multiple antibodies and through studies of both human cancer cells and murine embryonic fibroblasts (MEFs) deficient for specific p85 subunits. This association, which also engages p110β, is enhanced by trastuzumab treatment and correlates with diminished AKT phosphorylation. These results support a functional role for the PTEN-p85 association that may have important biological and therapeutic implications for PI3K/AKT pathway regulation.  相似文献   

5.
In order to elucidate the potential mechanisms of U(VI) reduction for the optimization of bioremediation strategies, the structure-function relationships of microbial communities were investigated in microcosms of subsurface materials cocontaminated with radionuclides and nitrate. A polyphasic approach was used to assess the functional diversity of microbial populations likely to catalyze electron flow under conditions proposed for in situ uranium bioremediation. The addition of ethanol and glucose as supplemental electron donors stimulated microbial nitrate and Fe(III) reduction as the predominant terminal electron-accepting processes (TEAPs). U(VI), Fe(III), and sulfate reduction overlapped in the glucose treatment, whereas U(VI) reduction was concurrent with sulfate reduction but preceded Fe(III) reduction in the ethanol treatments. Phyllosilicate clays were shown to be the major source of Fe(III) for microbial respiration by using variable-temperature Mössbauer spectroscopy. Nitrate- and Fe(III)-reducing bacteria (FeRB) were abundant throughout the shifts in TEAPs observed in biostimulated microcosms and were affiliated with the genera Geobacter, Tolumonas, Clostridium, Arthrobacter, Dechloromonas, and Pseudomonas. Up to two orders of magnitude higher counts of FeRB and enhanced U(VI) removal were observed in ethanol-amended treatments compared to the results in glucose-amended treatments. Quantification of citrate synthase (gltA) levels demonstrated a stimulation of Geobacteraceae activity during metal reduction in carbon-amended microcosms, with the highest expression observed in the glucose treatment. Phylogenetic analysis indicated that the active FeRB share high sequence identity with Geobacteraceae members cultivated from contaminated subsurface environments. Our results show that the functional diversity of populations capable of U(VI) reduction is dependent upon the choice of electron donor.Uranium contamination in subsurface environments is a widespread problem at mining and milling sites across North America, South America, and Eastern Europe (1). Uranium in the oxidized state, U(VI), is highly soluble and toxic and thus is a potential contaminant to local drinking-water supplies (46). Nitrate is often a cocontaminant with U(VI) as a result of the use of nitric acid in the processing of uranium and uranium-bearing waste (6, 45). Oxidized uranium can be immobilized in contaminated groundwater through the reduction of U(VI) to insoluble U(IV) by indirect (abiotic) and direct (enzymatic) processes catalyzed by microorganisms. Current remediation practices favor the stimulation of reductive uranium immobilization catalyzed by indigenous microbial communities along with natural attenuation and monitoring (5, 24, 40, 44, 65, 68, 69). Microbial uranium reduction activity in contaminated subsurface environments is often limited by carbon or electron donor availability (13, 24, 44, 69). Previous studies have indicated that U(VI) reduction does not proceed until nitrate is depleted (13, 16, 24, 44, 68, 69), as high nitrate concentrations inhibit the reduction of U(VI) by serving as a competing and more energetically favorable terminal electron acceptor for microorganisms (11, 16). The fate and transport of uranium in groundwater are also strongly linked through sorption and precipitation processes to the bioreduction of Fe minerals, including oxides, layer-silicate clay minerals, and sulfides (7, 23, 53).In order to appropriately design U(VI) bioremediation strategies, the potential function and phylogenetic structure of indigenous subsurface microbial communities must be further understood (24, 34, 46). Conflicting evidence has been presented on which microbial groups, Fe(III)- or sulfate-reducing bacteria (FeRB or SRB), effectively catalyze the reductive immobilization of U(VI) in the presence of amended electron donors (5, 44, 69). The addition of acetate to the subsurface at a uranium-contaminated site in Rifle, Colorado, initially stimulated FeRB within the family Geobacteraceae to reduce U(VI) (5, 65). However, with