首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Distribution of fiber types in locomotory muscles of dogs   总被引:3,自引:0,他引:3  
The distribution of Type I and Type II fibers, as determined from histochemical estimation of myofibrillar ATPase activity, was studied within and among the locomotory muscles of the forelimb, trunk, and hindlimb of three mongrel dogs. All Type II fibers had high oxidative capacities as estimated from the histochemical assay for reduced nicotinamide adenine dinucleotide tetrazolium reductase, so they were not further divided into subpopulations. Furthermore, Type I and Type II fibers had similar oxidative potentials as indicated by both histochemistry and biochemistry. Type I fiber populations ranged between 14% and 100% in the muscles sampled. The highest percentages of Type I fibers were found in deep muscles of physiological extensor groups in the arm and thigh that serve to resist gravity (antigravity muscles) when the dog is in the quadrupedal standing position. More superficial muscles in these same groups had fewer Type I fibers. The patterns of Type I fiber distribution among muscles in the antigravity groups of the forearm and leg were the opposite of those in the arm and thigh, with the more superficial muscles of the distal limb segments having more Type I fibers than the deeper muscles. In all limb segments, muscle groups that do not serve to resist gravity did not show as much intermuscular variation. Type I fiber populations in these muscles did not exceed 50%. A stratification of fiber types also existed within muscles, both in extensor and flexor groups, with the deeper portions of the muscles having more Type I fibers than the more superficial portions.  相似文献   

2.
Investigations of the structure and function of the flexor carpi radialis muscle (FCR) in the cat have led to the hypothesis that the compartmentalized (nonuniform) distribution of fiber types within the muscle relate to the complex motor skills of the cat. To test this hypothesis a study was undertaken to compare the FCR in four mammalian species of similar body size but with different forelimb motor tasks. The species chosen were: dog, opossum, armadillo, and cat. Comparisons were made among species with regard to general muscle morphology, fiber types and sizes, fiber proportions, and fiber distriburtions. The FCR of all species was morphologically similar and contained three muscle fiber types (SO, FOG, and FG). The mean area of muscle fibers was largest in opossum, while the FCR fibers of dogs were smallest. The percentage of SO fibers in the dog FCR was greater than in the other species studied. The opossum FCR also contained a high percentage of SO fibers. The armadillo FCR consisted of a high percentage of FG fibers. In the cat FCR the percentages of all three fiber types were similar. For each species, individual fiber proportions were in agreement with the results for fiber percentages. Compartmentalized distribution of fiber types existed in each species with the dog having the most compartmentalized fiber type distribution and the cat the least compartmentalized distribution. Therefore it seems that the compartmentalized organization of the FCR is not related to any specialized motor task, but may be a generalized pattern associated with motor patterns shared among all species studied.  相似文献   

3.
To further elucidate the pattern of MHC isoform expression in skeletal muscles of large mammals, in this study the skeletal muscles of brown bear, one of the largest mammalian predators with an extraordinary locomotor capacity, were analyzed. Fiber types in longissimus dorsi, triceps brachii caput longum, and rectus femoris muscles were determined according to the myofibrillar ATPase (mATPase) histochemistry and MHC isoform expression, revealed by a set of antibodies specific to MHC isoforms. The oxidative (SDH) and glycolytic enzyme (α‐GPDH) capacity of fibers was demonstrated as well. By mATPase histochemistry five fiber types, i.e., I, IIC, IIA, IIAX, IIX were distinguished. Analyzing the MHC isoform expression, we assume that MHC‐I, ‐IIa, and ‐IIx are expressed in the muscles of adolescent bears. MHC‐I isoform was expressed in Type‐I fibers and coexpressed with presumably ‐IIa isoform, in Type‐IIC fibers. Surprisingly, two antibodies specific to rat MHC‐IIa stained those fast fibers, that were histochemically and immunohistochemically classified as Type IIX. This assumption was additionally confirmed by complete absence of fiber staining with antibody specific to rat MHC‐IIb and all fast fiber staining with antibody that according to our experience recognizes MHC‐IIa and ‐IIx of rat. Furthermore, quite high‐oxidative capacity of all fast fiber types and their weak glycolytic capacity also imply for MHC‐IIa and ‐IIx isoform expression in fast fibers of bear. However, in adult, full‐grown animal, only MHC‐I and MHC‐IIa isoforms were expressed. The expression of only two fast isoforms in bear, like in many other large mammals (humans, cat, dog, goat, cattle, and horse) obviously meets the weight‐bearing and locomotor demands of these mammals. J. Morphol., 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

