首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this study, 56 F1 crosses of B. napus, including their eight parents, were developed through complete diallel mating design. Analysis of variances (ANOVA) of combining ability showed very highly significant (P ≤ 0.01) values for the general combining (GCA), specific combining (SCA) and the reciprocal combining ability (RCA) towards yield and its associated traits. Parental lines, AUP-9 (3.51), AUP-18 (37.26), AUP-20 (0.12), AUP-7 (0.11), and AUP-18 (5.66), were found as the best general combiners for each of the traits: pods on main raceme, pods on individual plant, seeds on each pod, 1000 seed weight and seed yield plant?1, respectively, whereas, based on desirable SCA effects, crosses found best were AUP-14 × AUP-18, AUP-14 × AUP-20, AUP-8 × AUP-20, AUP-2 × AUP-18, AUP-2 × AUP-14, and AUP-2 × AUP-9 for pods main raceme?1, pods plant?1, seeds pod?1, 1000 seed weight and seed yield plant?1, respectively. Superior reciprocal hybrids for economically important traits such as pods main raceme?1, pods plant?1, seeds pod?1, and seed yield plant?1 were AUP-17 × AUP-9, AUP-14 × AUP-2, AUP-18 × AUP-7 and AUP-20 × AUP-8, respectively, involving at least one best general combiner (parental line). Estimates of combining ability variances and predictability ratio (σ 2GCA/σ 2SCA <1.00) revealed the preponderance of a non-additive gene action and was further confirmed by higher values of variances due to SCA than GCA.  相似文献   

2.
Summary The ability to predict agronomic performance of progeny from a cross would be a great benefit to plant breeders in selecting parents. The predictive value of parental genetic relationships estimating F1 progeny means and F4 family variances of nine argronomic traits was tested in 76 oat crosses, using genetic distance measures based on coefficients-of-parentage, quantitatively inherited morphological characters, and discretely inherited biochemical and morphological characters. Coefficients-of-parentage were better predictors of F1 performance than similarity measures derived from plant morphology or discretely inherited characters. Combined distance measures were better estimators of F1 specific combining ability (SCA) effects than any single measure. Among cultivars of similar adaptation and quantitative morphology, crosses between parents with high coefficients-of-parentage gave higher SCA effect values than crosses of distantly related parents for grain yield and total biomass. The opposite was found for crosses among cultivars of different adaptation or quantitative morphology. The best predictor of trait variances among F4 families was coefficients-of-parentage. Crosses between more distantly related parents produced larger variances among families than crosses between closely related parents for plant biomass. For grain yield, test weight, heading date, grain filling period, and maturity date, crosses between more closely related parents produced larger among-family variances than crosses of distantly related parents. Crosses between more distantly related parents involved at least one parent unadapted to central New York, and resulted in most of the progeny being generally unadapted. This, in part, may account for the low genetic variances for heading date, test weight, and grain yield in crosses of distantly related parents.  相似文献   

3.
The use of plant biomass as substrate for biogas production has recently become of major interest in Europe. Winter Brassica rapa produces high early biomass and could be grown as a pre-crop harvested early in the year followed by a second crop such as maize. The objectives of this study were to estimate heterosis and combining ability of 15 European winter B. rapa cultivars for biomass yield at end of flowering. A half-diallel without reciprocals was conducted among cultivars to produce 105 crosses. These crosses and their parents were evaluated in two years at two locations in Northern Germany. Data collected were days to flowering (DTF), fresh biomass yield (FBY), dry matter content (DMC) and dry biomass yield (DBY). The mean DBY was 5.3 t/ha for the parental cultivars and 5.6 t/ha for their crosses. The crosses surpassed on average their parents by 7.6% for FBY and 5.9% for DBY whereas DMC was 1.4% higher in the parents. Maximum mid parent heterosis was 21.0% for FBY and 30.4% for DBY. Analysis of variance showed that genetic variance was mainly due to specific combining ability (SCA). The correlation between parental performance and general combining ability (GCA) was 0.42** for FBY and 0.53** for DBY. In conclusion, the amount of heterosis in crosses between European winter B. rapa cultivars is not very high on average, but can be up to 30% in the best crosses. Selection of parental combinations with high specific combining ability to produce synthetic cultivars can rapidly improve biomass yield.  相似文献   

