首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Wild-type measles virus (MV) isolated in B95a cells could be adapted to Vero cells after several blind passages. In this study, we have determined the complete nucleotide sequences of the genomes of the wild type (T11wild) and its Vero cell-adapted (T11Ve-23) MV strain and identified amino acid substitutions R516G, E271K, D439E and G464W (D439E/G464W), N481Y/H495R, and Y187H/L204F in the nucleocapsid, V, fusion (F), hemagglutinin (H), and large proteins, respectively. Expression of mutated H and F proteins from cDNA revealed that the H495R substitution, in addition to N481Y, in the H protein was necessary for the wild-type H protein to use CD46 efficiently as a receptor and that the G464W substitution in the F protein was important for enhanced cell-cell fusion. Recombinant wild-type MV strains harboring the F protein with the mutations D439E/G464W [F(D439E/G464W)] and/or H(N481Y/H495R) protein revealed that both mutated F and H proteins were required for efficient syncytium formation and virus growth in Vero cells. Interestingly, a recombinant wild-type MV strain harboring the H(N481Y/H495R) protein penetrated slowly into Vero cells, while a recombinant wild-type MV strain harboring both the F(D439E/G464W) and H(N481Y/H495R) proteins penetrated efficiently into Vero cells, indicating that the F(D439E/G464W) protein compensates for the inefficient penetration of a wild-type MV strain harboring the H(N481Y/H495R) protein. Thus, the F and H proteins synergistically function to ensure efficient wild-type MV growth in Vero cells.Measles virus (MV), which belongs to the genus Morbillivirus in the family Paramyxoviridae, is an enveloped virus with a nonsegmented negative-strand RNA genome. The MV genome encodes six structural proteins: the nucleocapsid (N), phosphoprotein (P), matrix (M), fusion (F), hemagglutinin (H), and large (L) proteins. The P gene also encodes two other accessory proteins, the C and V proteins. The C protein is translated from an alternative translational initiation site leading a different reading frame, and the V protein is synthesized from an edited mRNA. MV has two envelope glycoproteins, the F and H proteins. The former is responsible for envelope fusion, and the latter is responsible for receptor binding (12).Wild-type MV strains isolated in B95a cells and laboratory-adapted MV strains have distinct phenotypes (18). Wild-type MV strains can grow in B95a cells but not in Vero cells, while laboratory-adapted MV strains can grow in both B95a and Vero cells. Wild-type MV strains do not cause hemadsorption (HAd) in African green monkey red blood cells (AGM-RBC), while most of laboratory-adapted MV strains cause HAd. Importantly, wild-type MV strains are pathogenic and induce clinical signs that resemble human measles in experimentally infected monkeys while laboratory-adapted MV strains do not.One approach to identify amino acid substitutions responsible for these phenotypic differences is the comparison of a wild-type MV strain with a standard laboratory-adapted MV strain such as the Edmonston strain. With regard to the H protein, amino acid substitutions important for HAd activity and cell-cell fusion in tissue culture cells were identified by expressing the H proteins in mammalian cells (15, 21). Recently, Tahara et al. revealed that the M, H, and L proteins are responsible for efficient growth in Vero cells by constructing a series of recombinant viruses in which part of the genome of the wild-type MV was replaced with the corresponding sequences of the Edmonston strain (45, 46, 47).Another approach is the comparison of wild-type MV strains with their Vero cell-adapted MV strains. It was reported that Vero cell-adapted MV strains could be obtained by successive blind passages of wild-type MV strains in Vero cells (18, 24, 30, 43). Interestingly, in vivo and in vitro phenotypes of Vero cell-adapted MV strains were similar to those of laboratory-adapted standard MV strains (18, 19, 24, 30, 43). Comparison of the complete nucleotide sequences of the genomes of wild-type MV strains with those of Vero cell-adapted wild-type MV strains revealed amino acid substitutions in the P, C, V, M, H, and L proteins (27, 42, 48, 53).At present, these phenotypic differences are explained mainly by the receptor usage of MV. Wild-type MV strains can use signaling lymphocyte activation molecule (SLAM; also called CD150) but not CD46 as a cellular receptor, whereas laboratory-adapted MV strains can use both SLAM and CD46 as cellular receptors (7, 10, 16, 29, 56, 60).However, receptor usage per se cannot explain all of the phenotypic differences (20, 25, 48, 53). For example, recombinant Edmonston strains expressing wild-type H proteins can grow in Vero cells to some extent (17, 54). Several reports suggested the presence of the third MV receptor on Vero cells (14, 44, 54, 60). Other reports indicated the contribution of the M protein on cell-cell fusion and growth of MV in Vero cells (4, 27, 47). Recently, the unidentified epithelial cell receptor for MV was predicted in primary culture of human cells (1, 55) and several epithelial cell lines (23, 51). However, the identity of the third receptor on Vero cells and the unidentified epithelial cell receptor is not clear yet. Thus, the mechanism of Vero cell adaptation of wild-type MV is not completely understood.In order to understand the molecular mechanism of these phenotypic changes of wild-type MV strains during adaptation in Vero cells, we determined the complete nucleotide sequences of the genomes of the wild-type (T11wild) and its Vero cell-adapted (T11Ve-23) MV strains (43) and examined the effect of individual amino acid substitutions using a mammalian cell expression system and reverse genetics. We show here that previously unrecognized new amino acid substitutions in the H and F proteins are important for MV adaptation and HAd activity.  相似文献   

5.