4.
The purpose of this study was to estimate the absolute and relative masses of the three types of skeletal muscle fibers in the total hindlimb of the male Sprague-Dawley rat (Rattus norvegicus). For six rats, total body mass was recorded and the following weights taken from dissection of one hindlimb: 32 individual major muscles or muscle parts, remaining skeletal musculature (small hip muscles and intrinsic foot muscles), bone, inguinal fat pad, and skin. The fibers from the 32 muscles or muscle parts (which constituted 98% of the hindlimb skeletal muscle mass) were classified from histochemistry as fast-twitch oxidative glycolytic (FOG), fast-twitch glycolytic (FG), or slow-twitch oxidative (SO), and their populations were determined. Fiber cross-sectional areas from the same muscles were measured with a digitizer. Mass of each of the fiber types within muscles and in the total hindlimb was then calculated from fiber-type population, fiber-type area, and muscle-mass data. Skeletal muscle made up 71% of the total hindlimb mass. Of this, 76% was occupied by FG fibers, 19% by FOG fibers, and 5% by SO fibers. Thus, the FG fiber type is clearly the predominant fiber type in the rat hindlimb in terms of muscle mass. Fiber-type mass data are compared with physiological (blood flow) and biochemical (succinate dehydrogenase activities) data for the muscles taken from previous studies, and it is demonstrated that these functional properties are closely related to the proportions of muscle mass composed of the various fiber types.  相似文献   

5.
Fiber type changes in rat skeletal muscle after intense interval training   总被引:1,自引:0,他引:1  
Female Sprague-Dawley rats were subjected to a ten week training program to determine the influence of intense interval running on the fiber type composition of selected hindlimb muscles; soleus (S), plantaris (P), deep vastus lateralis (DVL), and superficial vastus lateralis (SVL). The muscles of one hindlimb were used for histochemical ATPase analysis to determine the distribution of fiber types and those of the contralateral hindlimb were assayed biochemically for citrate synthase activity (an aerobic marker). Training induced a significant increase in citrate synthase activity in each muscle section. The largest absolute increase occurred in the DVL and the largest relative increase occurred in the SVL. The distribution of fiber types within the S (85% slow-twitch) and SVL (100% fast-twitch) remained unchanged with training. However, significant increases in the percentage of type I (slow-twitch) fibers in both the P (2-fold) and DVL (3-fold) were observed with concomitant decreases in the type II (fast-twitch) population. In addition, training induced significant changes in the fast-twitch subtype populations of the DVL (IIB----IIA). These data suggest exercise-induced fiber type transformations occurring both within the fast-twitch population and between fast-twitch and slow-twitch fibers in certain hindlimb muscles of the rat following a high intensity interval training program.  相似文献   

6.
Mouse extensor digitorum longus (EDL) muscle was subjected to a dose of gamma irradiation that causes reproductive death of satellite cells and/or to chronic compensatory overload, achieved by removal of the distal portion of the tibialis anterior muscle. Four weeks later the mass, fiber type percentage, and fiber size of the EDL muscle were measured. Both the irradiated + overloaded and the irradiated only EDL muscles were significantly lighter and contained significantly smaller fibers than untreated muscle or muscle subjected to chronic overload only. Overload muscle, whether irradiated or not, had a larger percentage of type IIx fibers and a smaller percentage of type IIb fibers than muscle that had not been overloaded. The results confirm that satellite cell proliferation is a prerequisite for muscle hypertrophy induced by synergist incapacitation, but it appears not to be required for the maintenance of, or change in, normal muscle fiber myosin heavy chain phenotype expression.  相似文献   

7.
The validity of the Sorensen test as a measure for back muscle endurance is controversial due to a possible impact of hip extensor muscles. The aim of this study was to investigate the criterion validity of an alternative test (Ito test) compared to the Sorensen test. Both procedures were performed by 29 healthy subjects (11 women) for 5 s and until exhaustion (randomized order). EMG activity was measured from 3 lumbar back and 3 hip extensor muscles. Muscular involvement in test positions was calculated as percentage of maximal voluntary contraction (MVC). Muscle fatigue was determined by the normalized regression coefficient of the median frequencies of the EMG power spectrum (NMFslope). Prediction of holding time by NMFslope values was investigated using regression analysis. In the test positions, the hamstring muscles were activated to a higher MVC percentage in the Sorensen than in the Ito test, while the iliocostalis muscle was less activated. Similarly, the iliocostalis (p = 0.006) and the multifidi muscles (p = 0.03) significantly contributed to predict holding time in the Ito test, whereas the multifidi muscles (p = 0.001) and the semitendinosus muscle (p = 0.046) did so in the Sorensen test. The results of this study indicate that the Ito test might present a valuable alternative for testing back muscle endurance in LBP patients.  相似文献   

