首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RANKL plays an essential role in mammary gland development during pregnancy. However, the molecular mechanism by which RANK signaling leads to mammary gland development is largely unknown. We report here that RANKL stimulation induces phosphorylation of Id2 at serine 5, which leads to nuclear retention of Id2. In lactating Id2Tg; RANKL(-/-) mice, Id2 was not phosphorylated and was localized in the cytoplasm. In addition, in lactating Id2(S5A)Tg mice, Id2(S5A) (with serine 5 mutated to alanine) was exclusively localized in the cytoplasm of mammary epithelial cells (MECs), while endogenous Id2 was localized in the nucleus. Intriguingly, nuclear expression of Id2(S5A) rescued increased apoptosis and defective differentiation of MECs in RANKL(-/-) mice. Our results demonstrate that nuclear retention of Id2 due to RANK signaling plays a decisive role in the survival and differentiation of MECs during mammary gland development.  相似文献   

2.
3.
The inositol 5-phosphatase SHIP1 acts as negative regulator of intracellular signaling in myeloid cells and is a tumor suppressor in myeloid leukemogenesis. After relocalization from the cytoplasm to the plasma membrane SHIP1 terminates PI3-kinase mediated signaling processes. Furthermore, SHIP1 is also found in distinct puncta in the cell nucleus and nuclear SHIP1 has a pro-proliferative function. Here we report the identification of five nuclear export signals (NESs) which regulate together with the two known nuclear localization signals (NLSs) the nucleocytoplasmic shuttling of SHIP1. Mutation of NLSs reduced the nuclear import and mutation of NESs decreased the nuclear export of SHIP1 in the acute myeloid leukemia (AML) cell line UKE-1. Interestingly, four SHIP1 mutants (K210R, N508D, V684E, Q1153L) derived from AML patients showed a nuclear accumulation after expression in UKE-1 cells. In addition, overexpression of the AML patient-derived mutation N508D caused an increased proliferation rate of UKE-1 cells in comparison to wild type SHIP1. Furthermore, we identified serine and tyrosine phosphorylation as a molecular mechanism for the regulation of nucleocytoplasmic shuttling of SHIP1 where tyrosine phosphorylation of distinct residues i.e. Y864, Y914, Y1021 reduces nuclear localization, whereas serine phosphorylation at S933 enhances nuclear localization of SHIP1.In summary, our data further implicate nuclear SHIP1 in cellular signaling and suggest that enhanced accumulation of SHIP1 mutants in the nucleus may be a contributory factor of abnormally high proliferation of AML cells.  相似文献   

4.
Autosomal-dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease and is characterized by progressive cyst formation and ultimate loss of renal function. Increased cell proliferation is a key feature of the disease. Here, we show that the ADPKD protein polycystin-2 (PC2) regulates the cell cycle through direct interaction with Id2, a member of the helix-loop-helix (HLH) protein family that is known to regulate cell proliferation and differentiation. Id2 expression suppresses the induction of a cyclin-dependent kinase inhibitor, p21, by either polycystin-1 (PC1) or PC2. The PC2-Id2 interaction is regulated by PC1-dependent phosphorylation of PC2. Enhanced Id2 nuclear localization is seen in human and mouse cystic kidneys. Inhibition of Id2 expression by RNA interference corrects the hyperproliferative phenotype of PC1 mutant cells. We propose that Id2 has a crucial role in cell-cycle regulation that is mediated by PC1 and PC2.  相似文献   