long-term acetate addition, SRB within the family Desulfobacteraceae, which are not capable of U(VI) reduction, increased in abundance and a concomitant reoxidation of U(IV) was observed (5, 65). At a uranium-contaminated site in Oak Ridge, Tennessee, in situ and laboratory-based experiments successfully employed ethanol amendments to stimulate denitrification followed by the reduction of U(VI) by indigenous microbial communities (13, 24, 44, 48, 50, 57, 68). In these studies, ethanol amendments stimulated both SRB and FeRB, with SRB likely catalyzing the reduction of U(VI). This suggests that the potential for bioremediation will be affected by the choice of electron donor amendment through effects on the functional diversity of U(VI)-reducing microbial populations. As uranium reduction is dependent on the depletion of nitrate, the microbial populations mediating nitrate reduction are also critical to the design of bioremediation strategies. Although nitrate-reducing bacteria (NRB) have been studied extensively in subsurface environments (2, 15, 19, 24, 56, 58, 70), the mechanisms controlling the in situ metabolism of NRB remain poorly understood.The dynamics of microbial populations capable of U(VI) reduction in subsurface sediments are poorly understood, and the differences in the microbial community dynamics during bioremediation have not been explored. Based on the results of previous studies (13, 44, 49, 57, 68, 69), we hypothesized that the activity of nitrate- and Fe(III)-reducing microbial populations, catalyzing the reductive immobilization of U(VI) in subsurface radionuclide-contaminated sediments, would be dependent on the choice of electron donor. The objectives of the present study were (i) to characterize structure-function relationships for microbial groups likely to catalyze or limit U(VI) reduction in radionuclide-contaminated sediments and (ii) to further develop a proxy for the metabolic activity of FeRB. Microbial activity was assessed by monitoring terminal electron-accepting processes (TEAPs), electron donor utilization, and Fe(III) mineral transformations in microcosms conducted with subsurface materials cocontaminated with high levels of U(VI) and nitrate. In parallel, microbial functional groups (i.e., NRB and FeRB) were enumerated and characterized using a combination of cultivation-dependent and -independent methods.  相似文献   

6.
The first morphological evidence of African swine fever virus (ASFV) assembly is the appearance of precursor viral membranes, thought to derive from the endoplasmic reticulum, within the assembly sites. We have shown previously that protein p54, a viral structural integral membrane protein, is essential for the generation of the viral precursor membranes. In this report, we study the role of protein p17, an abundant transmembrane protein localized at the viral internal envelope, in these processes. Using an inducible virus for this protein, we show that p17 is essential for virus viability and that its repression blocks the proteolytic processing of polyproteins pp220 and pp62. Electron microscopy analyses demonstrate that when the infection occurs under restrictive conditions, viral morphogenesis is blocked at an early stage, immediately posterior to the formation of the viral precursor membranes, indicating that protein p17 is required to allow their progression toward icosahedral particles. Thus, the absence of this protein leads to an accumulation of these precursors and to the delocalization of the major components of the capsid and core shell domains. The study of ultrathin serial sections from cells infected with BA71V or the inducible virus under permissive conditions revealed the presence of large helicoidal structures from which immature particles are produced, suggesting that these helicoidal structures represent a previously undetected viral intermediate.African swine fever virus (ASFV) (61, 72) is the only known DNA-containing arbovirus and the sole member of the Asfarviridae family (24). Infection by this virus of its natural hosts, the wild swine warthogs and bushpigs and the argasid ticks of the genus Ornithodoros, results in a mild disease, often asymptomatic, with low viremia titers, that in many cases develops into a persistent infection (3, 43, 71). In contrast, infection of domestic pigs leads to a lethal hemorrhagic fever for which the only available methods of disease control are the quarantine of the affected area and the elimination of the infected animals (51).The ASFV genome is a