4.
A collection of 368 advanced lines and cultivars of spring wheat(Triticum aestivum L.) from Chile, Uruguay, and CIMMYT(Centro Internacional de Mejoramiento de Maíz y Trigo), with good agronomic characteristics were evaluated under the Mediterranean conditions of central Chile. Three different water regimes were assayed: severe water stress(SWS, rain fed), mild water stress(MWS; one irrigation around booting), and full irrigation(FI; four irrigations: at tillering,flag leaf appearance, heading, and middle grain filling). Traits evaluated were grain yield(GY), agronomical yield components,days from sowing to heading, carbon isotope discrimination(△^13C) in kernels, and canopy spectral reflectance. Correlation analyses were performed for 70 spectral reflectance indices(SRI) and the other traits evaluated in the three trials. GY and △^13C were the traits best correlated with SRI, particularly when these indices were measured during grain filling. However,only GY could be predicted using a single regression, with ResearchNormalized Difference Moisture Index(NDMI2: 2,200; 1,100)having the best fit to the data for the three trials. For △^13C, only individual regressions could be forecast under FI(r^2: 0.25–0.37)and MWS(r^2: 0.45–0.59) but not under SWS(r^2: 0.03–0.09).NIR‐based SRI proved to be better predictors than those that combine visible and NIR wavelengths.  相似文献   

5.
The genetic distance analysis for selection of suitable parents has been established and effectively used in many crops; however, there is dearth of conclusive report of relationship of genetic distance analysis with heterosis in sesame. In the present study, an attempt was made to estimate the associations of genetic distances using SSR (GDSSR), seed-storage protein profiling (GDSDS) and agro-morphological traits (GDMOR) with hybrid performance. Seven parents were selected from 60 exotic and Indian genotypes based on genetic distance from clustering pattern based on SSR, seed-storage protein, morphological traits and per se performance. For combining ability analysis, 7 parents and 21 crosses generated from 7 × 7 half diallel evaluated at two environments in a replicated field trial during pre-kharif season of 2013. Compared with the average parents yield (12.57 g plant?1), eight hybrids had a significant (P < 0.01) yield advantage across environments, with averages of 26.94 and 29.99% for better-parent heterosis (BPH) and mid-parent heterosis (MPH), respectively, across environments. Highly significant positive correlation was observed between specific combining ability (SCA) and per se performance (0.97), while positive non-significant correlation of BPH with GDSSR (0.048), and non-significant negative correlations with GDMOR (? 0.01) and GDSDS (? 0.256) were observed. The linear regressions of SCA on MPH, BPH and per se performance of F1s were significant with R2 value of 0.88, 0.84 and 0.95 respectively. The present findings revealed a weak association of GDSSR with F1’s performance; however, SCA has appeared as an important factor in the determination of heterosis and per se performance of the hybrids. The present findings also indicated that parental divergence in the intermediate group would likely produce high heterotic crosses in sesame.  相似文献   

6.
Summary This paper reports on combining ability studies for yield and its component traits in diallel crosses involving ten ecogeographically and genetically diverse linseed (Linum usitatissimum L.) cultivars in the F2 generation over three locations. The general combining ability (GCA) and specific combining ability (SCA) mean squares were significant at all three locations for all traits. Combined analysis over locations showed the same trend of significance. The ratio of GCA to SCA mean squares was significant for all the traits in individual location analysis as well as in combined analysis. This indicated the predominant role of additive gene effects in the inheritance of these characters. The GCA mean squares were several times larger than SCA mean squares for all the traits, indicating the presence of considerable magnitude of additive genetic variance and the additive x additive components of the epistatic variance. Consequently, effective selection should be possible within these F2 populations for all characters. Significant genotype-location and GCA-location interactions indicated that more than one test location is required to obtain reliable information. The inexpensive and reliable procedure used for making the choice of parents was the determination of breeding values of the parents on the relative performance of their F2 progeny bulks.Part of the thesis submitted by the senior author in partial fulfillment of the requirements for the Ph. D. degree of the Marathwada Agricultural University, Parbhani, 431 402, India  相似文献   