5.
The promyogenic cell surface molecule Cdo is required for activation of extracellular signal-regulated kinase (ERK) and nuclear factor of activated T cells c3 (NFATc3) induced by netrin-2 in myogenic differentiation. However, the molecular mechanism leading to NFATc3 activation is unknown. Stromal interaction molecule 1 (Stim1), an internal calcium sensor of the endoplasmic reticulum store, promotes myogenesis via activation of NFATc3. In this study we investigated the functional interaction between Cdo and Stim1 in myogenic differentiation. Overexpression and depletion of Stim1 enhanced or decreased myotube formation, respectively. Of interest, Stim1 protein levels were decreased in Cdo-deficient perinatal hindlimb muscles or primary myoblasts; this correlates with defective NFATc3 activation in Cdo(-/-) myoblasts upon differentiation. Forced activation of NFATc3 by overexpression of calcineurin restored differentiation of Cdo-depleted C2C12 myoblasts. Furthermore, Cdo and Stim1 formed a complex in 293T cells or in differentiating C2C12 myoblasts. The netrin-2-mediated NFATc3 activation was coincident with robust interactions between Cdo and Stim1 in myoblasts and the ERK-mediated Stim1 phosphorylation at serine 575. The serine 575 phosphorylation was enhanced in C2C12 cells upon differentiation, and the alanine substitution of serine 575 failed to restore differentiation of Stim1-depleted myoblasts. Taken together, the results indicate that cell adhesion signaling triggered by netrin-2/Cdo induces Stim1 phosphorylation at serine 575 by ERK, which promotes myoblast differentiation.  相似文献   

6.
7.
8.
9.
10.
11.
12.
Cell differentiation in the nervous system is dictated by specific patterns of gene expression. We have investigated the role of helix-loop-helix (HLH) proteins during differentiation of PC12 pheochromocytoma cells in response to nerve growth factor. Gel mobility shift assays using PC12 cell nuclear extracts demonstrated that active basic HLH complexes exist throughout differentiation. Addition of exogeneous Id1 protein, a negative regulator of basic HLH proteins, disrupted specific complexes formed by PC12 cell nuclear extracts on a CANNTG consensus oligonucleotide. To identify possible novel basic HLH proteins in these complexes, a glutathione S-transferase-Id1 fusion protein was used to screen a PC12 cell cDNA expression library. A single clone representing the rat E2-2 gene was identified. Sequential immunoprecipitations with antibodies to each HLH protein revealed an association between Id1 and E2-2 that could be detected in both untreated and nerve growth factor-treated PC12 cell lysates. These experiments define a new HLH interaction between Id1 and E2-2 in neuronal cells and suggest that neuronal differentiation may be regulated by HLH proteins in a distinctive manner.  相似文献   

13.
In this study we have investigated the effect and the mechanisms by which tumor necrosis factor-like weak inducer of apoptosis (TWEAK) modulates myogenic differentiation. Treatment of C2C12 myoblasts with TWEAK inhibited their differentiation evident by a decrease in the expression of creatine kinase, myosin heavy chain-fast twitch, myogenin, and the formation of multinucleated myotubes. TWEAK also inhibited the differentiation of mouse primary myoblasts. Conversely, the proliferation of C2C12 myoblasts and the expression of a cell-cycle regulator cyclin D1 were increased in response to TWEAK treatment. Inhibition of cellular proliferation using hydroxyurea only partially reversed the inhibitory effect of TWEAK on myogenic differentiation. Treatment of C2C12 myoblasts with TWEAK resulted in the activation of nuclear factor-kappaB (NF-kappaB), the (IkappaB) IkappaB kinase (IKK) complex, and the phosphorylation and degradation of IkappaBalpha protein. Inhibition of NF-kappaB activity by overexpression of a dominant negative mutant of IkappaBalpha (IkappaBalphaDeltaN) significantly increased the myogenic differentiation in TWEAK-treated C2C12 cultures. Furthermore, overexpression of a dominant negative mutant of IKKbeta (IKKbetaK44A) but not IKKalpha (IKKalphaK44M) reversed the inhibitory effect of TWEAK on myogenesis. TWEAK inhibited the expression of myogenic regulatory factors MyoD and myogenin and also induced the degradation of MyoD protein. Finally, inhibition of NF-kappaB activation through overexpression of IKKbetaK44A prevented the degradation of MyoD protein. Overall, our data suggest that TWEAK inhibits myogenesis through the activation of NF-kappaB signaling pathway and degradation of MyoD protein.  相似文献   