Measles remains a major cause of child mortality, in part due to an inability to vaccinate young infants with the current live attenuated virus vaccine (LAV). To explore new approaches to infant vaccination, chimeric Venezuelan equine encephalitis/Sindbis virus (VEE/SIN) replicon particles were used to express the hemagglutinin (H) and fusion (F) proteins of measles virus (MV). Juvenile rhesus macaques vaccinated intradermally with a single dose of VEE/SIN expressing H or H and F proteins (VEE/SIN-H or VEE/SIN-H+F, respectively) developed high titers of MV-specific neutralizing antibody and gamma-interferon (IFN-γ)-producing T cells. Infant macaques vaccinated with two doses of VEE/SIN-H+F also developed neutralizing antibody and IFN-γ-producing T cells. Control animals were vaccinated with LAV or with a formalin-inactivated measles vaccine (FIMV). Neutralizing antibody remained above the protective level for more than 1 year after vaccination with VEE/SIN-H, VEE/SIN-H+F, or LAV. When challenged with wild-type MV 12 to 17 months after vaccination, all vaccinated juvenile and infant monkeys vaccinated with VEE/SIN-H, VEE/SIN-H+F, and LAV were protected from rash and viremia, while FIMV-vaccinated monkeys were not. Antibody was boosted by challenge in all groups. T-cell responses to challenge were biphasic, with peaks at 7 to 25 days and at 90 to 110 days in all groups, except for the LAV group. Recrudescent T-cell activity coincided with the presence of MV RNA in peripheral blood mononuclear cells. We conclude that VEE/SIN expressing H or H and F induces durable immune responses that protect from measles and offers a promising new approach for measles vaccination. The viral and immunological factors associated with long-term control of MV replication require further investigation.Measles remains a major cause of child mortality despite the availability of a safe and effective live attenuated virus vaccine (LAV). Recent efforts to improve routine vaccination and implement national immunization days have moved measles control toward the World Health Organization''s goal of a 90% reduction in mortality by 2010 compared to 2000 (7). One persistent impediment to measles control in many countries remains the inability to successfully immunize young infants due to the immaturity of the immune system and interference of maternal antibodies with immune responses to LAV (1, 15, 65).Because the decrease in maternal antibody varies from one infant to another, many children in areas with high measles virus (MV) transmission rates are at risk of acquiring measles prior to vaccination (3, 5, 12). Immaturity also affects the quality and quantity of antibody produced in response to the current vaccine, with lower levels of neutralizing antibody and deficient avidity and isotype maturation in younger than in older infants (15, 16, 37, 59). As a result, the recommended age for vaccination is generally 9 months in developing countries to balance the risk of infection with the likelihood of response to the vaccine (24).A vaccine that could be given to children under the age of 6 months would improve measles control by allowing delivery with other infant vaccines and by closing the window of susceptibility prior to delivery of the current vaccine. Increasing the dose of LAV improved the antibody responses in young infants but resulted in an unexpected increase in mortality for girls, so this is not an acceptable approach to lowering the age of vaccination (18, 26, 29). Experience with a formalin-inactivated measles vaccine (FIMV) in the 1960s also led to unexpected complications. FIMV provided only short-term protection, and vaccinated individuals were at risk for more severe disease (atypical measles) upon infection with wild-type MV (14, 36, 54). Therefore, other strategies are necessary for development of a vaccine for young infants.One particularly promising approach for delivery of vaccine antigens is the use of alphavirus replicon particles (55). Alphaviruses are small positive-strand RNA viruses with the nonstructural replicase proteins encoded in the 5′ two-thirds of the genome and the structural proteins in the 3′ one-third. A subgenomic promoter is used to synthesize an abundant, smaller RNA from which the structural proteins are translated (61). Replicons contain the nonstructural protein genes, the 5′ and 3′ end cis-active replication sequences, and the subgenomic promoter that directs expression of a heterologous gene rather than the viral structural proteins. The replicon RNA can be packaged into virus-like particles by providing the structural proteins in trans using transient transfection (6, 33) or with stable packaging cell lines (51) and can be engineered for efficient delivery to antigen-presenting cells (17). Advantages include high-level expression of the vaccine antigen (68), stimulation of innate immunity (25, 31, 32, 64), and general lack of preexisting immunity in the human population.MV encodes six structural proteins of which two, hemagglutinin (H) and fusion (F), are surface glycoproteins involved in attachment and entry. Antibodies that inhibit MV infection in neutralization assays are directed primarily against the H protein, which also contains important CD8+ T-cell epitopes (39, 41). Nonhuman primates, particularly rhesus macaques, develop a disease similar to that of humans and offer the opportunity for assessing both protection from wild-type MV challenge and priming for enhanced disease after immunization with new experimental vaccines (2, 48, 50, 66). Because protection from measles correlates best with the quality and quantity of neutralizing antibodies at the time of exposure (9, 50), most experimental vaccines have used H alone or H and F for induction of MV protective immunity (44, 50, 65, 70).Alphaviruses that have been used for construction of replicon particle vaccines include Sindbis virus (SINV) (6, 68), Semliki Forest virus (33), and Venezuelan equine encephalitis virus (VEEV) (53). Each of the alphavirus vectors studied has its own advantages and disadvantages. For instance, VEEV replicon particles have high levels of gene expression (47), but vaccine production is disadvantaged by the requirement for biosafety level 3 manufacturing. SINV replicon particles avoid the safety concerns of VEEV, but expression levels are lower. Previous studies of a SINV-based replicon particle vaccine expressing MV H (SIN-H) in macaques showed good induction of neutralizing antibody and T-cell responses and protection from rash (44). However, vaccinated monkeys developed viremias after challenge, indicating that they were not protected from infection. In this study, we sought to improve the alphavirus replicon particle approach to vaccination for measles by using a chimeric VEE/SIN vaccine (47) expressing both the MV H and F proteins.  相似文献   

6.