7.
Advanced button mushroom cultivars that are less sensitive to mechanical bruising are required by the mushroom industry, where automated harvesting still cannot be used for the fresh mushroom market. The genetic variation in bruising sensitivity (BS) of Agaricus bisporus was studied through an incomplete set of diallel crosses to get insight in the heritability of BS and the combining ability of the parental lines used and, in this way, to estimate their breeding value. To this end nineteen homokaryotic lines recovered from wild strains and cultivars were inter-crossed in a diallel scheme. Fifty-one successful hybrids were grown under controlled conditions, and the BS of these hybrids was assessed. BS was shown to be a trait with a very high heritability. The results also showed that brown hybrids were generally less sensitive to bruising than white hybrids. The diallel scheme allowed to estimate the general combining ability (GCA) for each homokaryotic parental line and to estimate the specific combining ability (SCA) of each hybrid. The line with the lowest GCA is seen as the most attractive donor for improving resistance to bruising. The line gave rise to hybrids sensitive to bruising having the highest GCA value. The highest negative SCA possibly indicates heterosis effects for resistance to bruising. This study provides a foundation for estimating breeding value of parental lines to further study the genetic factors underlying bruising sensitivity and other quality-related traits, and to select potential parental lines for further heterosis breeding. The approach of studying combining ability in a diallel scheme was used for the first time in button mushroom breeding.  相似文献   

8.
To dissect the genetic factors controlling naturally occurring variation of heading date in Asian rice cultivars, we performed QTL analyses using F2 populations derived from crosses between a japonica cultivar, Koshihikari, and each of 12 cultivars originating from various regions in Asia. These 12 diverse cultivars varied in heading date under natural field conditions in Tsukuba, Japan. Transgressive segregation was observed in 10 F2 combinations. QTL analyses using multiple crosses revealed a comprehensive series of loci involved in natural variation in flowering time. One to four QTLs were detected in each cross combination, and some QTLs were shared among combinations. The chromosomal locations of these QTLs corresponded well with those detected in other studies. The allelic effects of the QTLs varied among the cross combinations. Sequence analysis of several previously cloned genes controlling heading date, including Hd1, Hd3a, Hd6, RFT1, and Ghd7, identified several functional polymorphisms, indicating that allelic variation at these loci probably contributes to variation in heading date. Taken together, the QTL and sequencing results indicate that a large portion of the phenotypic variation in heading date in Asian rice cultivars could be generated by combinations of different alleles (possibly both loss- and gain-of-function) of the QTLs detected in this study.  相似文献   

9.
Klaimi YY  Qualset CO 《Genetics》1974,76(1):119-133
The inheritance of vernalization response was studied in crosses involving four spring wheats (Sonora 64 (S), Pitic 62 (P), Justin (J) and Thatcher (T)) and three winter wheats (Blackhull (B), Early Blackhull (E) and Extra Early Blackhull (EE)).—All winter cultivars were highly responsive to vernalization, and Pitic 62 was the only spring cultivar whose time to heading was significantly accelerated following cold treatments. When vernalized and grown under long days, spring and winter cultivars became comparable in their heading response, indicating that cold requirement is the major attribute differentiating the heading behavior of true spring and true winter wheats.—Inheritance of growth habit in the F1 generation of a five-parent diallel cross showed dominance of the spring character in all spring x winter crosses. Depending on the cross, one or two duplicate major genes governing growth habit were detected in F2, F3 and backcross generations grown in the field under long days in the absence of vernalizing temperatures. In some spring x winter crosses most of the variation in heading time among spring segregates could be attributed to the effects of major genes conditioning growth habit. In other crosses the heading patterns appeared more complex, indicating that genes with smaller effects are also involved in the control of heading response under spring or summer environments.—Evidence was presented supporting the hypothesis that the cultivar Pitic 62 carries a different allele at one of the two major loci governing its spring habit. This allele was associated with some response to vernalization and acted as a dominant gene determining earliness under low temperature vernalization, but as a partially recessive gene determining lateness in the absence of vernalizing temperatures. Genotypes were assigned to five cultivars as follows: S, CC DD; P, CC D'D'; J, cc DD; B and EE, cc dd.—The presence of major and minor genes and of multiple alleles governing response to photoperiod and vernalization was discussed in relation to the genetic manipulation of the heading response and to breeding wheat cultivars with specific or broad adaptation.  相似文献   

