首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Many infectious agents infiltrate the host at the mucosal surfaces and then spread systemically. This implies that an ideal vaccine should induce protective immune responses both at systemic and mucosal sites to counteract invasive mucosal pathogens. We evaluated the in vivo systemic and mucosal antigen-specific immune response induced in mice by intramuscular administration of an integrase defective lentiviral vector (IDLV) carrying the ovalbumin (OVA) transgene as a model antigen (IDLV-OVA), either alone or in combination with sublingual adjuvanted OVA protein. Mice immunized intramuscularly with OVA and adjuvant were compared with IDLV-OVA immunization. Mice sublingually immunized only with OVA and adjuvant were used as a positive control of mucosal responses. A single intramuscular dose of IDLV-OVA induced functional antigen-specific CD8+ T cell responses in spleen, draining and distal lymph nodes and, importantly, in the lamina propria of the large intestine. These results were similar to those obtained in a prime-boost regimen including one IDLV immunization and two mucosal boosts with adjuvanted OVA or vice versa. Remarkably, only in groups vaccinated with IDLV-OVA, either alone or in prime-boost regimens, the mucosal CD8+ T cell response persisted up to several months from immunization. Importantly, following IDLV-OVA immunization, the mucosal boost with protein greatly increased the plasma IgG response and induced mucosal antigen-specific IgA in saliva and vaginal washes. Overall, intramuscular administration of IDLV followed by protein boosts using the sublingual route induced strong, persistent and complementary systemic and mucosal immune responses, and represents an appealing prime-boost strategy for immunization including IDLV as a delivery system.  相似文献   

2.
3.
Ping Liang 《Biophysical journal》2010,98(12):2867-2876
KChIP4a shows a high homology with other members of the family of Kv channel-interacting proteins (KChIPs) in the conserved C-terminal core region, but exhibits a unique modulation of Kv4 channel gating and surface expression. Unlike KChIP1, the KChIP4 splice variant KChIP4a has been shown to inhibit surface expression and function as a suppressor of channel inactivation of Kv4. In this study, we sought to determine whether the multitasking KChIP4a modulates Kv4 function in a clamping fashion similar to that shown by KChIP1. Injection of Kv4.3 T1 zinc mutants into Xenopus oocytes resulted in the nonfunctional expression of Kv4.3 channels. Coexpression of Kv4.3 zinc mutants with WT KChIP4a gave rise to the functional expression of Kv4.3 current. Oocyte surface labeling results confirm the correlation between functional rescue and enhanced surface expression of zinc mutant proteins. Chimeric mutations that replace the Kv4.3 N-terminus with N-terminal KChIP4a or N-terminal deletion of KChIP4a further demonstrate that the functional rescue of Kv4.3 channel tetramerization mutants depends on the KChIP4a core region, but not its N-terminus. Structure-guided mutation of two critical residues of core KChIP4a attenuated functional rescue and tetrameric assembly. Moreover, size exclusion chromatography combined with fast protein liquid chromatography showed that KChIP4a can drive zinc mutant monomers to assemble as tetramers. Taken together, our results show that KChIP4a can rescue the function of tetramerization-defective Kv4 monomers. Therefore, we propose that core KChIP4a functions to promote tetrameric assembly and enhance surface expression of Kv4 channels by a clamping action, whereas its N-terminus inhibits surface expression of Kv4 by a mechanism that remains elusive.  相似文献   

4.
呼肠孤病毒内源性转录的结构基础   总被引:5,自引:0,他引:5  
方勤  丁清泉 《中国病毒学》2004,19(5):535-539
呼肠孤病毒为自然界特有的分段dsRNA基因组,其宿主范围十分广泛,包括哺乳动物、无脊椎动物、植物、真菌与细菌.随着结构生物学与信息处理等新技术的运用与发展,近年来,在呼肠孤病毒结构研究方面已取得突破性成果.特别是运用X射线晶体衍射及低温电镜与三维重构术对呼肠孤病毒核心蛋白与完整颗粒结构高分辨率的解析,不仅揭示了呼肠孤病毒核衣壳蛋白所具有的转录酶活性,同时阐明了内源性RNA转录与调节的结构基础.  相似文献   

5.
Monoglyceride lipase (MGL) is a serine hydrolase that hydrolyses 2-arachidonoylglycerol (2-AG) into arachidonic acid and glycerol. 2-AG is an endogenous ligand of cannabinoid receptors, involved in various physiological processes in the brain. We present here the first crystal structure of human MGL in its apo form and in complex with the covalent inhibitor SAR629. MGL shares the classic fold of the α/β hydrolase family but depicts an unusually large hydrophobic occluded tunnel with a highly flexible lid at its entry and the catalytic triad buried at its end. Structures reveal the configuration of the catalytic triad and the shape and nature of the binding site of 2-AG. The bound structure of SAR629 highlights the key interactions for productive binding with MGL. The shape of the tunnel suggests a high druggability of the protein and provides an attractive template for drug discovery.  相似文献   