Immune responses and the components of protective immunity following norovirus infection in humans are poorly understood. Although antibody responses following norovirus infection have been partially characterized, T cell responses in humans remain largely undefined. In contrast, T cells have been shown to be essential for viral clearance of mouse norovirus (MNV) infection. In this paper, we demonstrate that CD4+ T cells secrete gamma interferon (IFN-γ) in response to stimulation with MNV virus-like particles (VLPs) after MNV infection, supporting earlier reports for norovirus-infected mice and humans. Utilizing this model, we immunized mice with alphavirus vectors (Venezuelan equine encephalitis [VEE] virus replicon particles [VRPs]) expressing Norwalk virus (NV) or Farmington Hills virus (FH) virus-like particles to evaluate T cell epitopes shared between human norovirus strains. Stimulation of splenocytes from norovirus VRP-immunized mice with overlapping peptides from complete libraries of the NV or FH capsid proteins revealed specific amino acid sequences containing T cell epitopes that were conserved within genoclusters and genogroups. Immunization with heterologous norovirus VRPs resulted in specific cross-reactive IFN-γ secretion profiles following stimulation with NV and FH peptides in the mouse. Identification of unique strain-specific and cross-reactive epitopes may provide insight into homologous and heterologous T cell-mediated norovirus immunity and provide a platform for the study of norovirus-induced cellular immunity in humans.Norovirus infection is characterized by the induction of both humoral and cellular immune responses. Humoral immunity in humans following norovirus infection has been described in detail for a limited number of norovirus strains (8, 10, 12, 17, 18, 29). Humans mount specific antibody responses to the infecting strain, which bear complex patterns of unique and cross-reactive, yet undefined, epitopes to other strains within or across genogroups (23, 29). Short-term immunity following homologous norovirus challenge has been documented, but long-term immunity remains controversial (16, 25). Furthermore, no studies to date have demonstrated cross-protection following heterologous norovirus challenge (30). While some susceptible individuals can become reinfected with multiple norovirus strains throughout their lifetimes, the mechanism of short-term protection and the impact of previous exposures on susceptibility to reinfection remain largely unknown.The role of T cells in controlling norovirus infection also remains largely undefined. A single comprehensive study detailing immune responses in genogroup II Snow Mountain virus-infected individuals revealed that CD4+ TH1 cells can be stimulated by virus-like particles (VLPs) to secrete gamma interferon (IFN-γ) and interleukin-2 (IL-2) (17). Furthermore, heterologous stimulation from VLPs derived from different norovirus strains within but not across genogroups also induced significant IFN-γ secretion compared to that for uninfected individuals (17). A follow-up study with genogroup I Norwalk virus (NV)-infected individuals confirmed high T cell cross-reactivity within a genogroup as measured by IFN-γ secretion (18). Further, vaccination of humans with VLPs also results in short-term IFN-γ production (27).Because norovirus infection studies in humans are confounded by previous exposure histories, the use of inbred mice maintained in pathogen-free environments allows for the study of norovirus immune responses in a naive background. While mice cannot be infected with human norovirus strains, VLP vaccines expressing norovirus structural proteins induce immune responses that can be measured and studied (14, 20). Mice immunized orally or intranasally with VLP vaccines in the presence of adjuvant similarly induced CD4+ IFN-γ responses in Peyer''s patches and spleen (22, 26). Induction of CD8+ T cells and secretion of the TH2 cytokine IL-4 were separately noted; however, it is unclear if these responses were influenced by VLPs or the coadministered vaccine adjuvants (22, 26). Further, coadministration of alphavirus adjuvant particles with multivalent norovirus VLP vaccine, including or excluding mouse norovirus (MNV) VLPs, resulted in significantly reduced MNV loads following MNV challenge (21). Multivalent VLP vaccines induced robust receptor-blocking antibody responses to heterologous human strains not included in the vaccine composition (20, 21). Moreover, natural infection with MNV supports a role for T cell immunity in viral clearance and protection (5).To advance our understanding of the scope of the cellular immune response within and between strains, we immunized mice with Venezuelan equine encephalitis (VEE) virus replicon particles (VRPs) expressing norovirus VLPs derived from the Norwalk virus (GI.1-1968) (1) or Farmington Hills virus (FH) (GII.4-2002) (19) strains and analyzed splenocytes for cytokine secretion, epitope identification, and heterologous stimulation. The data presented here indicate that the major capsid proteins of genogroup I and II noroviruses contain robust T cell epitopes that cross-react with related strains in the mouse yet also occur within regions of known variation, especially among the GII.4 noroviruses.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
