首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to evaluate the mRNA and protein expression and the localization of progesterone receptor membrane component 1 (PGRMC1), PGRMC2, and the PGRMC1 partner serpine mRNA binding protein 1 (SERBP1) in the bovine CL on Days 2 to 5, 6 to 10, 11 to 16, and 17 to 20 of the estrous cycle as well as during Weeks 3 to 5, 6 to 8, and 9 to 12 of pregnancy (n = 5–6 per each period). The highest levels of PGRMC1 and PGRMC2 mRNA expression were found on Days 6 to 16 (P < 0.05) and 11 to 16, respectively, of the estrous cycle and during pregnancy (P < 0.001). The level of PGRMC1 protein was the highest (P < 0.05) on Days 11 to 16 of the estrous cycle compared with the other stages of the estrous cycle and pregnancy, whereas PGRMC2 protein expression (P < 0.001) was the highest on Days 17 to 20 and also during pregnancy. The mRNA expression of SERBP1 was increased (P < 0.05) on Days 11 to 16, whereas the level of its protein product was decreased (P < 0.05) on Days 6 to 10 of the estrous cycle and was at its lowest (P < 0.001) on Days 17 to 20. In pregnant cows, the patterns of SERBP1 mRNA and protein expression remained constant and were comparable with those observed during the estrous cycle. Progesterone receptor membrane component 1 and PGRMC2 localized to both large and small luteal cells, whereas SERBP1 was observed mainly in small luteal cells and much less frequently in large luteal cells. All proteins were also localized in the endothelial cells of blood vessels. The data obtained indicate the variable expression of PGRMC1, PGRMC2, and SERBP1 mRNA and protein in the bovine CL and suggest that progesterone may regulate CL function via its membrane receptors during both the estrous cycle and pregnancy.  相似文献   

2.
Several reports suggest the participation of progesterone receptor membrane component 1 (PGRMC1) in progesterone signaling in the reproductive system. This study aimed at investigating the presence and localization of PGRMC1 in bovine ovary, oviduct and uterus, during the follicular and luteal phases of the estrous cycle. In the ovary, PGRMC1 has been detected in surface germinal epithelium, granulosa cells, theca cells and in the germinal vesicle of the oocytes at all stages of folliculogenesis. In the corpus luteum the expression of PGRMC1 was influenced by the stage of the estrous cycle. In the oviducts and in the uterus horns, PGRMC1 was immunolocalized in the luminal epithelium, in the muscle layer cells and in the endothelial cells. In the uterus, PGRMC1 was intensely localized also in the glandular endometrium. However, in the oviducts and in the uterus horns, the localization of PGRMC1 was independent on the stage of the estrous cycle and on whether evaluating the ipsilateral or the contralateral organ. In conclusion, the present immunohistochemical study showed that PGRMC1 is located in various compartments of the bovine female reproductive organs. With the exception of the corpora lutea, PGRMC1 localization showed similar pattern during different stages of the estrous cycle.  相似文献   

3.
4.
Estrogen and progesterone concentrations in milk during the estrous cycle were estimated in 18 normally cycling Holstein dairy cows. The estrogen and progesterone concentrations in milk during the estrous cycle followed the pattern described for them in blood in the corresponding period. During most of the estrous cycle, estrogen concentration remained at approximately 200 pg/ml and reached a proestrous peak of 360 +/- 127 pg/ml on day 19. The progesterone concentration in milk during the estrous cycle increased to a peak on day 13 (45.5 +/- 6.6 ng/ml) and thereafter declined towards estrus. Estrus detection/prediction based on milk progesterone concentrations appears feasible in view of the significant differences in milk progesterone concentrations between the early luteal (post-ovulatory), luteal and rapid follicular growth periods of the estrous cycle.  相似文献   