10.
Fifty-two alfalfa (Medicago sativa L.) clones, randomly selected from the cultivar Baker and the experimental line MNGRN-4, were evaluated for resistance (based on nematode reproduction) to Pratylenchus penetrans in growth chamber tests (25 C). Twenty-five clones, representing the range of nematodes and eggs per plant, were selected and retested. Four moderately resistant and two susceptible alfalfa clones were identified. Inheritance of resistance to P. penetrans was studied in these six clones using a diallel mating design. The S₁, Fl, and reciprocal progenies differed for numbers of nematodes and eggs per g dry root and for shoot and root weights (P < 0.05). Resistance, measured as numbers of nematodes in roots, was correlated between parental clones and their S₁ families (r = 0.94), parental clones and their half-sib families (r = 0.81), and S₁ and half-sib families (r = 0.88). General combining ability (GCA) effects were significant for nematode resistance traits. Both GCA and specific combining ability (SCA) effects were significant for plant size traits, but SCA was more important than GCA in predicting progeny plant size. Reciprocal effects were significant for both nematode resistance and plant size traits, which may slow selection progress in long-term selection programs. However, the GCA effects are large enough that breeding procedures that capitalize on additive effects should be effective in developing alfalfa cultivars with resistance to P. penetrans.  相似文献   

11.
Combining ability is a measure for selecting elite parents and predicting hybrid performance in plant breeding. However, the genetic basis of combining ability remains unclear and a global view of combining ability from diverse mating designs is lacking. We developed a North Carolina II (NCII) population of 96 Oryza sativa and four male sterile lines to identify parents of greatest value for hybrid rice production. Statistical analyses indicated that general combining ability (GCA) and specific combining ability (SCA) contributed variously to different agronomic traits. In a genome‐wide association study (GWAS) of agronomic traits, GCA and SCA, we identified 34 significant associations (< 2.39 × 10?7). The superior alleles of GCA loci (Ghd8, GS3 and qSSR4) accumulated in parental lines with high GCA and explained 30.03% of GCA variance in grain yield, indicating that molecular breeding of high GCA parental lines is feasible. The distinct distributions of these QTLs contributed to the differentiation of parental GCA in subpopulations. GWAS of SCA identified 12 more loci that showed dominance on corresponding agronomic traits. We conclude that the accumulation of superior GCA and SCA alleles is an important contributor to heterosis and QTLs that greatly contributed to combining ability in our study would accelerate the identification of elite inbred lines and breeding of super hybrids.  相似文献   

12.
The possibility of introducing metabolic/biochemical phenotyping to complement genomics-based predictions in breeding pipelines has been considered for years. Here we examine to what extent and under what environmental conditions metabolic/biochemical traits can effectively contribute to understanding and predicting plant performance. In this study, multivariable statistical models based on flag leaf central metabolism and oxidative stress status were used to predict grain yield (GY) performance for 271 indica rice (Oryza sativa) accessions grown in the field under well-watered and reproductive stage drought conditions. The resulting models displayed significantly higher predictability than multivariable models based on genomic data for the prediction of GY under drought (Q2 = 0.54–0.56 versus 0.35) and for stress-induced GY loss (Q2 = 0.59–0.64 versus 0.03–0.06). Models based on the combined datasets showed predictabilities similar to metabolic/biochemical-based models alone. In contrast to genetic markers, models with enzyme activities and metabolite values also quantitatively integrated the effect of physiological differences such as plant height on GY. The models highlighted antioxidant enzymes of the ascorbate–glutathione cycle and a lipid oxidation stress marker as important predictors of rice GY stability under drought at the reproductive stage, and these stress-related variables were more predictive than leaf central metabolites. These findings provide evidence that metabolic/biochemical traits can integrate dynamic cellular and physiological responses to the environment and can help bridge the gap between the genome and the phenome of crops as predictors of GY performance under drought.

