首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two mosquitocidal toxins (Mtx) of Bacillus sphaericus, which are produced during vegetative growth, were investigated for their potential to increase toxicity and reduce the expression of insecticide resistance through their interactions with other mosquitocidal proteins. Mtx-1 and Mtx-2 were fused with glutathione S-transferase and produced in Escherichia coli, after which lyophilized powders of these fusions were assayed against Culex quinquefasciatus larvae. Both Mtx proteins showed a high level of activity against susceptible C. quinquefasciatus mosquitoes, with 50% lethal concentrations (LC50) of Mtx-1 and Mtx-2 of 0.246 and 4.13 μg/ml, respectively. The LC50s were 0.406 to 0.430 μg/ml when Mtx-1 or Mtx-2 was mixed with B. sphaericus, and synergy improved activity and reduced resistance levels. When the proteins were combined with a recombinant Bacillus thuringiensis strain that produces Cry11Aa, the mixtures were highly active against Cry11A-resistant larvae and resistance was also reduced. The mixture of two Mtx toxins and B. sphaericus was 10 times more active against susceptible mosquitoes than B. sphaericus alone, demonstrating the influence of relatively low concentrations of these toxins. These results show that, similar to Cyt toxins from B. thuringiensis subsp. israelensis, Mtx toxins can increase the toxicity of other mosquitocidal proteins and may be useful for both increasing the activity of commercial bacterial larvicides and managing potential resistance to these substances among mosquito populations.  相似文献   

2.
A binary mosquitocidal toxin composed of a three-domain Cry-like toxin (Cry48Aa) and a binary-like toxin (Cry49Aa) was identified in Lysinibacillus sphaericus. Cry48Aa/Cry49Aa has action on Culex quinquefasciatus larvae, in particular, to those that are resistant to the Bin Binary toxin, which is the major insecticidal factor from L. sphaericus-based biolarvicides, indicating that Cry48Aa/Cry49Aa interacts with distinct target sites in the midgut and can overcome Bin toxin resistance. This study aimed to identify Cry48Aa/Cry49Aa ligands in C. quinquefasciatus midgut through binding assays and mass spectrometry. Several proteins, mostly from 50 to 120 kDa, bound to the Cry48Aa/Cry49Aa toxin were revealed by toxin overlay and pull-down assays. These proteins were identified against the C. quinquefasciatus genome and after analysis a set of 49 proteins were selected which includes midgut bound proteins such as aminopeptidases, amylases, alkaline phosphatases in addition to molecules from other classes that can be potentially involved in this toxin's mode of action. Among these, some proteins are orthologs of Cry receptors previously identified in mosquito larvae, as candidate receptors for Cry48Aa/Cry49Aa toxin. Further investigation is needed to evaluate the specificity of their interactions and their possible role as receptors.  相似文献   

3.
Two mosquitocidal toxins (Mtx) of Bacillus sphaericus, which are produced during vegetative growth, were investigated for their potential to increase toxicity and reduce the expression of insecticide resistance through their interactions with other mosquitocidal proteins. Mtx-1 and Mtx-2 were fused with glutathione S-transferase and produced in Escherichia coli, after which lyophilized powders of these fusions were assayed against Culex quinquefasciatus larvae. Both Mtx proteins showed a high level of activity against susceptible C. quinquefasciatus mosquitoes, with 50% lethal concentrations (LC(50)) of Mtx-1 and Mtx-2 of 0.246 and 4.13 microg/ml, respectively. The LC(50)s were 0.406 to 0.430 microg/ml when Mtx-1 or Mtx-2 was mixed with B. sphaericus, and synergy improved activity and reduced resistance levels. When the proteins were combined with a recombinant Bacillus thuringiensis strain that produces Cry11Aa, the mixtures were highly active against Cry11A-resistant larvae and resistance was also reduced. The mixture of two Mtx toxins and B. sphaericus was 10 times more active against susceptible mosquitoes than B. sphaericus alone, demonstrating the influence of relatively low concentrations of these toxins. These results show that, similar to Cyt toxins from B. thuringiensis subsp. israelensis, Mtx toxins can increase the toxicity of other mosquitocidal proteins and may be useful for both increasing the activity of commercial bacterial larvicides and managing potential resistance to these substances among mosquito populations.  相似文献   