6.
7.
The Burkholderia species utilize acetyl-CoA and oxaloacetate, substrates for citrate synthase in the TCA cycle, to produce oxalic acid in response to bacterial cell to cell communication, called quorum sensing. Quorum sensing-mediated oxalogenesis via a sequential reaction by ObcA and ObcB counteracts the population-collapsing alkaline pH of the stationary growth phase. Thus, the oxalic acid produced plays an essential role as an excreted public good for survival of the group. Here, we report structural and functional analyses of ObcA, revealing mechanistic features distinct from those of citrate synthase. ObcA exhibits a unique fold, in which a (β/α)8-barrel fold is located in the C-domain with the N-domain inserted into a loop following α1 in the barrel fold. Structural analyses of the complexes with oxaloacetate and with a bisubstrate adduct indicate that each of the oxaloacetate and acetyl-CoA substrates is bound to an independent site near the metal coordination shell in the barrel fold. In catalysis, oxaloacetate serves as a nucleophile by forming an enolate intermediate mediated by Tyr322 as a general base, which then attacks the thioester carbonyl carbon of acetyl-CoA to yield a tetrahedral adduct between the two substrates. Therefore, ObcA catalyzes its reaction by combining the enolase and acetyltransferase superfamilies, but the presence of the metal coordination shell and the absence of general acid(s) produces an unusual tetrahedral CoA adduct as a stable product. These results provide the structural basis for understanding the first step in oxalogenesis and constitute an example of the functional diversity of an enzyme for survival and adaptation in the environment.  相似文献   

8.
9.
Rsk kinases play important roles in several cellular processes such as proliferation, metabolism, and migration. Until recently, Rsk activation was thought to be exclusively initiated by Erk1/2, but in dendritic cells (DC) Rsk is also activated by p38 mitogen-activated protein (MAP) kinase via its downstream substrates, MK2/3. How and why this noncanonical configuration of the MAP kinase pathway is adopted by these key immune cells are not known. We demonstrate that the Erk1/2-activated C-terminal kinase domain of Rsk is dispensable for p38-MK2/3 activation and show that compared with fibroblasts, a greater fraction of p38 and MK2/3 is located in the cytosol of DC prior to stimulation, suggesting a partial explanation for the operation of the noncanonical pathway of Rsk activation in these cells. p38/MK2/3-activated Rsk phosphorylated downstream targets and is physiologically important because in plasmacytoid DC (pDC) stimulated with Toll-like receptor 7 (TLR7) agonists, Erk1/2 activation is very weak relative to p38. As a result, Rsk activation is entirely p38 dependent. We show that this unusual configuration of MAP kinase signaling contributes substantially to production of type I interferons, a hallmark of pDC activation.  相似文献   

10.
Sir2 proteins, or sirtuins, are a family of enzymes that catalyze NAD+-dependent deacetylation reactions and can also process ribosyltransferase, demalonylase, and desuccinylase activities. More than 40 crystal structures of sirtuins have been determined, alone or in various liganded forms. These high-resolution architectural details lay the foundation for understanding the molecular mechanisms of catalysis, regulation, substrate specificity, and inhibition of sirtuins. In this minireview, we summarize these structural features and discuss their implications for understanding sirtuin function.  相似文献   

11.
The effects of benzyladenine (BA) on the mesophyll functioning, such as osmotic potential (), the effect of the inhibitors of +-ATPase on the influx of 14C-sucrose, the direction of carbon metabolism, and the rate of dark respiration, were followed in the detached leaves of pumpkin (Cucurbita pepo L.) and broad beans (Vicia faba L.). BA elevated and established a gradient of (p) between the treated and untreated leaf regions. The inhibitors of H+-ATPase did not affect the BA-induced influx of 14C-sucrose. The changes were accompanied with the elevated synthesis of starch and other polymeric compounds and the diminished synthesis of the substances of relatively low molecular weight. The stimulation of dark respiration was short and inconsiderable. The author concludes that the BA-induced transport was a passive process related to a increase. Leaf expansion accompanied by the synthesis of high-molecular-weight substances essential for cell growth and by starch synthesis apparently increased the sink capacity of the BA-treated detached leaves. The diminished efflux from the leaf blade was probably related to a lowered level of the transportable carbon compounds restricting their entry into the phloem. The influx induction could result from the activation of growth and metabolic processes, the decline in the number of organic molecules per cell volume unit, and the development of p between the source and sink leaf regions.  相似文献   

12.
13.
14.
The stomatogastric ganglion of the lobster Panulirus interruptuscontains about 30 neurons and controls the striated musculatureof the stomach. The ganglion produces two complex rhythms, thepyloric cycle and the gastric mill cycle, when completely deafferented. This paper describes the neural circuitry underlying this activityin terms of interactions among motor neurons. The pyloric motorneurons are coordinated by electrotonic and inhibitory synapticinteractions which are driven by a group of three neurons havingendogenous bursting capability. The gastric mill cycle doesnot appear to have any such driving source, and instead relieson the overall properties of the network to generate its burstpatterns. Preliminary computer modeling indicates that alternatebursting between antagonists can occur without cyclically burstingdriver cells. Computer reconstruction of Procion-filled stomatogastricneurons are used both to corroborate the results of the physiologicalstudies and to quantify the geometry for purposes of modelingthe intraneuronal flow of synaptic currents.  相似文献   