5.
6.
WNT signaling pathway plays important roles in reproductive events. Aims were to (1) determine presence of WNT genes and their antagonists in equine endometrium; and (2) to evaluate their expression profiles during early pregnancy. Endometrial biopsies were obtained from mares on day of ovulation (d0, n=4) and on days of 14 (P14, n=4), 18 (P18, n=4), 22 (P22, n=4) of early pregnancy. Biopsies were also collected from cyclic mares during late diestrus (LD, on day of 13.5-14, n=4) and after luteolysis in estrus phase (AL, on day of 17.5-18, n=4) of the cycle. PCR was used to detect expression of genes studied and then relative expression levels were quantified using real-time PCR analysis. A mixed model was fitted on the normalized data and least significant difference test (α=0.05) was employed. Eleven WNT genes (WNT2, WNT2B, WNT4, WNT5A, WNT5B, WNT7A, WNT8A, WNT9B, WNT10B, WNT11 and WNT16) and their antagonists (SFRP1, SFRP2, SFRP5, DKK1, DKK2 and WIF-1) were detected in equine endometrium. Compared to d0, WNT2, WNT5B, WNT7A and SFRP1 expressions were downregulated by the pregnancy while DKK1 was upregulated. WNT5A, WNT11 and WIF-1 were upregulated on P14 and P18, but WNT2B increased only on P14. When LD and P14 were compared, level of WNT8A decreased on P14 while increase in WNT4 level on P14 was slightly significant (P<0.06). Levels of WNT7A and SFRP1 decreased while DKK1 and WIF-1 increased by the pregnancy on P18 compared to AL. Moreover, WNT2B, WNT5A, WNT9B, WNT10B, WNT11, WNT16 DKK1 and WIF-1 were upregulated on LD compared to AL whereas WNT4, WNT7A, SFRP1 were downregulated. In conclusion, the results demonstrate that WNT genes and their antagonists appear to be regulated during early pregnancy in equine endometrium possibly due to embryonic factors and/or maternal progesterone.  相似文献   

7.
Oxytocin (OT) receptors in the porcine endometrium were investigated at four stages of the estrous cycle (Days (D) 0, 5, 10 and 15, n = 3), and at two stages of early pregnancy (D5 and D15 after mating, n = 3) by a radioreceptor assay using 125I-labeled OT antagonist [d(CH2)5,Tyr(Me)2,Thr4,Tyr-NH92]-vasotocin. Binding specificity was demonstrated by displacement with four peptides related to oxytocin ([Arg7]-vasopressin, [Thr4,Gly7]-OT, OVT, OT) and two peptides unrelated to oxytocin (luteinizing hormone-releasing hormone, [Ile3]-pressinoic acid (tocinoic acid)). The dissociation constant (Kd) of endometrial OT receptors on D0 (0.59 ± 0.10 nM) was similar to those on D10 and D15 (D10, 0.75 ± 0.21; D15, 0.60 ± 0.14 nM; mean ± SEM). In the early luteal stage (D5), Kd (2.41 ± 0.24 nM) was higher than on D0, D10 and D15 (P < 0.01). In early pregnancy, Kd values were 3.25 ± 0.29 nM on D5 and 2.44 ± 0.44 nM on D15. Binding site concentration (Bmax) on D0 (910.0 ± 25.1 fmol mg−1 protein) was significantly higher than on D5 and D10 (D5, 322.5 ± 71.7; D10, 147.5 ± 25.8 fmol mg−1 protein; P < 0.01) of the estrous cycle and D5 and D15 (D5, 302.5 ± 82.6; D15, 315.0 ± 20.1 fmol mg−1 protein; P < 0.01) of early pregnancy. In the two stages of early pregnancy, Bmax values were constant and similar to that on D5 of the early luteal stage.Our results reveal the existence of specific OT binding sites in the porcine endometrium during the estrous cycle and early pregnancy. Furthermore, the fluctuation in the binding of OT to the endometrium during the different stages of the estrous cycle suggests that OT plays an important role in regulating the estrous cycle of the pig as seen in other animals.  相似文献   

8.
9.

Background  

Progesterone receptor membrane component 1 (PGRMC1) is a member of a progesterone-binding complex implicated in female reproduction. We aimed i) to determine the natural expression of PGRMC1 in peripheral nucleated blood cells throughout the menstrual cycle and ii) to investigate any association between PGRMC1 levels in leukocytes and conditions characterized by reduced fertility.  相似文献   

10.
Fields MJ  Fields PA 《Theriogenology》1996,45(7):1295-1325
The corpus luteum, one of the biological clocks of the estrous cycle and pregnancy, is known foremost for its production of progesterone that blocks the pituitary release of gonadotropins and prepares the uterus for a pregnancy. The cellular sources of this progesterone are the steroidogenic small and large luteal cells. Other luteal cells that are not steroidogenic, but are believed to have an important role in the function of this gland are the fibroblast, macrophages and endothelial cells. The most prominent luteal cell is the large steroidogenic cell characterized by an abundance of smooth endoplasmic reticulum and densely packed spherical mitochondria that are indicative of its contribution to most of the circulating progesterone believed to be constitutively secreted and not under the control of LH. Other distinguishing features of the large luteal cell are the presence of rough endoplasmic reticulum, prominent Golgi, and secretory granules that are indicative of endocrine cells. This cell undergoes dynamic changes across the estrous cycle and pregnancy, believed to reflect a change in progesterone and protein secretion that will eventually influence a successful pregnancy or another ovulation if pregnancy fails. The morphological characteristics of the bovine luteal cells are the focus of this review.  相似文献   

