首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

2.
The antifungal activity of cecropin A(2-8)-melittin(6-9) hybrid undecapeptides, previously reported as active against plant pathogenic bacteria, was studied. A set of 15 sequences was screened in vitro against Fusarium oxysporum, Penicillium expansum, Aspergillus niger, and Rhizopus stolonifer. Most compounds were highly active against F. oxysporum (MIC < 2.5 μM) but were less active against the other fungi. The best peptides were studied for their sporicidal activity and for Sytox green uptake in F. oxysporum microconidia. A significant inverse linear relationship was observed between survival and fluorescence, indicating membrane disruption. Next, we evaluated the in vitro activity against P. expansum of a 125-member peptide library with the general structure R-X1KLFKKILKX10L-NH2, where X1 and X10 corresponded to amino acids with various degrees of hydrophobicity and hydrophilicity and R included different N-terminal derivatizations. Fifteen sequences with MICs below 12.5 μM were identified. The most active compounds were BP21 {Ac,F,V} and BP34 {Ac,L,V} (MIC < 6.25 μM), where the braces denote R, X1, and X10 positions and where Ac is an acetyl group. The peptides had sporicidal activity against P. expansum conidia. Seven of these peptides were tested in vivo by evaluating their preventative effect of inhibition of P. expansum infection in apple fruits. The peptide Ts-FKLFKKILKVL-NH2 (BP22), where Ts is a tosyl group, was the most active with an average efficacy of 56% disease reduction, which was slightly lower than that of a commercial formulation of the fungicide imazalil.The discovery of antimicrobial compounds to treat plant diseases of economical importance in agriculture remains a major scientific challenge (1). Antimicrobial peptides are being considered as a good alternative to current fungicides and a great deal of scientific effort has been invested in studying their application in plant disease control (29, 34, 35).Antimicrobial peptides have been reported to display interesting activities against pathogenic microbes that are resistant to conventional antibiotics and to exhibit a broad spectrum of activity against bacteria, fungi, enveloped viruses, parasites, and tumor cells (7-10, 19, 20, 40, 49). The mechanism of action of these peptides against fungi consists of cell lysis by binding to the membrane surface and disrupting its structure, interference with the synthesis of essential cell wall components, or interaction with specific internal targets (12, 13, 15, 23, 29).Despite their good lytic activity, major concerns about the use of antimicrobial peptides as pesticides in plant protection are the high production cost associated with synthetic procedures and their low stability toward protease degradation. Several design strategies have been devised in order to find shorter and more stable peptides, while maintaining or increasing the activity with a low cytotoxicity. These strategies include the juxtaposition of fragments of natural antimicrobial peptides, the modification of natural peptides, and the de novo design of sequences maintaining the crucial features of native antimicrobial peptides (2, 3, 11, 24, 32, 38, 42). However, the process involved in the development of lead candidates is time consuming and limited by the number of individual compounds that can be synthesized. Combinatorial chemistry has allowed the rapid preparation of synthetic libraries and their screening has led to the identification of peptides with high activity against selected phytopathogenic bacteria and fungi (4, 26, 27, 33).During our current research oriented to the development of new antimicrobial agents for use in plant protection, we designed linear undecapeptides (CECMEL11) derived from the cecropin A-melittin hybrid peptide WKLFKKILKVL-NH2 (Pep3) (5, 17). Using a combinatorial approach, we identified peptides with high activity against plant pathogenic bacteria, such as Erwinia amylovora, Xanthomonas vesicatoria, and Pseudomonas syringae, and with low susceptibility to protease degradation (4, 5).In order to broaden the study, we decided to test the CECMEL11 peptides against the plant pathogenic fungi Fusarium oxysporum, Aspergillus niger, Rhizopus stolonifer, and Penicillium expansum. The fungus F. oxysporum causes Fusarium wilt in more than a hundred species of plants, and it is an important pathogen in horticultural crops (44). Several Rhizopus and Penicillium species cause soft rot and blue mold rot, respectively, which are important postharvest diseases in stone and pome fruits (6, 18, 22, 39). Apart from the economic losses, Aspergillus and Penicillium species are also of interest from a public health point of view due to the production of mycotoxins (45, 47). The importance of Penicillium species in the postharvest of fruits emphasizes the interest to develop antimicrobial peptides to control this fungus.Taking into account the relevance of these pathogens, the aim of the present study was the analysis of the antifungal activity profile of the CECMEL11 peptides in order to identify sporicidal sequences against the above fungi. As a proof of concept, the feasibility of using such peptides to protect fruits from fungal spoilage was evaluated using a P. expansum/apple model.  相似文献   

3.