4.
The Cry48Aa/Cry49Aa binary toxin of Bacillus sphaericus was recently discovered by its ability to kill Culex quinquefasciatus mosquito larvae through a novel interaction between its two components. We have investigated the target specificity of this toxin and show it to be non-toxic to coleopteran, lepidopteran and other dipteran insects, including closely related Aedes and Anopheles mosquitoes. This represents an unusually restricted target range for crystal toxins from either B. sphaericus or Bacillus thuringiensis. Gut extracts from Culex and Aedes larvae show differential processing of the Cry48Aa protein, with the location of cleavage sites in Culex reflecting those previously shown for the activation of Cry4 toxins in mosquitoes. Pre-activation of Cry48Aa/Cry49Aa with Culex extracts, however, fails to induce toxicity to Aedes larvae. Co-administration of Cry49Aa with Cry4Aa gives higher than predicted toxicity, perhaps suggesting weak synergism against Culex larvae between Cry49Aa and other three-domain Cry toxins.  相似文献   

5.
The activity of the Bacillus sphaericus binary (Bin) toxin on Culex quinquefasciatus larvae depends on its specific binding to the Cqm1 receptor, a midgut membrane-bound α-glucosidase. A 19-nucleotide deletion in the cqm1 gene (cqm1REC) mediates high-level resistance to Bin toxin. Here, resistance in nontreated and B. sphaericus-treated field populations of C. quinquefasciatus was assessed through bioassays as well as a specific PCR assay designed to detect the cqm1REC allele in individual larvae. Resistance ratios at 90% lethal concentration, gathered through bioassays, were close to 1 and indicate that the selected populations had similar levels of susceptibility to B. sphaericus, comparable to that of a laboratory colony. A diagnostic PCR assay detected the cqm1REC allele in all populations investigated, and its frequency in two nontreated areas was 0.006 and 0.003, while the frequency in the B. sphaericus-treated population was significantly higher. Values of 0.053 and 0.055 were detected for two distinct sets of samples, and homozygote resistant larvae were found. Evaluation of Cqm1 expression in individual larvae through α-glucosidase assays corroborated the allelic frequency revealed by PCR. The data from this study indicate that the cqm1REC allele was present at a detectable frequency in nontreated populations, while the higher frequency in samples from the treated area is, perhaps, correlated with the exposure to B. sphaericus. This is the first report of the molecular detection of a biolarvicide resistance allele in mosquito populations, and it confirms that the PCR-based approach is suitable to track such alleles in target populations.  相似文献   

6.
7.
球形芽孢杆菌对致倦库蚊的后致死作用   总被引:2,自引:0,他引:2  
研究了球形芽孢杆菌Bacillus sphaericus C3-41菌株对致倦库蚊Culex quinquefasciatus幼虫的毒力及其后致死作用。生物测定表明,该菌株对目标蚊幼虫具有很高的毒力,其丙酮粉剂对3~4龄幼虫48 h的半致死浓度(LC50)为(6.92±0.22) μg/L。用不同亚致死浓度处理2~3龄致倦库蚊幼虫,存活幼虫在后期发育中存在明显的延续死亡和损伤现象,经LC30、LC50、LC70、LC90和LC98剂量的C3.41粉剂处理的致倦库蚊羽化前的总死亡率分别为84%、91%、95%、97%和100%,同时存活的幼虫、蛹和成蚊的发育和行为也受到一定的影响。这种后致死作用随处理浓度的升高而增强,可能同球形芽孢杆菌毒素蛋白对处理期间蚊幼虫中肠上皮细胞造成的损伤相关。  相似文献   

8.
A novel recombinant Bacillus thuringiensis subsp. israelensis strain that produces the B. sphaericus binary toxin, Cyt1Aa, and Cry11Ba is described. The toxicity of this strain (50% lethal concentration [LC50] = 1.7 ng/ml) against fourth-instar Culex quinquefasciatus was higher than that of B. thuringiensis subsp. israelensis IPS-82 (LC50 = 7.9 ng/ml) or B. sphaericus 2362 (LC50 = 12.6 ng/ml).  相似文献   