Biochemical traits outperform the explanatory power of genetic markers when used as variables in models for predicting yield performance in rice under drought stress.  相似文献   

13.
Segregation distortion of molecular markers is closely related to hybrid incompatibility in progeny from intraspecific crosses. Recent reports in higher plants have demonstrated that hybrid sterility results in segregation distortion at the causal gene regions in progeny of intraspecific crosses. Ne1 and Ne2 complementary loci are known to control hybrid necrosis in intraspecific crosses of common wheat cultivars. Here, we examine the effect of a weak necrosis allele Ne1 w on the segregation ratio of molecular markers in recombinant inbred lines (RILs) of common wheat. Some RILs showed accelerated cell death in the leaves at the heading stage due to the epistatic interaction between two quantitative trait loci (QTL) on chromosomes 5B and 2B. Chromosomal localization of these QTL corresponding to Ne1 w and Ne2 showed distorted segregation ratios of assigned markers having oppositely biased direction. Although the Ne1 w and Ne2 interaction had no obvious effect on seed fertility, Ne1 w reduced completion of grain development under the Ne2-homozygous background. This reduction might be one of causes that induces segregation distortion in the 5B and 2B chromosomal regions of RILs. The present study demonstrated that weak hybrid necrosis has limited phenotypic effects; it causes segregation distortion in progeny from intraspecific crosses.  相似文献   

14.
Huntington’s disease (HD) and spinocerebellar ataxias (SCAs) are autosomal-dominant neurodegenerative disorders. HD is caused by polyglutamine (polyQ) expansion in the amino-terminal region of a protein huntingtin (Htt) and primarily affects medium spiny striatal neurons (MSN). Many SCAs are caused by polyQ-expansion in ataxin proteins and primarily affect cerebellar Purkinje cells. The reasons for neuronal dysfunction and death in HD and SCAs remain poorly understood and no cure is available for the patients. Our laboratory discovered that mutant huntingtin, ataxin-2 and ataxin-3 proteins specifically bind to the carboxy-terminal region of the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1), an intracellular Ca2+ release channel. Moreover, we found that association of mutant huntingtin or ataxins with IP3R1 causes sensitization of IP3R1 to activation by IP3 in planar lipid bilayers and in neuronal cells. These results suggested that deranged neuronal Ca2+ signaling might play an important role in pathogenesis of HD, SCA2 and SCA3. In support of this idea, we demonstrated a connection between abnormal Ca2+ signaling and neuronal cell death in experiments with HD, SCA2 and SCA3 transgenic mouse models. Additional data in the literature indicate that abnormal neuronal Ca2+ signaling may also play an important role in pathogenesis of SCAl, SCA5, SCA6, SCA14 and SCA15/16. Based on these results I propose that IP3R and other Ca2+ signaling proteins should be considered as potential therapeutic targets for treatment of HD and SCAs.  相似文献   

15.
Drought stress (DS) is one of the most critical environmental abiotic stresses for wheat production in the arid environments. Selection of high-yielding genotypes tolerant to DS can play a significant role in mitigation the negative impacts associated with DS. In the present study, generation means analysis (GMA) was used to study the performance of two crosses under well irrigation (WI) and deficit irrigation [cross I (Line 44 × Shandweel-1) and cross II (Line 20 × Sakha 93)]. Significant differences were observed for days to heading (DH), days to maturity (DM), plant height (PH), spike length (SL), number of spikes per plant (NS/P), number of grains per spike (NG/S), thousand-grain weight (TGW), grain yield per plant (GY/P), and proline content (PC) in the six populations of the two crosses within each irrigation level. Cross II had early maturity and the highest PC, NS/P, TGW, and GY/P regardless of the irrigation level. Cross I showed positive significant relative heterosis and heterobeltiosis for GY/P under the two irrigation levels. The inheritance of characters of cross I revealed additive, dominant, and epistatic effects, which varied with trait and stress. Additive genetic effects predominated in DH, SL, and PC, while non- additive were found in DM, NS/P, NG/S, and GY/P. Narrow-sense heritability estimates (h2n) were high for DH and PC, moderate to high for PH and SL, moderate for DM, NG/S, NS/P, and TGW, and low for GY/P. Based on different drought indices the populations BC1, BC2, F1, and P1 of cross II and BC1 of cross I were more tolerant to drought stress. Therefore, PC, TGW and DH can be used as selection indicators to improve wheat for drought tolerance in early generations and other yield components traits in late generations. The second cross (Line 20 × Sakha 93) shows promise and is of interest to a drought tolerance breeding program, where wheat breeders can use recombinant breeding strategies to construct desirable drought stress genes. Correlation and path coefficient revealed that TGW and PC were the main contributor in grain yield in both environments.  相似文献   