CD4 T cells have been shown to play an important role in the immunity and immunopathogenesis of respiratory syncytial virus (RSV) infection. We identified two novel CD4 T-cell epitopes in the RSV M and M2 proteins with core sequences M213-223 (FKYIKPQSQFI) and M227-37 (YFEWPPHALLV). Peptides containing the epitopes stimulated RSV-specific CD4 T cells to produce gamma interferon (IFN-γ), interleukin 2 (IL-2), and other Th1- and Th2-type cytokines in an I-Ab-restricted pattern. Construction of fluorochrome-conjugated peptide-I-Ab class II tetramers revealed RSV M- and M2-specific CD4 T-cell responses in RSV-infected mice in a hierarchical pattern. Peptide-activated CD4 T cells from lungs were more activated and differentiated, and had greater IFN-γ expression, than CD4 T cells from the spleen, which, in contrast, produced greater levels of IL-2. In addition, M209-223 peptide-activated CD4 T cells reduced IFN-γ and IL-2 production in M- and M2-specific CD8 T-cell responses to Db-M187-195 and Kd-M282-90 peptides more than M225-39 peptide-stimulated CD4 T cells. This correlated with the fact that I-Ab-M209-223 tetramer-positive cells responding to primary RSV infection had a much higher frequency of FoxP3 expression than I-Ab-M226-39 tetramer-positive CD4 T cells, suggesting that the M-specific CD4 T-cell response has greater regulatory function. Characterization of epitope-specific CD4 T cells by novel fluorochrome-conjugated peptide-I-Ab tetramers allows detailed analysis of their roles in RSV pathogenesis and immunity.CD4 T lymphocytes play an important role in the resolution of primary viral infections and the prevention of reinfection by regulating a variety of humoral and cellular immune responses. CD4 T cells provide cytokines and other molecules to support the differentiation and expansion of antigen-specific CD8 T cells, which are major effectors for both virus clearance and immunopathology during primary infection with respiratory syncytial virus (RSV) (3, 17, 42, 43). CD4 T-cell help is mandatory for an effective B-cell response (14), which is necessary for producing neutralizing antibodies that prevent secondary RSV infection (12, 18, 21). A concurrent CD4 T-cell response also promotes the maintenance of CD8 T-cell surveillance and effector capacity (9). Previous studies have shown that interleukin 2 (IL-2) from CD4 T cells can restore CD8 T-cell function in lungs (10) and that IL-2 supplementation can increase the production of gamma interferon (IFN-γ) by CD8 T cells upon peptide stimulation in vitro (45).While CD4 T cells are important for providing support to host immunity, they have also been associated with immunopathogenesis by playing a key role in the Th2-biased T-cell response (34, 46), which may be the common mechanism of enhanced lung pathology and other disease syndromes shown in murine studies (2, 16, 17, 19, 35). Earlier studies showed the positive association of formalin-inactivated RSV (FI-RSV) immunization-mediated enhanced illness upon subsequent natural RSV infection with a Th2-biased CD4 T-cell response (19, 44). Th2-orientated CD4 T cells elicit severe pneumonia with extensive eosinophilic infiltrates in the lungs of FI-RSV-immunized mice (13, 24, 48). Patients with severe RSV disease showed an elevated Th2/Th1 cytokine ratio in nasal secretions and peripheral blood mononuclear cells (27, 29, 31, 38). Increased disease severity has also been associated with polymorphisms in Th2-related cytokine genes, such as the IL-4, IL-4 receptor, and IL-13 genes (11, 23, 36). Th2 cytokines from CD4 T cells can also diminish the CD8 T-cell response and delay viral clearance (4, 8).The evaluation of CD4 T-cell responses in viral infection is particularly relevant in the RSV model because of the association of RSV and allergic inflammation, which is largely mediated by CD4 T cells. Understanding the influence of CD4 T cells on CD8 T-cell responses and other immunological effector mechanisms is central to understanding RSV pathogenesis and developing preventive vaccine strategies for RSV. Our lab and others have demonstrated that CD8 T cells target RSV M and M2 proteins with cytolytic effector activities (28, 30, 39). In this study, we found that both RSV M and M2 proteins also contain CD4 T-cell epitopes. These epitopes have 11-mer amino acid core sequences and are associated with the major histocompatibility complex (MHC) class II molecule I-Ab. Fluorochrome-conjugated peptide-I-Ab molecule tetrameric complexes can identify RSV M- and M2-specific CD4 T cells from CB6F1 mice following RSV infection in a hierarchical pattern. Peptides containing the epitopes can stimulate CD4 T cells from RSV M or M2 DNA-immunized and virus-challenged mice and can lead to the production of IFN-γ, IL-2, and other Th1- and Th2-type cytokines that can modulate the CD8 T-cell response to RSV M and M2. We also found that CD4 T cells from the lungs and spleens of immunized mice have different phenotype and cytokine profiles upon in vitro stimulation. These observations suggest a regulatory role for CD4 T cells in the host response to RSV infection. The development of novel MHC class II tetramer reagents allows the characterization of epitope-specific CD4 T-cell responses to RSV and will enable the investigation of basic mechanisms by which CD4 T cells affect pathogenesis and immunity to viral infections.  相似文献   

15.
