首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
Highly active antiretroviral therapy (HAART) can reduce human immunodeficiency virus type 1 (HIV-1) viremia to clinically undetectable levels. Despite this dramatic reduction, some virus is present in the blood. In addition, a long-lived latent reservoir for HIV-1 exists in resting memory CD4+ T cells. This reservoir is believed to be a source of the residual viremia and is the focus of eradication efforts. Here, we use two measures of population structure—analysis of molecular variance and the Slatkin-Maddison test—to demonstrate that the residual viremia is genetically distinct from proviruses in resting CD4+ T cells but that proviruses in resting and activated CD4+ T cells belong to a single population. Residual viremia is genetically distinct from proviruses in activated CD4+ T cells, monocytes, and unfractionated peripheral blood mononuclear cells. The finding that some of the residual viremia in patients on HAART stems from an unidentified cellular source other than CD4+ T cells has implications for eradication efforts.Successful treatment of human immunodeficiency virus type 1 (HIV-1) infection with highly active antiretroviral therapy (HAART) reduces free virus in the blood to levels undetectable by the most sensitive clinical assays (18, 36). However, HIV-1 persists as a latent provirus in resting, memory CD4+ T lymphocytes (6, 9, 12, 16, 48) and perhaps in other cell types (45, 52). The latent reservoir in resting CD4+ T cells represents a barrier to eradication because of its long half-life (15, 37, 40-42) and because specifically targeting and purging this reservoir is inherently difficult (8, 25, 27).In addition to the latent reservoir in resting CD4+ T cells, patients on HAART also have a low amount of free virus in the plasma, typically at levels below the limit of detection of current clinical assays (13, 19, 35, 37). Because free virus has a short half-life (20, 47), residual viremia is indicative of active virus production. The continued presence of free virus in the plasma of patients on HAART indicates either ongoing replication (10, 13, 17, 19), release of virus after reactivation of latently infected CD4+ T cells (22, 24, 31, 50), release from other cellular reservoirs (7, 45, 52), or some combination of these mechanisms. Finding the cellular source of residual viremia is important because it will identify the cells that are still capable of producing virus in patients on HAART, cells that must be targeted in any eradication effort.Detailed analysis of this residual viremia has been hindered by technical challenges involved in working with very low concentrations of virus (13, 19, 35). Recently, new insights into the nature of residual viremia have been obtained through intensive patient sampling and enhanced ultrasensitive sequencing methods (1). In a subset of patients, most of the residual viremia consisted of a small number of viral clones (1, 46) produced by a cell type severely underrepresented in the peripheral circulation (1). These unique viral clones, termed predominant plasma clones (PPCs), persist unchanged for extended periods of time (1). The persistence of PPCs indicates that in some patients there may be another major cellular source of residual viremia (1). However, PPCs were observed in a small group of patients who started HAART with very low CD4 counts, and it has been unclear whether the PPC phenomenon extends beyond this group of patients. More importantly, it has been unclear whether the residual viremia generally consists of distinct virus populations produced by different cell types.Since the HIV-1 infection in most patients is initially established by a single viral clone (23, 51), with subsequent diversification (29), the presence of genetically distinct populations of virus in a single individual can reflect entry of viruses into compartments where replication occurs with limited subsequent intercompartmental mixing (32). Sophisticated genetic tests can detect such population structure in a sample of viral sequences (4, 39, 49). Using two complementary tests of population structure (14, 43), we analyzed viral sequences from multiple sources within individual patients in order to determine whether a source other than circulating resting CD4+ T cells contributes to residual viremia and viral persistence. Our results have important clinical implications for understanding HIV-1 persistence and treatment failure and for improving eradication strategies, which are currently focusing only on the latent CD4+ T-cell reservoir.  相似文献   