lineal molecule of double-stranded DNA of 170 to 190 kbp in length with convalently closed ends and terminal inverted repeats. The genome encodes more than 150 open reading frames, half of which lack any known or predictable function (16, 75).The virus particle, with an overall icosahedral shape and an average diameter of 200 nm (11), is organized in several concentric layers (6, 11, 15) containing more than 50 structural proteins (29). Intracellular particles are formed by an inner viral core, which contains the central nucleoid surrounded by a thick protein coat, referred to as core shell. This core is enwrapped by an inner lipid envelope (7, 34) on top of which the icosahedral capsid is assembled (26, 27, 31). Extracellular virions possess an additional membrane acquired during the budding from the plasma membrane (11). Both forms of the virus, intracellular and extracellular, are infective (8).The assembly of ASFV particles occurs in the cytoplasm of the infected cell, in viral factories located close to the cell nucleus (6, 13, 49). ASFV factories possess several characteristics similar to those of the cellular aggresomes (35), which are accumulations of aggregates of cellular proteins that form perinuclear inclusions (44).Current models propose that ASFV assembly begins with the modification of endoplasmic reticulum (ER) membranes, which are subsequently recruited to the viral factories and transformed into viral precursor membranes. These ER-derived viral membranes represent the precursors of the inner viral envelope and are the first morphological evidence of viral assembly (7, 60). ASFV viral membrane precursors evolve into icosahedral intermediates and icosahedral particles by the progressive assembly of the outer capsid layer at the convex face of the precursor membranes (5, 26, 27, 31) through an ATP- and calcium-dependent process (19). At the same time, the core shell is formed underneath the concave face of the viral envelope, and the viral DNA and nucleoproteins are packaged and condensed to form the innermost electron-dense nucleoid (6, 9, 12, 69). However, the assembly of the capsid and the internal envelope appears to be largely independent of the components of the core of the particle, since the absence of the viral polyprotein pp220 during assembly produces empty virus-like particles that do not contain the core (9).Comparative genome analysis suggests that ASFV shares a common origin with the members of the proposed nucleocytoplasmic large DNA viruses (NCLDVs) (40, 41). The reconstructed phylogeny of NCLDVs as well as the similitude in the structures and organizations of the genomes indicates that ASFV is more closely related to poxviruses than to other members of the NCLDVs. A consensus about the origin and nature of the envelope of the immature form of vaccinia virus (VV), the prototypical poxvirus, seems to be emerging (10, 17, 20, 54). VV assembly starts with the appearance of crescent-shaped structures within specialized regions of the cytoplasm also known as viral factories (21, 23). The crescent membranes originate from preexisting membranes derived from some specialized compartment of the ER (32, 37, 52, 53, 67), and an operative pathway from the ER to the crescent membrane has recently been described (38, 39). VV crescents apparently grow in length while maintaining the same curvature until they become closed circles, spheres in three dimensions, called immature virions (IV) (22). The uniform curvature is produced by a honeycomb lattice of protein D13L (36, 70), which attaches rapidly to the membranes so that nascent viral membranes always appear to be coated over their entirety. The D13L protein is evolutionarily related to the capsid proteins of the other members of the NCLDV group, including ASFV, but lacks the C-terminal jelly roll motif (40). This structural difference is probably related to the fact that poxviruses are the only member of this group without an icosahedral capsid; instead, the spherical D13L coat acts as a scaffold during the IV stage but is discarded in subsequent steps of morphogenesis (10, 28, 46, 66). Thus, although crescents in VV and precursors of the inner envelope in ASFV are the first morphogenetic stages discernible in the viral factories of these viruses, they seem to be different in nature. Crescents are covered by the D13L protein and are more akin to the icosahedral intermediates of ASFV assembly, whereas ASFV viral membrane precursors are more similar to the naked membranes seen when VV morphogenesis is