共查询到20条相似文献,搜索用时 31 毫秒
1.
The yeast protein Dom34 has been described to play a critical role in a newly identified mRNA decay pathway called No-Go decay. This pathway clears cells from mRNAs inducing translational stalls through endonucleolytic cleavage. Dom34 is related to the translation termination factor eRF1 and physically interacts with Hbs1, which is itself related to eRF3. We have solved the 2.5-A resolution crystal structure of Saccharomyces cerevisiae Dom34. This protein is organized in three domains with the central and C-terminal domains structurally homologous to those from eRF1. The N-terminal domain of Dom34 is different from eRF1. It adopts a Sm-fold that is often involved in the recognition of mRNA stem loops or in the recruitment of mRNA degradation machinery. The comparison of eRF1 and Dom34 domains proposed to interact directly with eRF3 and Hbs1, respectively, highlights striking structural similarities with eRF1 motifs identified to be crucial for the binding to eRF3. In addition, as observed for eRF1 that enhances eRF3 binding to GTP, the interaction of Dom34 with Hbs1 results in an increase in the affinity constant of Hbs1 for GTP but not GDP. Taken together, these results emphasize that eukaryotic cells have evolved two structurally related complexes able to interact with ribosomes either paused at a stop codon or stalled in translation by the presence of a stable stem loop and to trigger ribosome release by catalyzing chemical bond hydrolysis. 相似文献
2.
3.
Lee HH Kim YS Kim KH Heo I Kim SK Kim O Kim HK Yoon JY Kim HS Kim do J Lee SJ Yoon HJ Kim SJ Lee BG Song HK Kim VN Park CM Suh SW 《Molecular cell》2007,27(6):938-950
The yeast protein Dom34 is a key component of no-go decay, by which mRNAs with translational stalls are endonucleolytically cleaved and subsequently degraded. However, the identity of the endoribonuclease is unknown. Homologs of Dom34, called Pelota, are broadly conserved in eukaryotes and archaea. To gain insights into the structure and function of Dom34/Pelota, we have determined the structure of Pelota from Thermoplasma acidophilum (Ta Pelota) and investigated the ribonuclease activity of Dom34/Pelota. The structure of Ta Pelota is tripartite, and its domain 1 has the RNA-binding Sm fold. We have discovered that Ta Pelota has a ribonuclease activity and that its domain 1 is sufficient for the catalytic activity. We also demonstrate that domain 1 of Dom34 has an endoribonuclease activity against defined RNA substrates containing a stem loop, which supports a direct catalytic role of yeast Dom34 in no-go mRNA decay. 相似文献
4.
5.
Recent evidence suggests that viruses play an influential role within the marine microbial food web. To understand this role, it is important to determine rates and mechanisms of virus removal and degradation. We used plaque assays to examine the decay of infectivity in lab-grown viruses seeded into natural seawater. The rates of loss of infectivity of native viruses from Santa Monica Bay and of nonnative viruses from the North Sea in the coastal seawater of Santa Monica Bay were determined. Viruses were seeded into fresh seawater that had been pretreated in various ways: filtration with a 0.2-(mu)m-pore-size filter to remove organisms, heat to denature enzymes, and dissolved organic matter enrichment to reconstitute enzyme activity. Seawater samples were then incubated in full sunlight, in the dark, or under glass to allow partitioning of causative agents of virus decay. Solar radiation always resulted in increased rates of loss of virus infectivity. Virus isolates which are native to Santa Monica Bay consistently degraded more slowly in full sunlight in untreated seawater (decay ranged from 4.1 to 7.2% h(sup-1)) than nonnative marine bacteriophages which were isolated from the North Sea (decay ranged from 6.6 to 11.1% h(sup-1)). All phages demonstrated susceptibility to degradation by heat-labile substances, as heat treatment reduced the decay rates to about 0.5 to 2.0% h(sup-1) in the dark. Filtration reduced decay rates by various amounts, averaging 20%. Heat-labile, high-molecular-weight dissolved material (>30 kDa, probably enzymes) appeared responsible for about 1/5 of the maximal decay. Solar radiation was responsible for about 1/3 to 2/3 of the maximal decay of nonnative viruses and about 1/4 to 1/3 of that of the native viruses, suggesting evolutionary adaptation to local light levels. Our results suggest that sunlight is an important contributing factor to virus decay but also point to the significance of particles and dissolved substances in seawater. 相似文献
6.