2.
Using the simian immunodeficiency virus (SIV)-infected rhesus macaque model, we performed a longitudinal study to determine the effect of antiretroviral therapy on the phenotype and functional potential of CD4(+) T cells repopulating intestinal mucosa in human immunodeficiency virus infection. Severe depletion of CD4(+) and CD4(+) CD8(+) T cells occurred in the intestinal mucosa during primary SIV infection. The majority of these cells were of activated memory phenotype. Phosphonate 9-[2-(phosphomethoxypropyl]adenine (PMPA) treatment led to a moderate suppression of intestinal viral loads and repopulation of intestinal mucosa by predominantly activated memory CD4(+) T-helper cells. This repopulation was independent of the level of viral suppression. Compared to preinfection values, the frequency of naive CD4(+) T cells increased following PMPA therapy, suggesting that new CD4(+) T cells were repopulating the intestinal mucosa. Repopulation by CD4(+) CD8(+) T cells was not observed in either jejunum or colon lamina propria. The majority of CD4(+) T cells repopulating the intestinal mucosa following PMPA therapy were CD29(hi) and CD11ahi. A subset of repopulating intestinal CD4(+) T cells expressed Ki-67 antigen, indicating that local proliferation may play a role in the repopulation process. Although the majority of repopulating CD4(+) T cells in the intestinal mucosa were functionally capable of providing B- and T-cell help, as evidenced by their expression of CD28, these CD4(+) T cells were found to have a reduced capacity to produce interleukin-2 (IL-2) compared to the potential of CD4(+) T cells prior to SIV infection. Persistent viral infection may play a role in suppressing the potential of repopulating CD4(+) T cells to produce IL-2. Hence, successful antiretroviral therapy should aim at complete suppression of viral loads in mucosal lymphoid tissues, such as intestinal mucosa.  相似文献   

3.
4.
Loss of intestinal CD4+ T cells was associated with decreased production of several T-helper 1 (TH1) and TH2 cytokines and increased production of interleukin 17 (IL-17), gamma interferon (IFN-γ), CCL4, and granulocyte-macrophage colony-stimulating factor (GM-CSF) by CD8+ T cells 21 days after simian immunodeficiency virus (SIV) infection in rhesus macaques. Shifting of mucosal TH1 to TH2 or T-cytotoxic 1 (TC1) to TC2 cytokine profiles was not evident. Additionally, both CD4+ and CD8+ T cells showed upregulation of macrophage migration inhibition factor (MIF) and basic fibroblast growth factor (FGF-basic) cytokines that have been linked to HIV disease progression.  相似文献   

5.
6.
7.
8.
Declining blood CD4+ T-cell counts mark the progress of simian immunodeficiency virus (SIV) disease in macaques and model the consequences of untreated human immunodeficiency virus infection in humans. However, blood lymphocytes are only a fraction of the recirculating lymphocyte pool, and their numbers are affected by cell synthesis, cell depletion, and distribution among blood and lymphoid tissue compartments. Asymptomatic, SIV-infected macaques maintained constant and nearly normal numbers of recirculating lymphocytes despite the decline in CD4+ T-cell counts. Substantial depletion was detected only when blood CD4+ T-cell counts fell below 300/μl. In asymptomatic animals, changes in CD4+ T-cell distribution were more important than lymphocyte depletion for controlling the blood cell levels.  相似文献   

9.
Control of infectious disease may be accomplished by successful vaccination or by complex immunologic and genetic factors favoring Ag-specific multicellular immune responses. Using a rhesus macaque model, we evaluated Ag-specific T cell-dependent NK cell immune responses in SIV-infected macaques, designated "controlling" or "noncontrolling" based on long-term chronic viremia levels, to determine whether NK cell effector functions contribute to control of SIV infection. We observed that Gag stimulation of macaque PBMCs induced subset-specific NK cell responses in SIV-controlling but not SIV-noncontrolling animals, as well as that circulatory NK cell responses were dependent on Ag-specific IL-2 production by CD4(+) central memory T cells. NK cell activation was blocked by anti-IL-2-neutralizing Ab and by CD4(+) T cell depletion, which abrogated the Gag-specific responses. Among tissue-resident cells, splenic and circulatory NK cells displayed similar activation profiles, whereas liver and mucosal NK cells displayed a decreased activation profile, similar in SIV-controlling and -noncontrolling macaques. Lack of T cell-dependent NK cell function was rescued in SIV-noncontrolling macaques through drug-mediated control of viremia. Our results indicate that control of disease progression in SIV-controlling macaques is associated with cooperation between Ag-specific CD4(+) T cells and NK cell effector function, which highlight the importance of such cell-to-cell cooperativity in adaptive immunity and suggest that this interaction should be further investigated in HIV vaccine development and other prophylactic vaccine approaches.  相似文献   

10.
11.
Simian immunodeficiency virus (SIV) infection of natural hosts is characterized by nonpathogenic chronic viremia, maintenance of gastrointestinal epithelial barrier integrity, and low numbers of target cells. Assessment of cell-associated virus load in T cell subsets in multiple anatomic compartments of chronically SIV-infected sabeus African green monkeys (AGMs) revealed that gastrointestinal memory CD4+ T lymphocytes are a major source of cell-associated virus and a significant contributor to SIV viremia in AGMs.  相似文献   