16.
This study was conducted to determine the reciprocal effects for anther culture response in wheat (Triticum aestivum L.) using a set of 4 × 4 full diallel crosses. Both reciprocal and nuclear genetic effects were highly significant for anther culture response and useful for selection and breeding purposes. General combining ability (GCA) effects were predominant for all investigated anther culture traits. Also, significant differences for specific combining ability (SCA) effects were detected between reciprocal crosses. Although significant reciprocal differences for responding anther, callus number and green plant regeneration were recorded in some reciprocal crosses, there were no significant reciprocal differences for albino plant regeneration. The use of one parent as male or female could lead to change at the production of green plants from the F1 hybrids and screening of inbred lines for response to anther culture, without reciprocal effects, could decrease the utilization of breeding material.  相似文献   

17.
Heading date (HD) is a key trait for the adaptation of rice cultivar to a specific growing region. Here, we report conventional and marker-assisted breeding strategies using genetic information related to the determination of HD, where the breeding objectives were to avoid the delayed heading common in indica × japonica hybrids, to increase the efficiency in selecting hybrid rice combinations having a suitable growth duration, and to develop cultivars with target growth duration by quantitative trait locus (QTL) pyramiding. The allelic constitution at the major HD loci was determined for a set of 109 leading Chinese rice cultivars by crossing them with HD tester lines. It was shown that the late heading in indica × japonica hybrids can be overcome by replacing the strong photoperiod-sensitivity allele Se-1 n with Se-1 e . A breeding strategy to enable the selection of hybrid combinations with suitable growth duration was proposed, based on HD genotypic information in rice. Meanwhile, a QTL analysis for HD was conducted over five years based on a recombinant inbred line population, derived from two parents Asominori (japonica) and IR24 (indica). Four QTLs, located on chromosomes 2, 3, 6, and 8, respectively, could be detected in all five years, indicating they were stably expressed QTL. According to this QTL information, and taking Asominori as an example, the HD genotypes for improving the growth duration were designed, and the best breeding selection schemes were determined by use of a genetic breeding simulation tool. Results obtained in this study demonstrate that genetic information related to HD can make a significant contribution to rice breeding.  相似文献   

18.
Water stress is a critical abiotic stress for plant reduction in arid and semiarid zones and, has been discovered to be detrimental to the development of seedlings as well as the growth and physiological characteristics of many crops such as cotton. The objectives of our study were to determine the combining ability and genetic components for five quantitative traits [(leaf area (LA), leaf dry weight (LDW), plant height (PH), fiber length (2.5 percent SL), and lint cotton yield/plant (LCY/P)] under water shortage stress, a half diallel cross between six cotton genotypes representing a wide range of cotton characteristics was evaluated in RCBD with four replications. The genotype mean squares were significant for all traits studied, demonstrating significant variation among genotypes for all characters under water shortage stress. LCY/P had the highest phenotypic and genotypic correlation co-efficient with PH, LDW, and LA shortage. The highest direct effect on lint cotton yield was exhibited by leaf area (3.905), and the highest indirect effects of all traits were through LA, with the exception of 2.5 percent SL, which was through LDW. The highest dissimilarity (Euclidean Distance) between parental genotypes was between G.87 and G.94, followed by G.87 and Menoufi. G.94 was also a well-adapted genotype, and the combinations G.87 x G.94 and G.87 x Menoufi may outperform their parents. The combining ability analysis revealed highly significant differences between parental GCA effects and F1 crosses SCA effects. The variation of GCA and SCA demonstrated the assurance of additive and non- additive gene action in the inheritance of all traits studied. In terms of general combining ability (GCA) effects, parental genotype G.94 demonstrated the highest significant and positive GCA effects for all traits studied, with the exception of 2.5 percent SL, where G.87 revealed the highest significant and positive GCA effects. The effects of specific combining ability (SCA) revealed that the cross (G.87 x2G.94) revealed stable, positive, and significant SCA for all of the studied traits.  相似文献   