7.
The control of mRNA degradation and translation are important for the regulation of gene expression. mRNA degradation is often initiated by deadenylation, which leads to decapping and 5′–3′ decay. In the budding yeast Saccharomyces cerevisae, decapping is promoted by the Dhh1 and Pat1 proteins, which appear to both inhibit translation initiation and promote decapping. To understand the function of these factors, we identified the ribosome binding protein Stm1 as a multicopy suppressor of the temperature sensitivity of the pat1Δ strain. Stm1 loss-of-function alleles and overexpression strains show several genetic interactions with Pat1 and Dhh1 alleles in a manner consistent with Stm1 working upstream of Dhh1 to promote Dhh1 function. Consistent with Stm1 affecting Dhh1 function, stm1Δ strains are defective in the degradation of the EDC1 and COX17 mRNAs, whose decay is strongly affected by the loss of Dhh1. These results identify Stm1 as an additional component of the mRNA degradation machinery and suggest a possible connection of mRNA decapping to ribosome function. 相似文献
8.
9.
Antonia M G van den Elzen Anthony Schuller Rachel Green Bertrand Séraphin 《The EMBO journal》2014,33(3):265-276
Following translation termination, ribosomal subunits dissociate to become available for subsequent rounds of protein synthesis. In many translation‐inhibiting stress conditions, e.g. glucose starvation in yeast, free ribosomal subunits reassociate to form a large pool of non‐translating 80S ribosomes stabilized by the ‘clamping’ Stm1 factor. The subunits of these inactive ribosomes need to be mobilized for translation restart upon stress relief. The Dom34‐Hbs1 complex, together with the Rli1 NTPase (also known as ABCE1), have been shown to split ribosomes stuck on mRNAs in the context of RNA quality control mechanisms. Here, using in vitro and in vivo methods, we report a new role for the Dom34‐Hbs1 complex and Rli1 in dissociating inactive ribosomes, thereby facilitating translation restart in yeast recovering from glucose starvation stress. Interestingly, we found that this new role is not restricted to stress conditions, indicating that in growing yeast there is a dynamic pool of inactive ribosomes that needs to be split by Dom34‐Hbs1 and Rli1 to participate in protein synthesis. We propose that this provides a new level of translation regulation. 相似文献
10.
植物mRNA的降解对于维持其生化和细胞学的功能都是必需的,而且这种降解要根据植物发育和外界环境的变化进行及时的调整。与酵母和哺乳动物相比,人们对植物mRNA的降解机制了解较少。对近几年来该领域的研究进展进行总结,包括参与植物mRNA降解的酶类和基因芯片技术的应用,以及mRNA降解的生物学意义等。 相似文献
11.
SYNOPSIS. Unlike internal exchange surfaces, the skin contactsan "infinite pool" of air or water with which exchange of gases,water, ions, and other solutes may occur. Even though the "infinitepool" may be well mixed, an unstirred diffusion boundary layeris always present about the skin and may constitute a significantresistance to exchange. The thickness of the diffusion boundarylayer (as approximated by the fluid dynamic boundary layer)is related to the flow of the respiratory medium, viscosityand density of the medium, and the morphology of the exchangesurface. Oxygen microelectrode studies suggest that, in mostcircumstances, the diffusion boundary layer in water is at leastas thick as the blood-respiratory medium distance in amphibianskin. Accordingly, the movement of water about the skin {i.e.,skin ventilation) should have pronounced effects on cutaneousexchange, especially at low "free stream" velocities. Mountingphysiological evidence suggests that: (1) skin ventilation canaugment cutaneous gas exchange; and (2) some vertebrates activelyventilate their skins, especially in aquatic hypoxia. The ubiquityand significance of diffusion boundary layers are central toa general understanding of cutaneous exchange and all surface-mediatedexchange processes. 相似文献
12.