The effects of nitrite and ammonium on cultivated methanotrophic bacteria were investigated. Methylomicrobium album ATCC 33003 outcompeted Methylocystis sp. strain ATCC 49242 in cultures with high nitrite levels, whereas cultures with high ammonium levels allowed Methylocystis sp. to compete more easily. M. album pure cultures and cocultures consumed nitrite and produced nitrous oxide, suggesting a connection between denitrification and nitrite tolerance.The application of ammonium-based fertilizers has been shown to immediately reduce the uptake of methane in a number of diverse ecological systems (3, 5, 7, 8, 11-13, 16, 27, 28), due likely to competitive inhibition of methane monooxygenase enzymes by ammonia and production of nitrite (1). Longer-term inhibition of methane uptake by ammonium has been attributed to changes in methanotrophic community composition, often favoring activity and/or growth of type I Gammaproteobacteria methanotrophs (i.e., Gammaproteobacteria methane-oxidizing bacteria [gamma-MOB]) over type II Alphaproteobacteria methanotrophs (alpha-MOB) (19-23, 25, 26, 30). It has been argued previously that gamma-MOB likely thrive in the presence of high N loads because they rapidly assimilate N and synthesize ribosomes whereas alpha-MOB thrive best under conditions of N limitation and low oxygen levels (10, 21, 23).Findings from studies with rice paddies indicate that N fertilization stimulates methane oxidation through ammonium acting as a nutrient, not as an inhibitor (2). Therefore, the actual effect of ammonium on growth and activity of methanotrophs depends largely on how much ammonia-N is used for assimilation versus cometabolism. Many methanotrophs can also oxidize ammonia into nitrite via hydroxylamine (24, 29). Nitrite was shown previously to inhibit methane consumption by cultivated methanotrophs and by organisms in soils through an uncharacterized mechanism (9, 17, 24), although nitrite inhibits purified formate dehydrogenase from Methylosinus trichosporium OB3b (15). Together, the data from these studies show that ammonium and nitrite have significant effects on methanotroph activity and community composition and reveal the complexity of ammonia as both a nutrient and a competitive inhibitor. The present study demonstrates the differential influences of high ammonium or nitrite loads on the competitive fitness of a gamma-MOB versus an alpha-MOB strain.  相似文献   

4.
5.
6.
7.
8.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

9.
10.
11.
12.
13.
The spatial organization of metastable paramyxovirus fusion (F) and attachment glycoprotein hetero-oligomers is largely unknown. To further elucidate the organization of functional fusion complexes of measles virus (MeV), an archetype of the paramyxovirus family, we subjected central predictions of alternative docking models to experimental testing using three distinct approaches. Carbohydrate shielding through engineered N-glycans indicates close proximity of a membrane-distal, but not membrane-proximal, section of the MeV attachment (H) protein stalk domain to F. Directed mutagenesis of this section identified residues 111, 114, and 118 as modulators of avidity of glycoprotein interactions and determinants of F triggering. Stalk-length variation through deletion or insertion of HR elements at positions flanking this section demonstrates that the location of the stalk segment containing these residues cannot be altered in functional fusion complexes. In contrast, increasing the distance between the H head domains harboring the receptor binding sites and this section through insertion of structurally rigid α-helical domains with a pitch of up to approximately 75 Å downstream of stalk position 118 partially maintains functionality in transient expression assays and supports efficient growth of recombinant virions. In aggregate, these findings argue against specific protein-protein contacts between the H head and F head domains but instead support a docking model that is characterized by short-range contacts between the prefusion F head and the attachment protein stalk, possibly involving H residues 111, 114, and 118, and extension of the head domain of the attachment protein above prefusion F.Paramyxoviruses infect cells through fusion of the viral envelope with target cell membranes. For all members of the Paramyxovirinae subfamily, this involves the concerted action of two envelope glycoproteins, the fusion (F) and attachment (H, HN, or G, depending on the Paramyxovirinae genus) proteins. Both proteins feature short lumenal tails, a single transmembrane domain, and large ectodomains. The F protein, in type I orientation, forms homotrimers, while homodimers or homotetramers have been suggested as functional units for attachment proteins of different Paramyxovirinae subfamily members (7, 14, 28, 41, 49, 50, 66). For entry, upon receptor binding, the attachment protein is considered to initiate a series of conformational rearrangements in the metastable prefusion F protein (15, 77), which ultimately brings together transmembrane domains and fusion peptides and, thus, donor and target membranes (3, 32, 45, 53, 80).Multiple studies have demonstrated that specific interactions between compatible F and attachment proteins of paramyxovirinae are imperative for the formation of functional fusion complexes (6, 29, 36, 42, 43, 56, 75). However, the molecular nature of these interactions and the spatial organization of functional glycoprotein hetero-oligomers remain largely unknown. Individual ectodomain and partial ectodomain crystal structures have been obtained for different paramyxovirus F (13, 76, 77) and