19.
A fusant strain F14 with high biodegradation capability of phenanthrene was obtained by protoplast fusion between Sphingomonas sp. GY2B (GenBank DQ139343) and Pseudomonas sp. GP3A (GenBank EU233280). F14 was screened and identified from 39 random fusants by antibiotic tests, scanning electron microscope (SEM) and randomly amplified polymorphic DNA (RAPD). The result of SEM analysis demonstrated that the cell shape of fusant F14 different from parental strains. RAPD analysis of 5 primers generated a total of 70 bands. The genetic similarity indices between F14 and parental strains GY2B and GP3A were 27.9 and 34.6 %, respectively. F14 could rapidly degrade phenanthrene within 24 h, and the degradation efficiency was much better than GY2B and GP3A. GC–MS analysis of metabolites of phenanthrene degradation indicated F14 had a different degradation pathway from GY2B. Furthermore, the fusant strain F14 had a wider adaptation of temperatures (25–36 °C) and pH values (6.5–9.0) than GY2B. The present study indicated that fusant strain F14 could be an effective and environment-friendly bacterial strain for PAHs bioremediation.  相似文献   

20.
Rice stem borer (Chilo agamemnon Bles.) is a primary insect pest of rice and is a major limiting factor to rice production. Breeding for insect-resistant crop varieties has been an economic way of integrated pest management (IPM) as it offers a viable and ecologically acceptable approach. This study was aimed to evaluate rice genotypes for their resistance against rice stem borer. Seven parental genotypes with twenty one F1 crosses were evaluated for genotypic variation in field experiments. Analysis of variance revealed significant differences for the studied traits in almost all crosses and parents. In addition, the mean squares of parents versus their crosses were signifi- cant for stem borer resistance and other associated traits. Moreover, both general combining ability (GCA) and specific combining ability (SCA) variances were highly significant for all characters studied in the F1 generation. Based on GCA, 4 genotypes (Sakha101, Gz6903-3-4-2-1, Gz9577-4-1-1 and Hassawi) exhibited highly significant negative values for stem borer resistance (–0.53, –1.06, –0.18 and –0.49, respectively) indicating they are the best combiners for stem borer resistance. Based on SCA analysis, nine cross combinations showed highly significant negative effects for stem borer resistance. Similarly, the cross Giza178 Hassawi was the best combination with significantly highest value for early maturity. In addition, seven crosses showed highly significant negative SCA for plant height trait. On the other hand, for panicle length, number of primary branches/panicle, panicle weight and 1000-grain weight, seven, four, eight and six crosses showed highly significant positive SCA, respectively. The result further revealed that the non-additive dominance genetic variance was higher than the additive variance for all evaluated traits indicating that non-additive genetic variances have a role in their inheritance. The broad-sense heritability estimates were high for all the studied traits. The stem borer resistance was significantly correlated with panicle weight and 1000-grain weight, which also showed a highly significant correlation with grain yield/plant. Thus these traits can be effectively employed in a breeding program to confer resistance against stem borer infestation in rice. It was further supported by biplot analysis, which clustered these potentially important traits into two quadrants showing their importance in any future breeding program to control stem borer infestation. This study has contributed valuable information for evaluation of genetic diversity in the local rice germplasm and its utilization in futuristic rice genetic improvement programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号