为了构建适合大多数基因座位点打靶的通用型基因打靶载体及打靶成功后去除正选择标记基因,以克隆载体pGEM-3Z为骨架,插入了一个正选择标记基因新霉素磷酸转移酶基因(neo).两个相同的负选择标记基因单纯疱疹病毒胸苷激酶基因HSV-tk1和HSV-tk2,并在neo的两侧各添加了一个方向相同的LoxP(10cus of crossing-over(X)in P1)序列及两个不同的多克隆位点序列,从而构建了载体pA2T.插入的两个不同的多克隆位点序列中,neo和HSV-tk1之间的多克隆位点序列有8个稀少的酶切位点、neo和HSV-tk2之间的多克隆位点序列有5个稀少的酶切位点,neo、HSV-tk1和HSV-tk2有各自独立的转录单元.脂质体法转染山羊成纤维细胞,用遗传霉素(G418)和丙氧鸟苷(GAC)进行正负筛选,验证了正负选择标记基因的生物活性,证明通用型基因打靶载体pA2T构建成功.栽体pA2T转化组成性表达Cre重组醇(Cyclization recombination protein)的大肠杆菌BM25.8,检测到LoxP序列的生物活性,结果表明pA2T中的正选基因可以被Cre重组酶去除.因此,本研究所构建的通用型基因打靶载体pA2T,根据不同的基因座设计同源臂后,插入到MCS中可直接用于不同基因座位点的打靶,并能够在打靶成功后用Cre重组酶去除基因组中插入的neo基因,为用基因打靶的方法制作转基因动物提供了便利. 相似文献
13.
植物SUMO化修饰及其生物学功能 总被引:2,自引:0,他引:2
SUMO化修饰是细胞内蛋白质功能调节的重要方式之一。植物中的SUMO化修饰途径由SUMO分子和SUMO化酶系组成。SUMO化修饰是一个可逆的动态过程。SUMO前体蛋白在SUMO特异性蛋白酶的作用下成熟,随后通过SUMO活化酶、SUMO结合酶和SUMO连接酶将靶蛋白SUMO化,最后SUMO特异性蛋白酶将SUMO与靶蛋白分离,重新进入SUMO化循环。初步研究表明,植物SUMO化修饰参与植物花期调控、激素信号转导、抗病防御以及逆境应答等生理过程。 相似文献
14.
一类新携氧球蛋白--脑红蛋白 总被引:1,自引:0,他引:1
脑红蛋白是继血红蛋白、肌红蛋白之后发现的第三类具有运输与储存氧的球蛋白。脑红蛋白主要在脑中表达.能可逆性的结合氧,与氧有很高的亲和力,能够特异性地向脑组织供氧,在神经系统氧的摄取、运输和利用等生理过程中起着极其重要的作用。 相似文献
15.
16.
17.
c-Myc功能及其下游靶点 总被引:5,自引:0,他引:5
c-Myc是一个在进化上较为保守的,具有b/HLH/LZ结构的转录调节因子,它可以与Max形成异源二聚体通过结合于启动子区的E盒结构对基因进行转录激活调控,也可以通过其他方式对基因进行正负调节,参与调控了细胞的增殖、分化、生长、凋亡、细胞周期进程、细胞内生物大分子的代谢以及细胞的恶性转化。近期,研究者通过采用微阵列芯片、生物信息学技术、染色质免疫沉淀(ChIP)、基因表达系列分析(SAGE)等高通量研究的新技术对c-Myc下游靶点进行研究,这对于揭示c-Myc结构与功能之间的关系具有重要的生物学意义。 相似文献
18.
Translation arrest leads to an endonucleolytic cleavage of mRNA that is termed no-go decay (NGD). It has been reported that the Dom34:Hbs1 complex stimulates this endonucleolytic cleavage of mRNA induced by translation arrest in vivo and dissociates subunits of a stalled ribosome in vitro. Here we report that Dom34:Hbs1 dissociates the subunits of a ribosome that is stalled at the 3' end of mRNA in vivo, and has a crucial role in both NGD and nonstop decay. Dom34:Hbs1-mediated dissociation of a ribosome that is stalled at the 3' end of mRNA is required for degradation of a 5'-NGD intermediate. Dom34:Hbs1 facilitates the decay of nonstop mRNAs from the 3' end by exosomes and is required for the complete degradation of nonstop mRNA decay intermediates. We propose that Dom34:Hbs1 stimulates degradation of the 5'-NGD intermediate and of nonstop mRNA by dissociating the ribosome that is stalled at the 3' end of the mRNA. 相似文献
19.