Cytotoxicity and proliferation capacity are key functions of antiviral CD8 T cells. In the present study, we investigated a series of markers to define these functions in virus-specific CD8 T cells. We provide evidence that there is a lack of coexpression of perforin and CD127 in human CD8 T cells. CD127 expression on virus-specific CD8 T cells correlated positively with proliferation capacity and negatively with perforin expression and cytotoxicity. Influenza virus-, cytomegalovirus-, and Epstein-Barr virus/human immunodeficiency virus type 1-specific CD8 T cells were predominantly composed of CD127+ perforin/CD127 perforin+, and CD127/perforin CD8 T cells, respectively. CD127/perforin and CD127/perforin+ cells expressed significantly more PD-1 and CD57, respectively. Consistently, intracellular cytokine (gamma interferon, tumor necrosis factor alpha, and interleukin-2 [IL-2]) responses combined to perforin detection confirmed that virus-specific CD8 T cells were mostly composed of either perforin+/IL-2 or perforin/IL-2+ cells. In addition, perforin expression and IL-2 secretion were negatively correlated in virus-specific CD8 T cells (P < 0.01). As previously shown for perforin, changes in antigen exposure modulated also CD127 expression. Based on the above results, proliferating (CD127+/IL-2-secreting) and cytotoxic (perforin+) CD8 T cells were contained within phenotypically distinct T-cell populations at different stages of activation or differentiation and showed different levels of exhaustion and senescence. Furthermore, the composition of proliferating and cytotoxic CD8 T cells for a given antiviral CD8 T-cell population appeared to be influenced by antigen exposure. These results advance our understanding of the relationship between cytotoxicity, proliferation capacity, the levels of senescence and exhaustion, and antigen exposure of antiviral memory CD8 T cells.Cytotoxic CD8 T cells are a fundamental component of the immune response against viral infections and mediate an important role in immunosurveillance (7, 10, 55), and the induction of vigorous CD8 T-cell responses after vaccination is thought to be a key component of protective immunity (37, 41, 49, 50, 58, 60, 69). Cytotoxic CD8 T cells exert their antiviral and antitumor activity primarily through the secretion of cytotoxic granules containing perforin (pore-forming protein) and several granule-associated proteases, including granzymes (Grms) (5, 15, 20, 44). Several studies have recently advanced the characterization of the mechanism of granule-dependent cytotoxic activity and performed a comprehensive investigation of the content of cytotoxic granules in human virus-specific CD8 T cells (2, 19, 29, 44, 53).Heterogeneous profiles of cytotoxic granules have been identified in different virus-specific memory CD8 T cells and associated with distinct differentiation stages of memory CD8 T cells (2, 19, 29, 44). Furthermore, we have observed a hierarchy among the cytotoxic granules in setting the efficiency of cytotoxic activity and demonstrated that perforin (and to a lesser extent GrmB) but not GrmA or GrmK were associated with cytotoxic activity (29). Recently, a novel mechanism of perforin-dependent granule-independent CTL cytotoxicity has also been demonstrated (45).Major advances in the characterization of antigen (Ag)-specific CD4 and CD8 T cells have been made recently and have aimed at identifying functional profiles that may correlate with protective CD8 T-cell responses (1, 3, 4, 12, 13, 24, 28, 36-38, 40, 41, 49, 50, 56-58, 60, 64, 68). In particular, the functional characterization of antigen-specific T cells was mainly performed on the basis of (i) the pattern of cytokines secreted (i.e., gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], interleukin-2 [IL-2], or macrophage inflammatory protein 1β [MIP-1β]), (ii) the proliferation capacity, and (iii) the cytotoxic capacity (13, 28, 59). Of note, degranulation activity (i.e., CD107a mobilization following specific stimulation) has been used as a surrogate marker of cytotoxic activity (11, 13).The term “polyfunctional” has been used to define T-cell immune responses that, in addition to typical effector functions such as secretion of IFN-γ, TNF-α, or MIP-1β and cytotoxic activity (measured by the degranulation capacity), comprise distinct T-cell populations able to secrete IL-2 and retain proliferation capacity (13, 28, 49, 50). Some evidence indicates that a hallmark of protective immune responses is the presence of polyfunctional T-cell responses (59). Furthermore, the ability to secrete IL-2 was shown to be linked to proliferation capacity, and both factors have been associated with protective antiviral immunity (13, 28, 49, 50). Although a lack of correlation between degranulation activity and GrmB expression was reported in mice (65), the relationship between degranulation activity and perforin expression has never been comprehensively investigated in mice and in humans.The private α chain of the IL-7 receptor (IL-7Rα, also called CD127) has been suggested to selectively identify CD8 T cells that will become long-lived memory cells (6, 34, 36). Moreover, it was shown in mice (34, 36) and humans (14, 48, 63) that the CD127high memory-precursor CD8 T cells produced IL-2 in contrast to CD127low effector CD8 T cells. Of interest, CD127 expression has also been shown to correlate with Ag-specific proliferation capacity in mice (34, 36). A similar correlation was observed in humans, although only for polyclonal stimulations (48). With the exception of studies performed in HIV-1 infection, where an association between CD127 expression and HIV-1 viremia has been shown (21, 22, 42, 48, 54), very limited information is available on the CD127 expression in human virus-specific CD8 T cells other that HIV-1.Although cytotoxic activity and proliferation capacity are key components of the antiviral cellular immune response, the relationship between these functions has been only investigated in nonprogressive HIV-1 infection (46), where these two functions were shown to be related. However, it still remains to be determined whether these functions are mediated by the same or by different T-cell populations.In the present study, we performed a comprehensive characterization of virus-specific CD8 T-cell responses against