8.
Muscle fiber conduction velocity (CV) is commonly estimated from surface electromyograms (EMGs) collected with electrodes parallel to muscle fibers. If electrodes and muscle fibers are not located in parallel planes, CV estimates are biased towards values far over the physiological range. In virtue of their pinnate architecture, the fibers of muscles such as the gastrocnemius are hardly aligned in planes parallel to surface electrodes. Therefore, in this study we investigate whether physiological CV estimates can be obtained from the gastrocnemius muscle. Specifically, with a large grid of 16 × 8 electrodes we map CV estimates over the whole gastrocnemius muscle while eleven subjects exerted isometric plantar flexions at three different force levels. CV was estimated for couples of single differential EMGs and estimate locations (i.e., channels) were classified as physiological and non-physiological, depending on whether CV estimates were within the physiological range (3–6 ms?1) or not. Physiological CV values could be estimated from a markedly small muscle region for eight participants; channels providing physiological CV estimates corresponded to about 5% of the total number of channels. As expected, physiological and non-physiological channels were clustered in distinct regions. CV estimates within the physiological range were obtained for the most distal gastrocnemius portion (ANOVA, P < 0.001), where occurrences of propagating potentials were often verified through visual analysis. For the first time, this study shows that CV might be reliably assessed from surface EMGs collected from the most distal gastrocnemius region.  相似文献   

9.
In thirteen cats anesthetized with alpha-chloralose, we compared the cardiovascular and ventilatory responses to both static contraction and tendon stretch of a hindlimb muscle group, the triceps surae, with those to contraction and stretch of a forelimb muscle group, the triceps brachii. Static contraction and stretch of both muscle groups increased mean arterial pressure and heart rate, and the responses were directly proportional to the developed tension. The cardiovascular increases, however, were significantly greater (P < 0.05) when the triceps brachii muscles were contracted or stretched than when the triceps surae muscles were contracted or stretched, even when the tension developed by either maneuver was corrected for muscle weight. Likewise, the ventilatory increases were greater when the triceps brachii muscles were stretched than when the triceps surae muscles were stretched. Contraction of either muscle group did not increase ventilation. Our results suggest that in the anesthetized cat the cardiovascular responses to both static contraction and tendon stretch are greater when arising from forelimb muscles than from hindlimb muscles.  相似文献   

10.
11.
Fiber type changes in rat skeletal muscle after intense interval training   总被引:2,自引:0,他引:2  
Summary Female Sprague-Dawley rats were subjected to a ten week training program to determine the influence of intense interval running on the fiber type composition of selected hindlimb muscles; soleus (S), plantaris (P), deep vastus lateralis (DVL), and superficial vastus lateralis (SVL). The muscles of one hindlimb were used for histochemical ATPase analysis to determine the distribution of fiber types and those of the contralateral hindlimb were assayed biochemically for citrate synthase activity (an aerobic marker). Training induced a significant increase in citrate synthase activity in each muscle section. The largest absolute increase occurred in the DVL and the largest relative increase occurred in the SVL. The distribution of fiber types within the S (85% slow-twitch) and SVL (100% fast-twitch) remained unchanged with training. However, significant increases in the percentage of type I (slow-twitch) fibers in both the P (2-fold) and DVL (3-fold) were observed with concomitant decreases in the type II (fast-twitch) population. In addition, training induced significant changes in the fast-twitch subtype populations of the DVL (IIBIIA). These data suggest exercise-induced fiber type transformations occurring both within the fast-twitch population and between fast-twitch and slow-twitch fibers in certain hindlimb muscles of the rat following a high intensity interval training program.  相似文献   

12.
When the functional differentiation of 83 kinds of limb and trunk muscles ofMacaca fuscata was investigated on the basis of the activities of two glycolytic enzymes [lactate dehydrogenase (LDH) and aldolase] and one oxidative enzyme [succinate dehydrogenase (SDH)], the forelimb rather than the hindlimb muscles proved have higher oxidative activities. These results indicated that, inMacaca fuscata, the forelimb muscles have a higher resistance to fatigue, and that the hindlimb muscles have a higher tetanic tension on the basis of the relationships between enzymatic activities and functional properties of the muscle fiber types. These findings were interpreted in relation to the fact thatMacaca fuscata is a quadrupedal primate with arboreal habits, as compared with nonprimate terrestrial quadrupeds. The two-joint muscles and the superficial muscles contract more rapidly than do the other muscles in the hindlimb, thereby suggesting that both types of muscles readily adapt to quick movement.  相似文献   