A typical Go/No-Go decision is suggested to be implemented in the brain via the activation of the direct or indirect pathway in the basal ganglia. Medium spiny neurons (MSNs) in the striatum, receiving input from cortex and projecting to the direct and indirect pathways express D1 and D2 type dopamine receptors, respectively. Recently, it has become clear that the two types of MSNs markedly differ in their mutual and recurrent connectivities as well as feedforward inhibition from FSIs. Therefore, to understand striatal function in action selection, it is of key importance to identify the role of the distinct connectivities within and between the two types of MSNs on the balance of their activity. Here, we used both a reduced firing rate model and numerical simulations of a spiking network model of the striatum to analyze the dynamic balance of spiking activities in D1 and D2 MSNs. We show that the asymmetric connectivity of the two types of MSNs renders the striatum into a threshold device, indicating the state of cortical input rates and correlations by the relative activity rates of D1 and D2 MSNs. Next, we describe how this striatal threshold can be effectively modulated by the activity of fast spiking interneurons, by the dopamine level, and by the activity of the GPe via pallidostriatal backprojections. We show that multiple mechanisms exist in the basal ganglia for biasing striatal output in favour of either the `Go'' or the `No-Go'' pathway. This new understanding of striatal network dynamics provides novel insights into the putative role of the striatum in various behavioral deficits in patients with Parkinson''s disease, including increased reaction times, L-Dopa-induced dyskinesia, and deep brain stimulation-induced impulsivity. 相似文献
20.
Jong-Ho Kim Seung-Cheol Choi Chi-Yeon Park Jae-Hyoung Park Ji-Hyun Choi Hyung-Joon Joo Soon-Jun Hong Do-Sun Lim 《PloS one》2016,11(2)
Adipose-derived stem cells (ADSCs) have the potential to differentiate into various cell lineages and they are easily obtainable from patients, which makes them a promising candidate for cell therapy. However, a drawback is their limited life span during in vitro culture. Therefore, hTERT-immortalized CD34+ and CD34- mouse ADSC lines (mADSCshTERT) tagged with GFP were established. We evaluated the proliferation capacity, multi-differentiation potential, and secretory profiles of CD34+ and CD34- mADSCshTERT
in vitro, as well as their effects on cardiac function and systemic inflammation following transplantation into a rat model of acute myocardial infarction (AMI) to assess whether these cells could be used as a novel cell source for regeneration therapy in the cardiovascular field. CD34+ and CD34- mADSCshTERT demonstrated phenotypic characteristics and multi-differentiation potentials similar to those of primary mADSCs. CD34+ mADSCshTERT exhibited a higher proliferation ability compared to CD34- mADSCshTERT, whereas CD34- mADSCshTERT showed a higher osteogenic differentiation potential compared to CD34+ mADSCshTERT. Primary mADSCs, CD34+, and CD34- mADSCshTERT primarily secreted EGF, TGF-β1, IGF-1, IGF-2, MCP-1, and HGFR. CD34+ mADSCshTERT had higher secretion of VEGF and SDF-1 compared to CD34- mADSCshTERT. IL-6 secretion was severely reduced in both CD34+ and CD34- mADSCshTERT compared to primary mADSCs. Transplantation of CD34+ and CD34- mADSCshTERT significantly improved the left ventricular ejection fraction and reduced infarct size compared to AMI-induced rats after 28 days. At 28 days after transplantation, engraftment of CD34+ and CD34- mADSCshTERT was confirmed by positive Y chromosome staining, and differentiation of CD34+ and CD34- mADSCshTERT into endothelial cells was found in the infarcted myocardium. Significant decreases were observed in circulating IL-6 levels in CD34+ and CD34- mADSCshTERT groups compared to the AMI-induced control group. Transplantation of CD34- mADSCshTERT significantly reduced circulating MCP-1 levels compared to the AMI control and CD34+ mADSCshTERT groups. GFP-tagged CD34+ and CD34- mADSCshTERT are valuable resources for cell differentiation studies in vitro as well as for regeneration therapy in vivo. 相似文献