HIV-1, cytomegalovirus (CMV), Epstein Barr virus (EBV), and influenza virus (Flu) in order to (i) analyze the degree of concordance between degranulation activity and perforin/Grm expression; (ii) identify the relevance of CD127 in identifying virus-specific CD8 T cells endowed with proliferation capacity; (iii) delineate the relationship between proliferation capacity, cytotoxic activity, activation/differentiation stage, and level of exhaustion of CD8 T cells; and (iv) determine the influence of antigen exposure in shaping the functional composition of virus-specific CD8 T cells.Our data indicate that cytotoxic (as defined by perforin expression) and proliferating (as defined by CD127 expression or IL-2 secretion) virus-specific CD8 T cells are contained within distinct CD8 T-cell populations. Furthermore, the proportion of proliferating and cytotoxic T cells within a given virus-specific CD8 T-cell population appears to be influenced by antigen exposure. These results advance our understanding of the relationship between cytotoxicity, proliferative capacity, differentiation stage, and Ag exposure of memory CD8 T cells.  相似文献   

16.
Alpha interferon (IFN-α) is an approved medication for chronic hepatitis B. Gamma interferon (IFN-γ) is a key mediator of host antiviral immunity against hepatitis B virus (HBV) infection in vivo. However, the molecular mechanism by which these antiviral cytokines suppress HBV replication remains elusive. Using an immortalized murine hepatocyte (AML12)-derived cell line supporting tetracycline-inducible HBV replication, we show in this report that both IFN-α and IFN-γ efficiently reduce the amount of intracellular HBV nucleocapsids. Furthermore, we provide evidence suggesting that the IFN-induced cellular antiviral response is able to distinguish and selectively accelerate the decay of HBV replication-competent nucleocapsids but not empty capsids in a proteasome-dependent manner. Our findings thus reveal a novel antiviral mechanism of IFNs and provide a basis for a better understanding of HBV pathobiology.Hepatitis B virus (HBV) is a noncytopathic hepatotropic DNA virus which belongs to the family Hepadnaviridae (11, 44). Despite the fact that most adulthood HBV infections are transient, approximately 5 to 10% of infected adults and more than 90% of infected neonates fail to clear the virus and develop a lifelong persistent infection, which may progress to chronic hepatitis, cirrhosis, and primary hepatocellular carcinoma (4, 33, 34). It has been shown by several research groups that resolution of HBV and other animal hepadnavirus infection in vivo depends on both killing of infected hepatocytes by viral antigen-specific cytotoxic T lymphocytes and noncytolytic suppression of viral replication, which is most likely mediated by inflammatory cytokines, such as gamma interferon (IFN-γ) and tumor necrosis factor α (TNF-α) (10, 12, 15, 20, 26, 27, 48). Moreover, together with five nucleoside or nucleotide analogs that inhibit HBV DNA polymerase, alpha IFN (IFN-α) and pegylated IFN-α are currently available antiviral medications for the management of chronic hepatitis B. Compared to the viral DNA polymerase inhibitors, the advantages of IFN-α therapy include a lack of drug resistance, a finite and defined treatment course, and an increased likelihood for hepatitis B virus surface antigen (HBsAg) clearance (8, 39). However, only approximately 30% of treated patients achieve a sustained virological response to a standard 48-month pegylated IFN-α therapy (6, 32). Thus far, the antiviral mechanism of IFN-α and IFN-γ and the parameters determining the success or failure of IFN-α therapy in chronic hepatitis B remain elusive. Elucidation of the mechanism by which the cytokines suppress HBV replication represents an important step toward understanding the pathobiology of HBV infection and the molecular basis of IFN-α therapy of chronic hepatitis B.Considering the mechanism by which IFNs noncytolytically control HBV infection in vivo, it is possible that the cytokines either induce an antiviral response in hepatocytes to directly limit HBV replication or modulate the host antiviral immune response to indirectly inhibit the virus infection. However, due to the fact that IFN-α and -γ do not inhibit or only modestly inhibit HBV replication in human hepatoma-derived cell lines (5, 22, 23, 30), the direct antiviral effects of the cytokines and their antiviral mechanism against HBV have been studied with either an immortalized hepatocyte cell line derived from HBV transgenic mice or duck hepatitis B virus (DHBV) infection of primary duck hepatocytes (37, 53). While these studies revealed that IFN treatment significantly reduced the amount of encapsidated viral pregenomic RNA (pgRNA) in both mouse and duck hepatocytes, further mechanistic analyses suggested that IFN-α inhibited the formation of pgRNA-containing nucleocapsids in murine hepatocytes (52) but shortened the half-life of encapsidated pgRNA in DHBV-replicating chicken hepatoma cells (21). Moreover, the fate of viral DNA replication intermediates or nucleocapsids in the IFN-treated hepatocytes was not investigated in the previous studies.To further define the target(s) of IFN-α and -γ in the HBV life cycle and to create a robust cell culture system for the identification of IFN-stimulated genes (ISGs) that mediate the antiviral response of the cytokines (25), we established an immortalized murine hepatocyte (AML-12)-derived stable cell line that supported a high level of HBV replication in a tetracycline-inducible manner. Consistent with previous reports, we show that both IFN-α and IFN-γ potently inhibited HBV replication in murine hepatocytes (37, 40). With the help of small molecules that inhibit HBV capsid assembly (Bay-4109) (7, 47) and prevent the incorporation of pgRNA into nucleocapsids (AT-61) (9, 29), we obtained evidence suggesting that the IFN-induced cellular antiviral response is able to distinguish and selectively accelerate the decay of HBV replication-competent nucleocapsids but not empty capsids in a proteasome-dependent manner. Our findings provide a basis for further studies toward better understanding of IFN′s antiviral mechanism, which might ultimately lead to the development of strategies to improve the efficacy of IFN therapy of chronic hepatitis B.  相似文献   

17.