attachment (8, 14, 17, 28, 35, 79) proteins, respectively. For F, a stabilized human parainfluenza virus type 5 (HPIV5) ectodomain that is believed to represent a prefusion conformation folds into a globular head structure that is attached to the transmembrane domains through a helical stalk consisting of the membrane-proximal heptad repeat B (HR-B) domains (77). For the attachment protein, a globular head that harbors the receptor binding sites is considered to be connected to the transmembrane region through extended stalk domains (34, 78). Crystal structures of isolated head domains have been solved for several paramyxovirus attachment proteins, including measles virus (MeV) H, and reveal the six-blade propeller fold typical of sialidase structures (8, 14, 17, 28, 79). However, morbilliviruses recognize proteinaceous receptors (for MeV, the regulator of complement activation [CD46] and/or signaling lymphocytic activation molecule [SLAM], depending on the virus strain) (21, 40, 46, 51, 64, 65). X-ray data do not extend to the stalk domains, but circular dichroism analysis (78) and structure predictions (36, 78) support an α-helical coiled-coil configuration of the stalk.The nature of individual residues that engage in specific intermolecular interactions between glycoproteins of paramyxovirinae prior to refolding has been studied most extensively for the attachment protein. The stalk domains of several paramyxovirus HN proteins have been implicated in mediating specificity for their homotypic F proteins (18, 20, 43, 63, 70, 72). We have found that this extends to MeV and canine distemper virus H and, thus, to paramyxovirinae recognizing proteinaceous receptors (36), supporting the general hypothesis that F-interacting residues may reside in the stalk region of the attachment protein (30, 78).Considerably less information concerning the nature of F microdomains that mediate attachment protein specificity is available. Among the few exceptions are peptides derived from Newcastle disease virus (NDV) and Sendai virus F HR-B domains, which interact with soluble variants of the respective HN proteins in vitro (25, 67). Multiple domains have been suggested to mediate specificity of HPIV2 F for its HN (69). However, a conclusive N-glycan shielding study (43) and structural information (77, 78) argue against direct contacts between NDV F HR-B domains and HN in native glycoprotein complexes. Thus, the role of individual HPIV2 F residues in HN binding is unclear (25, 43).Building on the observation that MeV H is able to engage in productive heterotypic interactions with F proteins derived from some but not all isolates of closely related canine distemper virus, we have recently identified residues in morbillivirus F (MeV F residue 121) and H (H stalk residues 110 to 114) that interdependently contribute to physical MeV glycoprotein interaction and F triggering for fusion (36). While these residues could mediate reciprocal glycoprotein specificity through long-range effects, molecular modeling of the MeV H stalk in an α-helical conformation has posited F residue 121 at the same level above the viral envelope as H residues 110 to 114, making direct contacts structurally conceivable (36). This spatial organization of functional fusion complexes furthermore provides a comprehensive explanation for previous demonstrations of a specific role for attachment protein stalk domains of paramyxovirinae in functional and physical interactions with F (18, 43, 63, 70, 72). However, this “staggered-head” model mandates positioning the globular head of the attachment protein above the prefusion F trimer (36), as opposed to a suggested “parallel-head” alignment of the glycoproteins (31, 47). The latter is mostly based on transmission electron microscopy micrographs of viral particles apparently showing glycoprotein spikes of equal length (33). Unfortunately, these images lack the resolution for an identification of the molecular nature of the spikes (attachment or F protein) or the distinguishing between densely packaged H and F head domains of different heights and laterally aligned head domains. Indeed, a recent single-particle reconstruction based on cryo-electron microscopy images of HPIV5 particles revealed that defined spikes correspond to F in a postfusion conformation, which was interpreted as a product of possible premature F refolding (38). These two-dimensional images of heavy-metal-stained particles did not reveal F spikes in a prefusion conformation. Rather, a dense surface layer was considered to correspond to prefusion glycoprotein hetero-oligomers (38). In addition to further-advanced image reconstructions, biochemical assessment of alternative docking modes is imperative for the elucidation of the organization of functional fusion complexes of paramyxovirinae.In this study, we subjected central predictions of the hypothetical alignment models to experimental analysis. By employing carbohydrate shielding, directed mutagenesis, and variation of the length of the H stalk domain, we examined the proximity of different regions of the H stalk to F, probed a role of individual residues around the previously identified H stalk section from positions 110 to 114 in the formation of functional fusion complexes, tested the effect of varying the length of the H stalk membrane proximal and membrane distal to this section, and explored the general possibility of whether specific contacts between the prefusion F and H head domains are required for F triggering. Experimental data were interpreted in the light of a working model of MeV glycoprotein hetero-oligomers prior to receptor binding.  相似文献   

14.