11.
Uterine tone, uterine contractility and endometrial echotexture were monitored daily in heifers during the estrous cycle (n = 6; Days 0 to 21; ovulation = Day 0) and during early pregnancy (n = 7; Days 0 to 26). Uterine tone was assessed by transrectal palpation and scored from 1 (flaccid) to 5 (turgid) by an operator who had no knowledge of reproductive status, day, or group. The main effect of day was significant, but the group effect and the group-by-day interaction were not. Uterine tone scores were high during the periovulatory period (Days--1, 0, 1), decreased (P < 0.05) to low levels on Days 3 and 4, and then increased (P < 0.05) from Days 4 to 10. The increase in tone during early diestrus was confirmed (P < 0.05) in a second experiment. Uterine contractility was assessed by transrectal ultrasonography during a five-minute scan of the caudal portions of the uterine horns and scored from 1 (minimal contractility) to 4 (maximal contractility). The main effects of day and the group-by-day interaction were significant. Contractility scores in both groups were highest just before or on the day of ovulation (Days--1,0) and then decreased (P < 0.05) until Day 11. After Day 16, the scores increased (P < 0.05) in the nonbred heifers and remained low in the pregnant heifers. Endometrial echotexture scores were different among days (P < 0.0001), between the 2 groups (P < 0.02), and for the group-by-day interaction (P < 0.0001). Echotexture scores in both groups peaked just before ovulation (Day--1) and then decreased (P < 0.05) until Day 4. After Day 16, the scores increased in the nonbred group but remained low in pregnant heifers. In summary, uterine contractility and endometrial scores had similar profiles, being high during the periovulatory period and low thereafter; the levels rose in association with the end of the interovulatory interval in nonbred heifers, but remained at low levels in pregnant heifers. Uterine tone scores were also high during the periovulatory period and decreased to low levels several days postovulation, but then, in contrast with the other end points, began to increase in both the nonbred and pregnant heifers.  相似文献   

12.
ABSTRACT: BACKGROUND: Progesterone (P4) may modulate oviductal functions to promote early embryo development in cattle. In addition to its nuclear receptor (PR), P4 may mediate its actions through P4 receptor membrane component 1 (PGRMC1) and its relative, PGRMC2. Two successive experiments were undertaken to characterise the expression of PR, PGRMC1 and PGRMC2 in the bovine oviduct during the post-ovulation period, and to relate their expression to the presence of an embryo, the proximity of the CL and to the region of the oviduct. METHODS: In the first experiment (Exp. I), whole oviduct sections were collected from Holstein cows at Day 1.5, Day 4 and Day 5 post-ovulation (n = 2 cows per stage). The expression of PR, PGRMC1 and PGRMC2 was studied in the ampulla and isthmus by RT-PCR, western-blot and immunohistochemistry. In Exp. II, oviduct epithelial cells were collected from cyclic and pregnant Charolais cows (n = 4 cows per status) at Day 3.5 post-ovulation and mRNA expression of PR, PGRMC1 and PGRMC2 was examined in the ampulla and isthmus by real-time quantitative PCR. RESULTS: In Exp. I, PR, PGRMC1 and PGRMC2 were expressed in all oviduct samples. PGRMC1 was mainly localised in the luminal epithelium whereas PR and PGRMC2 were localised in the epithelium as well as in the muscle and stroma layers of the oviduct. The expression was primarily nuclear for PR, primarily cytoplasmic for PGRMC1 and both nuclear and cytoplasmic for PGRMC2. In Exp. II, mRNA levels for PR, PGRMC1 and PGRMC2 were not affected by either the pregnancy status or the side relative to the CL. However, the expression of PR and PGRMC2 varied significantly with the region of the oviduct: PR was more highly expressed in the isthmus whereas PGRMC2 was more highly expressed in the ampulla. CONCLUSIONS: This is the first evidence of PGRMC2 expression in the bovine oviduct. Our findings suggest that P4 regulates the functions of the bovine oviduct in a region-specific manner and through both classical and non classical pathways during the post-ovulation period.  相似文献   