14.
Inhibitor of differentiation (Id) family helix-loop-helix proteins regulate the proliferation, survival and differentiation of numerous cell types during development; however, their functions during retinal development have not been analyzed. Using loss-of-function and overexpression assays in zebrafish, we demonstrate that Id2a levels modulate retinoblast cell cycle kinetics and thereby influence neuron and glia formation in the retina. Id2a-deficient retinas possess increased numbers of cells occupying S phase, at the expense of mitotic cells, and kinetic analyses demonstrate that Id2a is required for S-phase progression and/or the transition from S to M phase. Id2a-dependent defects in retinoblast proliferation lead to microphthalmia and to an absence of nearly all differentiated inner and outer nuclear layer cell types. Overexpression of id2a has the opposite effect on retinoblast cell cycle kinetics: id2a-overexpressing retinoblasts progress from S to M phase more rapidly and they undergo mitosis more frequently, which results in macrophthalmia. Mosaic analyses reveal that Id2a function in facilitating both cell cycle progression and neuronal differentiation in the retina is non-cell-autonomous, suggesting that Id2a functions upstream of the extrinsic pathways that regulate retinogenesis.  相似文献   

15.
The changes in subcellular localization of metallothionein during differentiation were studied in two myoblast cell lines, L6 and H9C2. Addition of insulin like growth factor-I or lowering foetal bovine serum to 1% can induce differentiation of myoblasts to myotubes. Metallothionein and zinc were localized mainly in the cytoplasm in myoblasts but were translocated into the nucleus of newly formed myotubes during early differentiation. In fully differentiated myotubes, metallothionein content was decreased with a cytoplasmic localization. Addition of an inhibitor of mitogen-activated protein kinase, PD 98059, did not affect differentiation but blocked nuclear translocation of metallothionein. LY 294092, an inhibitor of PI3 kinase, and rapamycin, an inhibitor of p70S6 serine/threonine kinase, abolished insulin-like growth factor-I induced differentiation of myoblasts, retained metallothionein in the cytoplasm, and decreased metallothionein content. These results demonstrate that the cytoplasmic-nuclear translocation of metallothionein occurs during the early stage of differentiation of myoblasts to myotubes and can be blocked by inhibition of certain signal transduction pathways. The transient nuclear localization of metallothionein and zinc may be related to a high requirement for zinc for metabolic activities during the early stage of differentiation.  相似文献   

16.
17.
18.
Cell volume regulation is particularly important for kidney collecting duct cells. These cells are the site of water reabsorption regulated by vasopressin and aquaporin-2 (AQP2) trafficking to the apical membrane, and subject to changes in osmolality. Here, we examined the role of AQP2 in regulatory volume decrease (RVD), which is a cellular defensive process against hypotonic stress. Stable expression of AQP2 increases RVD in MDCK cells and its phosphorylation levels decrease during the RVD process. We then examined the involvement of AQP2 phosphorylation at serine 256 and serine 261 in RVD using cells stably expressing the phosphorylation mutants. Both S256A- and S256D-AQP2 decrease RVD compared to wild type (WT)-AQP2 although only S256A mutation decreases the initial osmotic swelling, indicating that AQP2-enhanced RVD is independent of osmotic swelling induced by the water permeability of AQP2. S261A and S261D mutations do not induce changes compared with WT-AQP2. These findings indicate that switching between phosphorylation and dephosphorylation at S256 is important for RVD. We previously reported that AQP2 interacts with tropomyosin 5b (TM5b), which regulates actin stability. AQP2 interactions with TM5b are rapidly increased by hypotonicity and then decreased, which are consistent with AQP2 phosphorylation levels. Knockdown and overexpression of TM5b show its essential role in WT-AQP2-enhanced RVD. RVD in S256A- and S256D-AQP2-expressing cells is not changed by TM5b knockdown or overexpression. The present study shows that AQP2 regulates RVD via TM5b and switching between phosphorylation and dephosphorylation at S256 in AQP2 is critical for this process.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号