15.
16.
Bioreactor cultures of Escherichia coli recombinants carrying phaBAC and phaP of Azotobacter sp. FA8 grown on glycerol under low-agitation conditions accumulated more poly(3-hydroxybutyrate) (PHB) and ethanol than at high agitation, while in glucose cultures, low agitation led to a decrease in PHB formation. Cells produced smaller amounts of acids from glycerol than from glucose. Glycerol batch cultures stirred at 125 rpm accumulated, in 24 h, 30.1% (wt/wt) PHB with a relative molecular mass of 1.9 MDa, close to that of PHB obtained using glucose.Polyhydroxyalkanoates (PHAs), accumulated as intracellular granules by many bacteria under unfavorable conditions (5, 8), are carbon and energy reserves and also act as electron sinks, enhancing the fitness of bacteria and contributing to redox balance (9, 11, 19). PHAs have thermoplastic properties, are totally biodegradable by microorganisms present in most environments, and can be produced from different renewable carbon sources (8).Poly(3-hydroxybutyrate) (PHB) is the best known PHA, and its accumulation in recombinant Escherichia coli from several carbon sources has been studied (1, 13). In the last few years, increasing production of biodiesel has caused a sharp fall in the cost of its main by-product, glycerol (22). Its use for microbial PHA synthesis has been analyzed for natural PHA producers, such as Methylobacterium rhodesianum, Cupriavidus necator (formerly called Ralstonia eutropha) (3), several Pseudomonas strains (22), the recently described bacterium Zobellella denitrificans (7), and a Bacillus sp. (18), among others. Glycerol has also been used for PHB synthesis in recombinant E. coli (12, 15). PHAs obtained from glycerol were reported to have a significantly lower molecular weight than polymer synthesized from other substrates, such as glucose or lactose (10, 23).Apart from the genes that catalyze polymer biosynthesis, natural PHA producers have several genes that are involved in granule formation and/or have regulatory functions, such as phasins, granule-associated proteins that have been shown to enhance polymer synthesis and the number and size of PHA granules (17, 24). The phasin PhaP has been shown to exert a beneficial effect on bacterial growth and PHB accumulation from glycerol in bioreactor cultures of strain K24KP, a recombinant E. coli that carries phaBAC and phaP of Azotobacter sp. FA8 (6).Because the redox state of the cells is known to affect the synthesis of PHB (1, 4, 14), the present study investigates the behavior of this recombinant strain under different aeration conditions, by using two substrates, glucose and glycerol, with different oxidation states.  相似文献   

17.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

18.
19.