18.
The signaling lymphocytic activation molecule (SLAM; CD150) is the immune cell receptor for measles virus (MV). To assess the importance of the SLAM-MV interactions for virus spread and pathogenesis, we generated a wild-type IC-B MV selectively unable to recognize human SLAM (SLAM-blind). This virus differs from the fully virulent wild-type IC-B strain by a single arginine-to-alanine substitution at amino acid 533 of the attachment protein hemagglutinin and infects cells through SLAM about 40 times less efficiently than the isogenic wild-type strain. Ex vivo, this virus infects primary lymphocytes at low levels regardless of SLAM expression. When a group of six rhesus monkeys (Macaca mulatta) was inoculated intranasally with the SLAM-blind virus, no clinical symptoms were documented. Only one monkey had low-level viremia early after infection, whereas all the hosts in the control group had high viremia levels. Despite minimal, if any, viremia, all six hosts generated neutralizing antibody titers close to those of the control monkeys while MV-directed cellular immunity reached levels at least as high as in wild-type-infected monkeys. These findings prove formally that efficient SLAM recognition is necessary for MV virulence and pathogenesis. They also suggest that the selectively SLAM-blind wild-type MV can be developed into a vaccine vector.Measles virus (MV) is an enveloped virus with a negative-sense RNA genome (2). It is still a major cause of death in children of developing countries, mainly due to opportunistic secondary infections facilitated by MV-induced immune suppression (12, 29). Transient but severe immune suppression is explained at least in part by the rapid spread of MV infection in immune cells (6, 37, 41). MV targets immune cells through its hemagglutinin (H) that binds cellular receptors and triggers the other glycoprotein F to fuse cellular membranes (22).Two MV receptors have been identified. The first one was the membrane cofactor protein (MCP; CD46), a ubiquitously expressed regulator of complement activation sustaining infection by the MV vaccine strain (8, 21) but not by wild-type (WT) strains (24). Wild-type MV strains, as well as the vaccine strain, enter cells through the signaling lymphocytic activation molecule (SLAM; CD150) (10, 15, 35). SLAM is an immune cell-specific protein expressed on the surface of thymocytes, activated lymphocytes, mature dendritic cells, and activated macrophages (4, 31). The existence of another receptor on cells derived from human lung and bladder epithelium has been inferred (18, 33). While this epithelial receptor (EpR) has not been identified yet, it appears to be a basolateral protein expressed by cells forming tight junctions (18).We are characterizing the mechanisms by which MV spreads in its host and the pathogenic consequences of the interactions with different receptors. We previously showed that an MV unable to recognize EpR remains virulent in rhesus monkeys but cannot cross the epithelium and is not shed (18). This result is consistent with the model of MV pathogenesis according to which immune cells in the airway lumen are initially infected, cross the epithelial barrier, and disseminate the infection to lymphatic tissues (18). Ultimately, infected immune cells may spread the infection to the respiratory epithelium (11, 18). This new model also predicts that an MV unable to recognize SLAM (SLAM-blind) would fail to spread efficiently and be attenuated.To test this aspect of the new model, we generated a SLAM-blind MV, based on the previous identification of H protein residues necessary for productive SLAM interactions (23, 36). To assess whether the SLAM-relevant residues, originally identified in the CD46-binding background of the vaccine H protein, are neutral also for EpR-mediated cell entry, we used a wild-type H protein and a cell line expressing EpR. We found that only the arginine-to-alanine mutation at position 533 was completely neutral for EpR-dependent fusion. To investigate the role of SLAM in pathogenesis, we then generated in the wild-type IC-B strain a SLAM-blind MV with the arginine-to-alanine mutation at position 533 (34). After confirming the predicted receptor specificity of the recombinant virus, we inoculated six rhesus monkeys, and we document here that the SLAM-blind MV is attenuated and yet induces strong adaptive immune responses.  相似文献   

19.