13.
Changes in alphaB-crystallin content in adult rat soleus and extensor digitorum longus (EDL) were examined after 8 wk of 3,5, 3'-triiodothyronine (T(3)) and propylthiouracil (PTU) treatments. Cellular distributions of alphaB-crystallin expression related to fiber type, and distribution shifts with these treatments were also examined in detail from the gray level of reactivity to specific anti-alphaB-crystallin antibody. alphaB-crystallin content in both soleus and EDL muscles was significantly decreased after T(3), and that in EDL was significantly increased over twofold after PTU treatment. In both control soleus and EDL muscles, the gray level of type I fibers was higher than that of type II fibers. alphaB-crystallin expression among type II subtypes was muscle specific; the order was type I > IIa > IIx > IIb in control EDL muscle and type IIx > or = IIa in soleus muscle. The relation was basically unchanged in both muscles after T(3) treatment and was, in particular, well maintained in EDL muscle. Under hypothyroidism conditions with PTU, the mean alphaB-crystallin levels of type IIa and IIx fibers were significantly lower than levels under control conditions. Thus the relation between fiber type and the expression manner of stress protein alphaB-crystallin is muscle specific and also is well regulated under thyroid hormone, especially in fast EDL muscle.  相似文献   

14.
This study compares muscle fiber conduction velocities estimated using surface electromyography during isometric maximal voluntary contraction in different stages of diabetic neuropathy. Eighty-five adults were studied: 16 non-diabetic individuals and 69 diabetic patients classified into four neuropathy stages, defined by a fuzzy expert system: absent (n = 26), mild (n = 21), moderate (n = 11) and severe (n = 11). Average muscle fiber conduction velocities of gastrocnemius medialis, tibialis anterior, vastus lateralis and biceps femoris were assessed using linear array electrodes, and were compared by ANOVA. Conduction velocities were significantly decreased in the moderate neuropathy group for the vastus lateralis compared to other groups (from 18% to 21% decrease), and were also decreased in all diabetic groups for the tibialis anterior (from 15% to 20% from control group). Not only the distal anatomical localization of the muscle affects the conduction velocity, but also the proportion of muscle fiber type, where the tibialis anterior with greater type I fiber proportion is affected earlier while the vastus lateralis with greater type II fiber proportion is affected in later stages of the disease. Generally, the muscles of the lower limb have different responsiveness to the effects of diabetes mellitus and show a reduction in the conduction velocity as neuropathy progresses.  相似文献   

15.
Chitosan cross-linked cellulose fibers were prepared using non-toxic procedures in order to confer antimicrobial properties to cellulose fibers. Citric acid was used as the cross-linker and NaH2PO4 as catalyst in previously UV-irradiated cellulose fibers. Further heat dried-cure process and washing with detergent, water and acetic acid (0.1 M) gave a maximum incorporation of chitosan of 27 mg per gram of functionalized textile. The thermogravimetric analysis of the material with the highest chitosan content showed an increased thermal stability compared to cellulose and chitosan. The UV-irradiation induced morphological changes, such as less entangled cellulose fibers, as observed by scanning electron microscopy, which was prompted to enhance the chitosan incorporation. The biomass and spore germination percentage of Penicillium chrysogenum and colony forming units per millilitre for Escherichia coli decreased significantly on the composed materials as compared to raw cellulose fiber and it was similar to that obtained with a commercial antimicrobial cellulose fiber.  相似文献   

16.
17.
Talmadge, Robert J., Roland R. Roy, and V. Reggie Edgerton.Distribution of myosin heavy chain isoforms in non-weight-bearing rat soleus muscle fibers. J. Appl.Physiol. 81(6): 2540-2546, 1996.The effects of14 days of spaceflight (SF) or hindlimb suspension (HS) (Cosmos 2044)on myosin heavy chain (MHC) isoform content of the rat soleus muscleand single muscle fibers were determined. On the basis ofelectrophoretic analyses, there was a de novo synthesis of type IIx MHCbut no change in either type I or IIa MHC isoform proportions aftereither SF or HS compared with controls. The percentage of fiberscontaining only type I MHC decreased by 26 and 23%, and the percentageof fibers with multiple MHCs increased from 6% in controls to 32% inHS and 34% in SF rats. Type IIx MHC was always found in combinationwith another MHC or combination of MHCs; i.e., no fibers contained typeIIx MHC exclusively. These data suggest that the expression of thenormal complement of MHC isoforms in the adult rat soleus muscle isdependent, in part, on normal weight bearing and that the absence ofweight bearing induces a shift toward type IIx MHC protein expression in the preexisting type I and IIa fibers of the soleus.