arrested by rifampin treatment (33, 47, 48, 50) or when the expression of the D13L and A17L proteins are repressed during infection with lethal conditional VV viruses (45, 55, 56, 68, 74, 76).Although available evidence strongly supports the reticular origin of the ASFV inner envelope (7, 60), the mechanism of acquisition remains unknown, and the number of membranes present in the inner envelope is controversial. The traditional view of the inner envelope as formed by two tightly opposed membranes derived from ER collapsed cisternae (7, 59, 60) has recently been challenged by the careful examination of the width of the internal membrane of viral particles and the single outer mitochondrial membrane, carried out using chemical fixation, cryosectioning, and high-pressure freezing (34). The results suggest that the inner envelope of ASFV is a single lipid bilayer, which raises the question of how such a structure can be generated and stabilized in the precursors of the ASFV internal envelope. In the case of VV, the coat of the D13L protein has been suggested to play a key role in the stabilization of the single membrane structure of the crescent (10, 17, 36), but the ASFV capsid protein p72 is not a component of the viral membrane precursors. The identification and functional characterization of the proteins involved in the generation of these structures are essential for the understanding of the mechanisms involved in these early stages of viral assembly. For this reason, we are focusing our interest on the study of abundant structural membrane proteins that reside at the inner envelope of the viral particle. We have shown previously that one of these proteins, p54, is essential for the recruitment of ER membranes to the viral factory (59). Repression of protein p54 expression has a profound impact on virus production and leads to an early arrest in virion morphogenesis, resulting in the virtual absence of membranes in the viral factory.Protein p17, encoded by the late gene D117L in the BA71V strain, is an abundant structural protein (60, 65). Its sequence, which is highly conserved among ASFV isolates (16), does not show any significant similarity with the sequences present in the databases. Protein p17 is an integral membrane protein (18) that is predicted to insert in membranes with a Singer type I topology and has been localized in the envelope precursors as well as in both intracellular and extracellular mature particles (60), suggesting that it resides at the internal envelope, the only membranous structure of the intracellular particles.In this work, we analyze the role of protein p17 in viral assembly by means of an IPTG (isopropyl-β-d-thiogalactopyranoside)-dependent lethal conditional virus. The data presented indicate that protein p17 is essential for viral morphogenesis. The repression of this protein appears to block assembly at the level of viral precursor membranes, resulting in their accumulation at the viral factory.From the electron microscopy analysis of serial sections of viral factories at very early times during morphogenesis, we present experimental evidence that suggests that, during assembly, viral precursor membranes and core material organize into large helicoidal intermediates from which icosahedral particles emerge. The possible role of these structures during ASFV morphogenesis is discussed.  相似文献   

7.
8.
9.
10.
11.
12.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

13.
14.
15.
16.
17.
18.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

19.
The filovirus VP40 protein is capable of budding from mammalian cells in the form of virus-like particles (VLPs) that are morphologically indistinguishable from infectious virions. Ebola virus VP40 (eVP40) contains well-characterized overlapping L domains, which play a key role in mediating efficient virus egress. L domains represent only one component required for efficient budding and, therefore, there is a need to identify and characterize additional domains important for VP40 function. We demonstrate here that the 96LPLGVA101 sequence of eVP40 and the corresponding 84LPLGIM89 sequence of Marburg virus VP40 (mVP40) are critical for efficient release of VP40 VLPs. Indeed, deletion of these motifs essentially abolished the ability of eVP40 and mVP40 to bud as VLPs. To address the mechanism by which the 96LPLGVA101 motif of eVP40 contributes to egress, a series of point mutations were introduced into this motif. These mutants were then compared to the eVP40 wild type in a VLP budding assay