Antibodies against the extracellular virion (EV or EEV) form of vaccinia virus are an important component of protective immunity in animal models and likely contribute to the protection of immunized humans against poxviruses. Using fully human monoclonal antibodies (MAbs), we now have shown that the protective attributes of the human anti-B5 antibody response to the smallpox vaccine (vaccinia virus) are heavily dependent on effector functions. By switching Fc domains of a single MAb, we have definitively shown that neutralization in vitro—and protection in vivo in a mouse model—by the human anti-B5 immunoglobulin G MAbs is isotype dependent, thereby demonstrating that efficient protection by these antibodies is not simply dependent on binding an appropriate vaccinia virion antigen with high affinity but in fact requires antibody effector function. The complement components C3 and C1q, but not C5, were required for neutralization. We also have demonstrated that human MAbs against B5 can potently direct complement-dependent cytotoxicity of vaccinia virus-infected cells. Each of these results was then extended to the polyclonal human antibody response to the smallpox vaccine. A model is proposed to explain the mechanism of EV neutralization. Altogether these findings enhance our understanding of the central protective activities of smallpox vaccine-elicited antibodies in immunized humans.The smallpox vaccine, live vaccinia virus (VACV), is frequently considered the gold standard of human vaccines and has been enormously effective in preventing smallpox disease. The smallpox vaccine led to the worldwide eradication of the disease via massive vaccination campaigns in the 1960s and 1970s, one of the greatest successes of modern medicine (30). However, despite the efficacy of the smallpox vaccine, the mechanisms of protection remain unclear. Understanding those mechanisms is key for developing immunologically sound vaccinology principles that can be applied to the design of future vaccines for other infectious diseases (3, 101).Clinical studies of fatal human cases of smallpox disease (variola virus infection) have shown that neutralizing antibody titers were either low or absent in patient serum (24, 68). In contrast, neutralizing antibody titers for the VACV intracellular mature virion (MV or IMV) were correlated with protection of vaccinees against smallpox (68). VACV immune globulin (VIG) (human polyclonal antibodies) is a promising treatment against smallpox (47), since it was able to reduce the number of smallpox cases ∼80% among variola-exposed individuals in four case-controlled clinical studies (43, 47, 52, 53, 69). In animal studies, neutralizing antibodies are crucial for protecting primates and mice against pathogenic poxviruses (3, 7, 17, 21, 27, 35, 61, 66, 85).The specificities and the functions of protective antipoxvirus antibodies have been areas of intensive research, and the mechanics of poxvirus neutralization have been debated for years. There are several interesting features and problems associated with the antibody response to variola virus and related poxviruses, including the large size of the viral particles and the various abundances of many distinct surface proteins (18, 75, 91, 93). Furthermore, poxviruses have two distinct virion forms, intracellular MV and extracellular enveloped virions (EV or EEV), each with a unique biology. Most importantly, MV and EV virions share no surface proteins (18, 93), and therefore, there is no single neutralizing antibody that can neutralize both virion forms. As such, an understanding of virion structure is required to develop knowledge regarding the targets of protective antibodies.Neutralizing antibodies confer protection mainly through the recognition of antigens on the surface of a virus. A number of groups have discovered neutralizing antibody targets of poxviruses in animals and humans (3). The relative roles of antibodies against MV and EV in protective immunity still remain somewhat unclear. There are compelling data that antibodies against MV (21, 35, 39, 66, 85, 90, 91) or EV (7, 16, 17, 36, 66, 91) are sufficient for protection, and a combination of antibodies against both targets is most protective (66). It remains controversial whether antibodies to one virion form are more important than those to the other (3, 61, 66). The most abundant viral particles are MV, which accumulate in infected cells and are released as cells die (75). Neutralization of MV is relatively well characterized (3, 8, 21, 35). EV, while less abundant, are critical for viral spread and virulence in vivo (93, 108). Neutralization of EV has remained more enigmatic (3).B5R (also known as B5 or WR187), one of five known EV-specific proteins, is highly conserved among different strains of VACV and in other orthopoxviruses (28, 49). B5 was identified as a protective antigen by Galmiche et al., and the available evidence indicated that the protection was mediated by anti-B5 antibodies (36). Since then, a series of studies have examined B5 as a potential recombinant vaccine antigen or as a target of therapeutic monoclonal antibodies (MAbs) (1, 2, 7, 17, 40, 46, 66, 91, 110). It is known that humans immunized with the smallpox vaccine make antibodies against B5 (5, 22, 62, 82). It is also known that animals receiving the smallpox vaccine generate antibodies against B5 (7, 20, 27, 70). Furthermore, previous neutralization assays have indicated that antibodies generated against B5 are primarily responsible for neutralization of VACV EV (5, 83). Recently Chen at al. generated chimpanzee-human fusion MAbs against B5 and showed that the MAbs can protect mice from lethal challenge with virulent VACV (17). We recently reported, in connection with a study using murine monoclonal antibodies, that neutralization of EV is highly complement dependent and the ability of anti-B5 MAbs to protect in vivo correlated with their ability to neutralize EV in a complement-dependent manner (7).The focus of the study described here was to elucidate the mechanisms of EV neutralization, focusing on the human antibody response to B5. Our overall goal is to understand underlying immunobiological and virological parameters that determine the emergence of protective antiviral immune responses in humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号