9.
The larval susceptibility to Bacillus sphaericus strain 2362 of the non-man-biting mosquito Culex cinereus and the urban filariasis vector Culex quinquefasciatus, two competitor mosquitoes in polluted habitats, was compared. In the laboratory, both species ingested a similar amount of B. sphaericus spores when fed c. 2 x 10(5) spores per ml for 30 min. However, in the same experiment, third-instar larvae of Cx quinquefasciatus were reduced by 98% at 24 h exposure while Cx cinereus larvae were only reduced by 6% at 72 h. In the field, preimaginal populations of Cx cinereus ingested, within a week, more than 99% of the applied spores, but showed no significant decrease through 14 days in cesspools treated at 10 g/m2 of a flowable concentrate of B. sphaericus 2362, containing 2 x 10(10) spores/g. It is proposed that specific biological control of Cx quinquefasciatus could result from appropriate treatment of breeding-sites with larvicidal B. sphaericus and competitive displacement by Cx cinereus or other mosquitoes with larvae that are more tolerant of B. sphaericus.  相似文献   

10.
Zhang C  Xia L  Ding X  Huang F  Li H  Sun Y  Yin J 《Current microbiology》2011,62(3):968-973
Domain III of Bacillus thuringiensis Cry δ-endotoxins are considered to be related to the stability of the structure and avoidance of overdigestion by proteases. In this study, some residues of potential chymotrypsin and trypsin sites in Domain III of B. thuringiensis Cry1Aa were replaced individually with alanine by site-directed mutagenesis, in order to investigate their functional roles. Except F574A, all mutants F536A, R543A, F550A, F565A, R566A, F570A, F576A, F583A, and F590A were highly expressed the 130 kD protoxins at levels comparable to the wild-type tested by SDS-PAGE. In bioassays, F536A, R566A, and F590A increased toxicity against Spodoptera exigua Hüner larve by 20, 40, and 40%, respectively, as compared to the wild-type. F536A and F565A showed an increase of 6 and 10% in toxicity against Heliothis armigera Hubner than the wild-type. Toxicities of some mutants were altered greatly, and the same mutants were shown to have different toxicities against those two insects. Structural analyses showed that mutants R543A, F574A, F576A-affecting insecticidal activity might be relational to structural stability of toxin or decreased affinity for receptor binding. These results indicated that those residues were involved in the larvicidal activity of the Cry1Aa toxin.  相似文献   

11.
Two field-collected Culex quinquefasciatus colonies were subjected to selection pressure by three strains of Bacillus sphaericus, C3-41, 2362, and IAB59, under laboratory conditions. After 13 and 18 generations of exposure to high concentrations of C3-41 and IAB59, a field-collected low-level-resistant colony developed >144,000- and 46.3-fold resistance to strains C3-41 and IAB59, respectively. A field-collected susceptible colony was selected with 2362 and IAB59 for 46 and 12 generations and attained >162,000- and 5.7-fold resistance to the two agents, respectively. The pattern of resistance evolution in mosquitoes depended on continuous selection pressure, and the stronger the selection pressure, the more quickly resistance developed. The resistant colonies obtained after selection with B. sphaericus C3-41 and 2362 showed very high levels of cross-resistance to B. sphaericus 2362 and C3-41, respectively, but they displayed only low-level cross-resistance to IAB59. On the other hand, the IAB59-selected colonies had high cross-resistance to both strains C3-41 and 2362. Additionally, the slower evolution of resistance against strain IAB59 may be explained by the presence of another larvicidal factor. This is in agreement with the nontoxicity of the cloned and purified binary toxin (Bin1) of IAB59 for 2362-resistant larvae. We also verified that all the B. sphaericus-selected colonies showed no cross-resistance to Bacillus thuringiensis subsp. israelensis, suggesting that it would be a promising alternative in managing resistance to B. sphaericus in C. quinquefasciatus larvae.  相似文献   

12.
Two field-collected Culex quinquefasciatus colonies were subjected to selection pressure by three strains of Bacillus sphaericus, C3-41, 2362, and IAB59, under laboratory conditions. After 13 and 18 generations of exposure to high concentrations of C3-41 and IAB59, a field-collected low-level-resistant colony developed >144,000- and 46.3-fold resistance to strains C3-41 and IAB59, respectively. A field-collected susceptible colony was selected with 2362 and IAB59 for 46 and 12 generations and attained >162,000- and 5.7-fold resistance to the two agents, respectively. The pattern of resistance evolution in mosquitoes depended on continuous selection pressure, and the stronger the selection pressure, the more quickly resistance developed. The resistant colonies obtained after selection with B. sphaericus C3-41 and 2362 showed very high levels of cross-resistance to B. sphaericus 2362 and C3-41, respectively, but they displayed only low-level cross-resistance to IAB59. On the other hand, the IAB59-selected colonies had high cross-resistance to both strains C3-41 and 2362. Additionally, the slower evolution of resistance against strain IAB59 may be explained by the presence of another larvicidal factor. This is in agreement with the nontoxicity of the cloned and purified binary toxin (Bin1) of IAB59 for 2362-resistant larvae. We also verified that all the B. sphaericus-selected colonies showed no cross-resistance to Bacillus thuringiensis subsp. israelensis, suggesting that it would be a promising alternative in managing resistance to B. sphaericus in C. quinquefasciatus larvae.  相似文献   