15.
16.
8-Halogenated guanine (haloG), a major DNA adduct formed by reactive halogen species during inflammation, is a promutagenic lesion that promotes misincorporation of G opposite the lesion by various DNA polymerases. Currently, the structural basis for such misincorporation is unknown. To gain insights into the mechanism of misincorporation across haloG by polymerase, we determined seven x-ray structures of human DNA polymerase β (polβ) bound to DNA bearing 8-bromoguanine (BrG). We determined two pre-catalytic ternary complex structures of polβ with an incoming nonhydrolyzable dGTP or dCTP analog paired with templating BrG. We also determined five binary complex structures of polβ in complex with DNA containing BrG·C/T at post-insertion and post-extension sites. In the BrG·dGTP ternary structure, BrG adopts syn conformation and forms Hoogsteen base pairing with the incoming dGTP analog. In the BrG·dCTP ternary structure, BrG adopts anti conformation and forms Watson-Crick base pairing with the incoming dCTP analog. In addition, our polβ binary post-extension structures show Hoogsteen BrG·G base pair and Watson-Crick BrG·C base pair. Taken together, the first structures of haloG-containing DNA bound to a protein indicate that both BrG·G and BrG·C base pairs are accommodated in the active site of polβ. Our structures suggest that Hoogsteen-type base pairing between G and C8-modified G could be accommodated in the active site of a DNA polymerase, promoting G to C mutation.  相似文献   

17.
The removal of sialic acid (Sia) residues from glycoconjugates in vertebrates is mediated by a family of neuraminidases (sialidases) consisting of Neu1, Neu2, Neu3 and Neu4 enzymes. The enzymes play distinct physiological roles, but their ability to discriminate between the types of linkages connecting Sia and adjacent residues and between the identity and arrangement of the underlying sugars has never been systematically studied. Here we analyzed the specificity of neuraminidases by studying the kinetics of hydrolysis of BODIPY-labeled substrates containing common mammalian sialylated oligosaccharides: 3′Sia-LacNAc, 3′SiaLac, SiaLex, SiaLea, SiaLec, 6′SiaLac, and 6′SiaLacNAc. We found significant differences in substrate specificity of the enzymes towards the substrates containing α2,6-linked Sia, which were readily cleaved by Neu3 and Neu1 but not by Neu4 and Neu2. The presence of a branching 2-Fuc inhibited Neu2 and Neu4, but had almost no effect on Neu1 or Neu3. The nature of the sugar residue at the reducing end, either glucose (Glc) or N-acetyl-D-glucosamine (GlcNAc) had only a minor effect on all neuraminidases, whereas core structure (1,3 or 1,4 bond between D-galactose (Gal) and GlcNAc) was found to be important for Neu4 strongly preferring β3 (core 1) to β4 (core 2) isomer. Neu3 and Neu4 were in general more active than Neu1 and Neu2, likely due to their preference for hydrophobic substrates. Neu2 and Neu3 were examined by molecular dynamics to identify favorable substrate orientations in the binding sites and interpret the differences in their specificities. Finally, using knockout mouse models, we confirmed that the substrate specificities observed in vitro were recapitulated in enzymes found in mouse brain tissues. Our data for the first time provide evidence for the characteristic substrate preferences of neuraminidases and their ability to discriminate between distinct sialoside targets.  相似文献   

18.
Correctly identifying nearest “neighbors” of a given microorganism is important in industrial and clinical applications where close relationships imply similar treatment. Microbial classification based on similarity of physiological and genetic organism traits (polyphasic similarity) is experimentally difficult and, arguably, subjective. Evolutionary relatedness, inferred from phylogenetic markers, facilitates classification but does not guarantee functional identity between members of the same taxon or lack of similarity between different taxa. Using over thirteen hundred sequenced bacterial genomes, we built a novel function-based microorganism classification scheme, functional-repertoire similarity-based organism network (FuSiON; flattened to fusion). Our scheme is phenetic, based on a network of quantitatively defined organism relationships across the known prokaryotic space. It correlates significantly with the current taxonomy, but the observed discrepancies reveal both (1) the inconsistency of functional diversity levels among different taxa and (2) an (unsurprising) bias towards prioritizing, for classification purposes, relatively minor traits of particular interest to humans. Our dynamic network-based organism classification is independent of the arbitrary pairwise organism similarity cut-offs traditionally applied to establish taxonomic identity. Instead, it reveals natural, functionally defined organism groupings and is thus robust in handling organism diversity. Additionally, fusion can use organism meta-data to highlight the specific environmental factors that drive microbial diversification. Our approach provides a complementary view to cladistic assignments and holds important clues for further exploration of microbial lifestyles. Fusion is a more practical fit for biomedical, industrial, and ecological applications, as many of these rely on understanding the functional capabilities of the microbes in their environment and are less concerned with phylogenetic descent.  相似文献   

19.
蛋白质可逆磷酸化涉及到几乎所有细胞活动的调节.着重探讨了影响蛋白激酶作用专一性的几个因素和磷酸化影响蛋白质功能的结构基础及作用机制.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号