to assess budding competency. Confocal microscopy and gel filtration analyses were performed to assess their pattern of intracellular localization and ability to oligomerize, respectively. Our results show that mutations disrupting the 96LPLGVA101 motif resulted in both altered patterns of intracellular localization and self-assembly compared to wild-type controls. Interestingly, coexpression of either Ebola virus GP-WT or mVP40-WT with eVP40-ΔLPLGVA failed to rescue the budding defective eVP40-ΔLPLGVA mutant into VLPs; however, coexpression of eVP40-WT with mVP40-ΔLPLGIM successfully rescued budding of mVP40-ΔLPLGIM into VLPs at mVP40-WT levels. In sum, our findings implicate the LPLGVA and LPLGIM motifs of eVP40 and mVP40, respectively, as being important for VP40 structure/stability and budding.Ebola and Marburg viruses are members of the family Filoviridae. Filoviruses are filamentous, negative-sense, single-stranded RNA viruses that cause lethal hemorrhagic fevers in both humans and nonhuman primates (5). Filoviruses encode seven viral proteins including: NP (major nucleoprotein), VP35 (phosphoprotein), VP40 (matrix protein), GP (glycoprotein), VP30 (minor nucleoprotein), VP24 (secondary matrix protein), and L (RNA-dependent RNA polymerase) (2, 5, 10, 12, 45). Numerous studies have shown that expression of Ebola virus VP40 (eVP40) alone in mammalian cells leads to the production of virus-like particles (VLPs) with filamentous morphology which is indistinguishable from infectious Ebola virus particles (12, 17, 18, 25, 26, 27, 30, 31, 34, 49). Like many enveloped viruses such as rhabdovirus (11) and arenaviruses (44), Ebola virus encodes late-assembly or L domains, which are sequences required for the membrane fission event that separates viral and cellular membranes to release nascent virion particles (1, 5, 7, 10, 12, 18, 25, 27, 34). Thus far, four classes of L domains have been identified which were defined by their conserved amino acid core sequences: the Pro-Thr/Ser-Ala-Pro (PT/SAP) motif (25, 27), the Pro-Pro-x-Tyr (PPxY) motif (11, 12, 18, 19, 41, 53), the Tyr-x-x-Leu (YxxL) motif (3, 15, 27, 37), and the Phe-Pro-Ile-Val (FPIV) motif (39). Both PTAP and the PPxY motifs are essential for efficient particle release for eVP40 (25, 27, 48, 49), whereas mVP40 contains only a PPxY motif. L domains are believed to act as docking sites for the recruitment of cellular proteins involved in endocytic trafficking and multivesicular body biogenesis to facilitate virus-cell separation (8, 13, 14, 16, 28, 29, 33, 36, 43, 50, 51).In addition to L domains, oligomerization, and plasma-membrane localization of VP40 are two functions of the protein that are critical for efficient budding of VLPs and virions. Specific sequences involved in self-assembly and membrane localization have yet to be defined precisely. However, recent reports have attempted to identify regions of VP40 that are important for its overall function in assembly and budding. For example, the amino acid region 212KLR214 located at the C-terminal region was found to be important for efficient release of eVP40 VLPs, with Leu213 being the most critical (30). Mutation of the 212KLR214 region resulted in altered patterns of cellular localization and oligomerization of eVP40 compared to those of the wild-type genotype (30). In addition, the proline at position 53 was also implicated as being essential for eVP40 VLP release and plasma-membrane localization (54).In a more recent study, a YPLGVG motif within the M protein of Nipah virus (NiV) was shown to be important for stability, membrane binding, and budding of NiV VLPs (35). Whether this NiV M motif represents a new class of L domain remains to be determined. However, it is clear that this YPLGVG motif of NiV M is important for budding, perhaps involving a novel mechanism (35). Our rationale for investigating the corresponding, conserved motifs present within the Ebola and Marburg virus VP40 proteins was based primarily on these findings with NiV. In addition, Ebola virus VP40 motif maps close to the hinge region separating the N- and C-terminal domains of VP40 (4). Thus, the 96LPLGVA101 motif of eVP40 is predicted to be important for the overall stability and function of VP40 during egress. Findings presented here indicate that disruption of these filovirus VP40 motifs results in a severe defect in VLP budding, due in part to impairment in overall VP40 structure, stability and/or intracellular localization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号