12.
T helper 17 (Th17) cells play an important role in mucosal immune homeostasis and maintaining the integrity of the mucosal epithelial barrier. Loss of Th17 cells has been extensively documented during human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections. The lack of effective repopulation of Th17 cells has been associated with chronic immune activation mediated by the translocation of microbial products. Using ex vivo analysis of purified peripheral blood CD4 T cells from SIV-infected rhesus macaques, we show that the suppression of interleukin-17 (IL-17) expression correlated with upregulated expression of negative regulatory genes PIAS3, SHP2, and SOCS3 in CD4 T cells. Suppressed Th17 expression was accompanied by elevated levels of soluble CD14 (sCD14) and lipopolysaccharide binding protein (LBP) in the plasma during early stages of infection. Plasma viral loads rather than sCD14 or LBP levels correlated with acute immune activation. Additionally, we observed a significant increase in the expression of CD14 on peripheral blood monocytes that correlated with IL-23 expression and markers of microbial translocation. Taken together, our results provide new insights into the early events associated with acute SIV pathogenesis and suggest additional mechanisms playing a role in suppression of Th17 cells.  相似文献   

13.
Disruption of the conserved motif GYxxØ in the simian immunodeficiency virus (SIV) SIVmac239 envelope (Env) cytoplasmic tail resulted in a virus (ΔGY) that exhibited a high plasma peak but uniquely failed to acutely deplete mucosal CD4+ T cells. Here, we show that ΔGY containing a flanking S727P mutation that was acquired in ΔGY-infected macaques reacquired the ability to rapidly deplete CD4+ T cells in lamina propria. This suggests that the GYxxØ motif and S727P each contribute to SIV''s targeting to mucosal tissues.  相似文献   

14.
CD8+ T cell-restricted immunity is important in the control of HIV-1 infection, but continued immune activation results in CD8+ T cell dysfunction. Early initiation of antiretroviral treatment (ART) and the duration of ART have been associated with immune reconstitution. Here, we evaluated whether restoration of CD8+ T cell function in HIV-1-infected individuals was dependent on early initiation of ART. HIV-specific CD107a, IFNγ, IL-2, TNFα and MIP-1β expression by CD8+ T cells and the frequency of CD8+ T cells expressing PD-1, 2B4 and CD160 were measured by flow cytometry. The frequency of CD8+ T cells expressing the inhibitory markers PD-1, 2B4 and CD160 was lower in ART-treated individuals compared with ART-naïve individuals and similar to the frequency in HIV-uninfected controls. The expression of the three markers was similarly independent of when therapy was initiated. Individuals treated before seroconversion displayed an HIV-specific CD8+ T cell response that included all five functional markers; this was not observed in individuals treated after seroconversion or in ART-naïve individuals. In summary, ART appears to restore the total CD8+ T cell population to a less exhausted phenotype, independent of the time point of initiation. However, to preserve multifunctional, HIV-1-specific CD8+ T cells, ART might have to be initiated before seroconversion.  相似文献   

15.
16.
Primary HIV-1 infection (PHI) is marked by a flu-like syndrome and high levels of viremia that decrease to a viral set point with the first emergence of virus-specific CD8+ T-cell responses. Here, we investigated in a large cohort of 527 subjects the immunodominance pattern of the first virus-specific cytotoxic T-lymphocyte (CTL) responses developed during PHI in comparison to CTL responses in chronic infection and demonstrated a distinct relationship between the early virus-specific CTL responses and the viral set point, as well as the slope of CD4+ T-cell decline. CTL responses during PHI followed clear hierarchical immunodominance patterns that were lost during the transition to chronic infection. Importantly, the immunodominance patterns of human immunodeficiency virus type 1 (HIV-1)-specific CTL responses detected in primary, but not in chronic, HIV-1 infection were significantly associated with the subsequent set point of viral replication. Moreover, the preservation of the initial CD8+ T-cell immunodominance patterns from the acute into the chronic phase of infection was significantly associated with slower CD4+ T-cell decline. Taken together, these data show that the specificity of the initial CTL response to HIV is critical for the subsequent control of viremia and have important implications for the rational selection of antigens for future HIV-1 vaccines.In the first weeks after human immunodeficiency virus type 1 (HIV-1) acquisition, viral loads peak at high levels, accompanied by a flu-like syndrome (15). A rapid depletion of the CD4+ T-cell population occurs during this acute infection, in particular, within the gastrointestinal tract-associated lymphoid tissue (6, 19, 20), marking a nonrecoverable scar on the immune system. With the resolution of the clinical syndromes, viral loads decrease to a set point, which persists at this level for months to years until progressive CD4+ T-cell decline results in the onset of AIDS. It has been shown that the initial viral set point following primary infection is a very strong predictor of the disease-free period until the onset of AIDS (18, 21, 22).The initial decrease in the viral load during primary HIV-1 infection (PHI) is temporally associated with the first emergence of virus-specific CD8+ T-cell responses, and several studies have provided strong evidence that HIV-1-specific CD8+ T-cell responses are capable of controlling viral replication (5, 16, 24, 25, 27, 31, 33). However, significant numbers of virus-specific CD8+ T cells are detectable both in chronically infected individuals who progress rapidly to AIDS and in those who do not experience HIV-1 disease progression for decades (1, 11), and the characteristics that define a protective HIV-1-specific CD8+ T-cell response are not known. In particular, the level of control over viral replication is not predicted by the overall breadth, magnitude, or function of virus-specific CD8+ T-cell responses in chronic HIV-1 infection (1, 4, 11, 26, 28).Here, we demonstrate in a large cohort of individuals identified during PHI that immunodominance patterns of virus-specific CD8+ T-cell responses detected in PHI, but not in chronic HIV-1 infection, are strongly associated with the subsequent set point of viral replication. These data show that the specificity of the initial CD8+ T-cell response to HIV is critical for the subsequent control of viremia and have important implications for the rational selection of antigens for future HIV-1 vaccines.  相似文献   