13.
14.
Noninvasive, epitheliochorial placental attachment in the pig is regulated through endometrial production of protease inhibitors. The objective of the present study was to determine if the light-chain serine protease inhibitor of the inter-alpha-trypsin inhibitor family, bikunin, is produced by the porcine endometrium during the estrous cycle and early pregnancy. Western blot analysis revealed the presence of bikunin in uterine flushings of gilts collected during the luteal phase of the estrous cycle and early pregnancy (Days 12-18). However, bikunin unbound to the inter-alpha-trypsin heavy chains was detected only in endometrial explant culture medium obtained from estrus and pregnant (Days 12, 15, and 18) gilts. Endometrial bikunin gene expression was lowest on Day 10 of the estrous cycle and pregnancy, followed by a 30- to 77-fold increase on Day 15 of the estrous cycle and pregnancy. Bikunin gene expression decreased on Day 18 of the estrous cycle, whereas endometrial bikunin gene expression continued to increase in pregnant gilts. Bikunin mRNA was localized to the uterine glands between Days 15 and 18 of the estrous cycle and pregnancy. In addition to its role as a protease inhibitor, bikunin functions in stabilization of the extracellular matrix, which suggests that bikunin could be involved with facilitating placental attachment to the uterine epithelial surface in the pig.  相似文献   

15.
Liu G  Zhang X  Lin H  Li Q  Wang H  Ni J  Amy Sang QX  Zhu C 《Life sciences》2005,77(26):3355-3365
Matrix metalloproteinases (MMPs) and their tissue inhibitors play important roles in the remodeling of extracellular matrix (ECM). MMP-26, also called endometase or matrilysin-2, is a novel member of the MMP family. The present study was to investigate the temporal and spatial expression of MMP-26 mRNA in mouse uterus during the estrous cycle and early pregnancy by using in situ hybridization and semi-quantitative RT-PCR. In this study, MMP-26 mRNA was found to be localized to the luminal and glandular epithelium at proestrus and estrus, and the expression level was decreased significantly from metestrus to dioestrus. During pre-implantation period, MMP-26 mRNA was predominantly expressed in luminal and glandular epithelium at much higher level; whereas it switched to stroma during peri-implantation period, and also appeared in the blastocysts and the implantation sites. The results suggested that MMP-26 might play a role in the cycling changes of mouse uterus during the estrous cycle and embryo implantation.  相似文献   

16.
17.
PAF-like activity in the endometrium increased from days 2-4 to day 12 and day 20 in both cyclic and pregnant cows. There was an increase in platelet aggregation induced by PAF-like activity in the endometrium of pregnant animals on day 20 as compared to cyclic animals at the same point in time. Two major bands of PAF-R protein at 67 kDa and 97 kDa were detected by Western blot analysis. PAF-R was localized mainly in luminal and glandular epithelium of the endometrium, but the staining was markedly increased in the endometrium of pregnant cows on day 20 compared to cyclic animals on the same day. The purified PAF-AH from the endometrium is similar to in plasma. In cyclic cattle, no changes in PAF-AH activity of endometrium were observed, whereas a decrease in enzyme activity occurred in pregnant cows on day 20 as compared to cyclic animals on the same day. We suggest that the bovine endometrium produces PAF-like activity, expresses the PAF-R and possesses a PAF-AH activity which varies during pregnancy.  相似文献   

18.
19.
20.
This study characterized endometrial expression of mRNAs of oestrogen and progesterone receptors (ER, PR) and insulin-like growth factor-I (IGF-I) during the oestrous cycle. Seven Holstein heifers that showed standing oestrus on the same day (day 0) were selected and blood samples for oestradiol (E2) and progesterone (P4) determinations by RIA were taken daily until day 23. Endometrial samples were taken by transcervical biopsies on days 0, 5, 12 and 19 for mRNA determination by solution hybridization. The highest endometrial mRNA levels of ERalpha and PR were observed at oestrus and a decline was observed already at day 5, which then decreased progressively at the end of the luteal phase. IGF-I mRNA levels were higher at day 0 and 5 than at day 12. At day 19, mRNA levels of ERalpha, PR and IGF-I were the lowest in heifers that were at the end of their luteal phase (n=4), but were high again in heifers which P4 levels were basal (n=3). The temporal changes in mRNA endometrial expression of ERalpha, PR and IGF-I and their relation to the changes in steroid concentrations during the bovine oestrus cycle are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号