13.
After activation, Bacillus thuringiensis (Bt) insecticidal toxin forms pores in larval midgut epithelial cell membranes, leading to host death. Although the crystal structure of the soluble form of Cry1Aa has been determined, the conformation of the pores and the mechanism of toxin interaction with and insertion into membranes are still not clear. Here we show that Cry1Aa spontaneously inserts into lipid mono- and bilayer membranes of appropriate compositions. Fourier Transform InfraRed spectroscopy (FTIR) indicates that insertion is accompanied by conformational changes characterized mainly by an unfolding of the β-sheet domains. Moreover, Atomic Force Microscopy (AFM) imaging strongly suggests that the pores are composed of four subunits surrounding a 1.5 nm diameter central depression. Received: 14 July 2000/Revised: 28 December 2000  相似文献   

14.
We have shown that urea-extracted cell wall of entomopathogenic Bacillus sphaericus 2297 and some other strains is a potent larvicide against Culex pipiens mosquitoes, with 50% lethal concentrations comparable to that of the well-known B. sphaericus binary toxin, with which it acts synergistically. The wall toxicity develops in B. sphaericus 2297 cultures during the late logarithmic stage, earlier than the appearance of the binary toxin crystal. It disappears with sporulation when the binary toxin activity reaches its peak. Disruption of the gene for the 42-kDa protein (P42) of the binary toxin abolishes both cell wall toxicity and crystal formation. However, the cell wall of B. sphaericus 2297, lacking P42, kills C. pipiens larvae when mixed with Escherichia coli cells expressing P42. Thus, the cell wall toxicity in strongly toxic B. sphaericus strains must be attributed to the presence in the cell wall of tightly bound 51-kDa (P51) and P42 binary toxin proteins. The synergism between binary toxin crystals and urea-treated cell wall preparations reflects suboptimal distribution of binary toxin subunits in both compartments. Binary toxin crystal is slightly deficient in P51, while cell wall is lacking in P42.  相似文献   

15.
Li T  Sun F  Yuan Z  Zhang Y  Yu J  Pang Y 《Current microbiology》2000,40(5):322-326
The cyt1Aa gene of Bacillus thuringiensis subsp. israelensis and binary toxin gene of Bacillus sphaericus C3-41 were introduced into an acrystalliferous strain of B. thuringiensis independently and in combination by using shuttle vector pBU4. SDS-PAGE and Western blot analysis proved that cyt1Aa and binary toxin genes coexpressed during the sporulation of the recombinant. Transformant strain expressing the Cyt1Aa and binary toxin proteins in combination was more toxic to susceptible and resistant Culex pipiens quinquefasciatus than the transformants expressing Cyt1Aa protein or binary toxin proteins independently. It was suggested that large amount of production of Cyt1Aa protein and binary toxin proteins possibly interacted synergistically, thereby increasing its mosquitocidal toxicity significantly. Received: 22 October 1999 / Accepted: 22 November 1999  相似文献   

16.
Abstract:  In this work, 246 Bacillus sphaericus strains were evaluated against Aedes aegypti and Culex quinquefasciatus larvae to select the most effective ones to be used as the basis of a national product. All strains were isolated from different regions of Brazil and they are stored in a Bacillus spp. collection at Embrapa Genetic Resources and Biotechnology. The selected strains were characterized by biochemical and molecular methods. Based on selective bioassays, 87 strains were identified as toxic to one or both target species. All of these strains contain genes that encode the 42, 51 kDa proteins that constitute the binary toxin and the 100 kDa Mtx1 toxin. All toxic strains presented a very high LC50 against A. aegypti , so, a product based on any of these B. sphaericus strains would not be recommended for use in programmes to control A. aegypti . S201 had highest activity against C. quinquefasciatus , presenting the lowest LC50 and LC90 in bioassays.  相似文献   