17.
In vitro evidence suggests that memory CD4+ cells are preferentially infected by human immunodeficiency virus type 1 (HIV-1), yet studies of HIV-1-infected individuals have failed to detect preferential memory cell depletion. To explore this paradox, we stimulated CD45RA+ CD4+ (naïve) and CD45RO+ CD4+ (memory) cells with antibodies to CD3 and CD28 and infected them with either CCR5-dependent (R5) or CXCR4-dependent (X4) HIV-1 isolates. Naïve CD4+ cells supported less X4 HIV replication than their memory counterparts. However, naïve cells were susceptible to R5 viral infection, while memory cells remained resistant to infection and viral replication. As with the unseparated cells, mixing the naïve and memory cells prior to infection resulted in cells resistant to R5 infection and highly susceptible to X4 infection. While both naïve and memory CD4+ subsets downregulated CCR5 expression in response to CD28 costimulation, only the memory cells produced high levels of the β-chemokines RANTES, MIP-1α, and MIP-1β upon stimulation. Neutralization of these β-chemokines rendered memory CD4+ cells highly sensitive to infection with R5 HIV-1 isolates, indicating that downregulation of CCR5 is not sufficient to mediate complete protection from CCR5 strains of HIV-1. These results indicate that susceptibility to R5 HIV-1 isolates is determined not only by the level of CCR5 expression but also by the balance of CCR5 expression and β-chemokine production. Furthermore, our results suggest a model of HIV-1 transmission and pathogenesis in which naïve rather than memory CD4+ T cells serve as the targets for early rounds of HIV-1 replication.  相似文献   

18.
Gastrointestinal complications in human immunodeficiency virus (HIV) infection are indicative of impaired intestinal mucosal immune system. We used simian immunodeficiency virus (SIV)-infected rhesus macaques as an animal model for HIV to determine pathogenic effects of SIV on intestinal T lymphocytes. Intestinal CD4+ T-cell depletion and the potential for cytokine responses were examined during SIV infection and compared with results for lymphocytes from lymph nodes and blood. Flow cytometric analysis demonstrated severe depletion of CD4+CD8 single-positive T cells and CD4+CD8+ double-positive T cells in intestinal lamina propria lymphocytes (LPL) and intraepithelial lymphocytes (IEL) during primary SIV infection which persisted through the entire course of SIV infection. In contrast, CD4+ T-cell depletion was gradual in peripheral lymph nodes and blood. Flow cytometric analysis of intracellular gamma interferon (IFN-γ) and interleukin-4 (IL-4) production following short-term mitogenic activation revealed that LPL retained same or higher capacity for IFN-γ production in all stages of SIV infection compared to uninfected controls, whereas peripheral blood mononuclear cells displayed a gradual decline. The CD8+ T cells were the major producers of IFN-γ. There was no detectable change in the frequency of IL-4-producing cells in both LPL and peripheral blood mononuclear cells. Thus, severe depletion of CD4+ LPL and IEL in primary SIV infection accompanied by altered cytokine responses may reflect altered T-cell homeostasis in intestinal mucosa. This could be a mechanism of SIV-associated enteropathy and viral pathogenesis. Dynamic changes in intestinal T lymphocytes were not adequately represented in peripheral lymph nodes or blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号