  相似文献   

18.
Fiber type composition of four hindlimb muscles of adult Fisher 344 rats   总被引:8,自引:0,他引:8  
 The limb and trunk muscles of adult rats express four myosin heavy chain (MHC) isoforms, one slow (MHCI) and three fast (MHCIIa, MHCIId, and MHCIIb). The distribution of these isoforms correlates with fiber types delineated using myofibrillar actomyosin adenosine triphosphatase (mATPase) histochemistry. For example, type I fibers express MHCI and fiber types IIA, IID, and IIB express MHCIIa, MHCIId, and MHCIIb, respectively. Fibers containing only one MHC isoform have been termed ”pure” fibers. Recent evidence suggests that a population of ”hybrid” fibers exist in rat skeletal muscle which contain two MHC isoforms. The purpose of the present investigation was to document the entire range of histochemically defined ”pure” and ”hybrid” fiber types in untreated muscles of the young adult Fisher 344 rat hindlimb. The selected hindlimb muscles (soleus, tibialis anterior, extensor digitorum longus, and gastrocnemius muscles) were removed from 12 male rats and analyzed for muscle fiber type distribution, cross-sectional area, and MHC content. Care was taken to delineate eight fiber types (I, IC, IIC, IIA, IIAD, IID, IIDB, and IIB) using refined histochemical techniques. Hybrid fibers were found to make up a considerable portion of the muscles examined (a range of 8.8–17.8% of the total). The deep red portion of the gastrocnemius muscle contained the largest number of hybrid fibers, most of which were the fast types IIAD (8.5±2.8%) and IIDB (5.2±2.3%). In conclusion, hybrid fibers make up a considerable portion of normal rat limb musculature and are an important population that should not be ignored. Accepted: 15 October 1998  相似文献   

19.
A Maier  B Gambke  D Pette 《Histochemistry》1988,88(3-6):267-271
Serial cross sections of rat, rabbit and cat intrafusal fibers from muscle spindles of normal adult hindlimb muscles were incubated with a monoclonal antibody against embryonic myosin heavy chains. Intrafusal fiber types were identified by noting their staining patterns in adjacent sections incubated for myofibrillar ATPase after acid or alkaline preincubation. In rat and rabbit muscle spindles dynamic nuclear bag1 fibers reacted strongly at the polar and juxtaequatorial regions. Static nuclear bag2 fibers reacted weakly or not at all at the polar region, but showed a moderate amount of activity at the juxtaequator. At the equatorial region both types of nuclear bag fibers displayed a rim of fluorescence surrounding the nuclear bags, while the areas occupied by the nuclear bags themselves were negative. Nuclear chain fibers in rat and rabbit muscle spindles were unreactive with the specific antibody over their entire length. In cat muscle spindles both types of nuclear bag fibers presented profiles which resembled those of the nuclear bag fibers in the other two species, but unlike in rat and rabbit spindles, cat nuclear chain fibers reacted as strongly as dynamic nuclear bag1 fibers.  相似文献   

20.
We studied muscle fibers by quantitative biochemistry to determine whether metabolic capacity varied among fibers of a given type as a function of their anatomic location. Muscles were selected from both contiguous and diverse anatomic regions within the rats studied. The individual fibers, classified into myosin ATPase fiber types by histochemical means, were assessed for fiber diameters and analyzed for the activities of enzymes representing major energy pathways: malate dehydrogenase (MDH, oxidative), lactate dehydrogenase (LDH, glycolytic), and adenylokinase (AK, high-energy phosphate metabolism). We found that neither the average activities of each of the three enzymes nor the fiber diameters varied in Type I or Type IIa fibers selected from superficial to deep portions of the triceps surae of the hindlimb. However, the IIb fibers in the deep region of this muscle group had significantly greater oxidative capacity, less glycolytic capacity, and smaller diameters than the superficially situated IIb fibers. Type IIa fibers in lateral gastrocnemius, extensor digitorum longus, psoas, diaphragm, biceps brachii, superficial masseter, and superior rectus muscles were highly variable in both diameter and enzyme profiles, with a correlation between MDH activity and fiber diameter. Therefore, our results show that both intermuscular and intramuscular metabolic variations exist in muscle fibers of a given type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号