Adhesive pili on the surface of the serotype M1 Streptococcus pyogenes strain SF370 are composed of a major backbone subunit (Spy0128) and two minor subunits (Spy0125 and Spy0130), joined covalently by a pilin polymerase (Spy0129). Previous studies using recombinant proteins showed that both minor subunits bind to human pharyngeal (Detroit) cells (A. G. Manetti et al., Mol. Microbiol. 64:968-983, 2007), suggesting both may act as pilus-presented adhesins. While confirming these binding properties, studies described here indicate that Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role as a wall linker. Pili were localized predominantly to cell wall fractions of the wild-type S. pyogenes parent strain and a spy0125 deletion mutant. In contrast, they were found almost exclusively in culture supernatants in both spy0130 and srtA deletion mutants, indicating that the housekeeping sortase (SrtA) attaches pili to the cell wall by using Spy0130 as a linker protein. Adhesion assays with antisera specific for individual subunits showed that only anti-rSpy0125 serum inhibited adhesion of wild-type S. pyogenes to human keratinocytes and tonsil epithelium to a significant extent. Spy0125 was localized to the tip of pili, based on a combination of mutant analysis and liquid chromatography-tandem mass spectrometry analysis of purified pili. Assays comparing parent and mutant strains confirmed its role as the adhesin. Unexpectedly, apparent spontaneous cleavage of a labile, proline-rich (8 of 14 residues) sequence separating the N-terminal ∼1/3 and C-terminal ∼2/3 of Spy0125 leads to loss of the N-terminal region, but analysis of internal spy0125 deletion mutants confirmed that this has no significant effect on adhesion.The group A Streptococcus (S. pyogenes) is an exclusively human pathogen that commonly colonizes either the pharynx or skin, where local spread can give rise to various inflammatory conditions such as pharyngitis, tonsillitis, sinusitis, or erysipelas. Although often mild and self-limiting, GAS infections are occasionally very severe and sometimes lead to life-threatening diseases, such as necrotizing fasciitis or streptococcal toxic shock syndrome. A wide variety of cell surface components and extracellular products have been shown or suggested to play important roles in S. pyogenes virulence, including cell surface pili (1, 6, 32). Pili expressed by the serotype M1 S. pyogenes strain SF370 mediate specific adhesion to intact human tonsil epithelia and to primary human keratinocytes, as well as cultured keratinocyte-derived HaCaT cells, but not to Hep-2 or A549 cells (1). They also contribute to adhesion to a human pharyngeal cell line (Detroit cells) and to biofilm formation (29).Over the past 5 years, pili have been discovered on an increasing number of important Gram-positive bacterial pathogens, including Bacillus cereus (4), Bacillus anthracis (4, 5), Corynebacterium diphtheriae (13, 14, 19, 26, 27, 44, 46, 47), Streptococcus agalactiae (7, 23, 38), and Streptococcus pneumoniae (2, 3, 24, 25, 34), as well as S. pyogenes (1, 29, 32). All these species produce pili that are composed of a single major subunit plus either one or two minor subunits. During assembly, the individual subunits are covalently linked to each other via intermolecular isopeptide bonds, catalyzed by specialized membrane-associated transpeptidases that may be described as pilin polymerases (4, 7, 25, 41, 44, 46). These are related to the classical housekeeping sortase (usually, but not always, designated SrtA) that is responsible for anchoring many proteins to Gram-positive bacterial cell walls (30, 31, 33). The C-terminal ends of sortase target proteins include a cell wall sorting (CWS) motif consisting, in most cases, of Leu-Pro-X-Thr-Gly (LPXTG, where X can be any amino acid) (11, 40). Sortases cleave this substrate between the Thr and Gly residues and produce an intermolecular isopeptide bond linking the Thr to a free amino group provided by a specific target. In attaching proteins to the cell wall, the target amino group is provided by the lipid II peptidoglycan precursor (30, 36, 40). In joining pilus subunits, the target is the ɛ-amino group in the side chain of a specific Lys residue in the second subunit (14, 18, 19). Current models of pilus biogenesis envisage repeated transpeptidation reactions adding additional subunits to the base of the growing pilus, until the terminal subunit is eventually linked covalently via an intermolecular isopeptide bond to the cell wall (28, 41, 45).The major subunit (sometimes called the backbone or shaft subunit) extends along the length of the pilus and appears to play a structural role, while minor subunits have been detected either at the tip, the base, and/or at occasional intervals along the shaft, depending on the species (4, 23, 24, 32, 47). In S. pneumoniae and S. agalactiae one of the minor subunits acts as an adhesin, while the second appears to act as a linker between the base of the assembled pilus and the cell wall (7, 15, 22, 34, 35). It was originally suggested that both minor subunits of C. diphtheriae pili could act as adhesins (27). However, recent data showed one of these has a wall linker role (26, 44) and may therefore not function as an adhesin.S. pyogenes strain SF370 pili are composed of a major (backbone) subunit, termed Spy0128, plus two minor subunits, called Spy0125 and Spy0130 (1, 32). All three are required for efficient adhesion to target cells (1). Studies employing purified recombinant proteins have shown that both of the minor subunits, but not the major subunit, bind to Detroit cells (29), suggesting both might act as pilus-presented adhesins. Here we report studies employing a combination of recombinant proteins, specific antisera, and allelic replacement mutants which show that only Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role in linking pili to the cell wall.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号