17.
18.
Summary A flowable concentrate of Bacillus sphaericus strain 2362 was applied at 10 g/m2 against Culex quinquefasciatus mosquito larvae in cesspools. Complete control of larvae was maintained during 5 to 6 weeks, due to a very low settling of B. sphaericus spores, and was related to the presence of at least 100 to 500 spores per ml in upper water layers. Larval cadavers sedimented within 48 h after treatment. B. sphaericus was shown to recycle in dead larvae but not in mud. Spore persistence exceeded 5 months in bottom mud and the concentration of persistent spores was higher in cesspools, the bottom of which was cemented. Depth, temperature, pH, dissolved oxygen and suspended matter content of the water remained relatively constant throughout 4 months. In laboratory experiments, the final amounts of spores recycled in larvae was not influenced by spore concentration in water or by detergent, but it was affected by organic matter. Projected costs of B. sphaericus formulation indicates that its use even at high dosages, would be more cost effective than the use of chemical insecticides, especially where c. quinquefasciatus is resistant to these latter. A new strategy for controlling this vector could be deployed, using B. sphaericus and insect growth regulators in alternation.  相似文献   

19.
Cry4Ba is a delta-endotoxin produced by Bacillus thuringiensis subsp. israelensis and Cyt2Aa2 is a cytolytic delta-endotoxin produced by B. thuringiensis subsp. darmstadiensis. Cry4Ba produced in Escherichia coli was toxic to Aedes aegypti larvae (LC(50)=140 ng ml(-1)) but virtually inactive to Culex quinquefasciatus larvae. Cyt2Aa2 expressed in E. coli exhibited moderate activity against A. aegypti and C. quinquefasciatus larvae with LC(50) values of 350 and 250 ng ml(-1), respectively. Co-expression of both toxins in E. coli dramatically increased toxicity to both A. aegypti andC. quinquefasciatus larvae (LC(50)=7 and 20 ng ml(-1), respectively). This is the first report to demonstrate that Cry4Ba and Cyt2Aa2 have high synergistic activity against C. quinquefasciatus larvae.  相似文献   

20.
Bacillus thuringiensis subsp. israelensis is the most widely used microbial control agent against mosquitoes and blackflies. Its insecticidal success is based on an arsenal of toxins, such as Cry4A, Cry4B, Cry11A, and Cyt1A, harbored in the parasporal crystal of the bacterium. A fifth toxin, Cry10Aa, is synthesized at very low levels; previous attempts to clone and express Cry10Aa were limited, and no parasporal body was formed. By using a new strategy, the whole Cry10A operon was cloned in the pSTAB vector, where both open reading frames ORF1 and ORF2 (and the gap between the two) were located, under the control of the cyt1A operon and the STAB-SD stabilizer sequence characteristic of this vector. Once the acrystalliferous mutant 4Q7 of B. thuringiensis subsp. israelensis was transformed with this construct, parasporal bodies were observed by phase-contrast microscopy and transmission electron microscopy. Discrete, ca. 0.9-μm amorphous parasporal bodies were observed in the mature sporangia, which were readily purified by gradient centrifugation once autolysis had occurred. Pure parasporal bodies showed two major bands of ca. 68 and 56 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. These bands were further characterized by N-terminal sequencing of tryptic fragments using matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis, which identified both bands as the products of ORF1 and ORF2, respectively. Bioassays against fourth-instar larvae of Aedes aegypti of spore-crystal complex and pure crystals of Cry10Aa gave estimated 50% lethal concentrations of 2,061 ng/ml and 239 ng/ml, respectively. Additionally, synergism was clearly detected between Cry10A and Cyt1A, as the synergistic levels (potentiation rates) were estimated at 13.3 for the mixture of Cyt1A crystals and Cry10Aa spore-crystal complex and 12.6 for the combination of Cyt1A and Cry10Aa pure crystals.The subspecies Bacillus thuringiensis subsp. israelensis (serotype H-14) was discovered by Goldberg and Margalit in 1977 (11). To date, its insecticidal potential has not been overcome by any other bacterium (or any biological control agent) as an effective control measure against mosquito and blackfly larvae (8). Recently, its toxicity spectrum has been expanded to a coleopteran pest, the coffee berry borer (Hypothenemus hampei) (23), indicating that this strain may have potential versatility. Also, the so-called pBtoxis megaplasmid harbored in this strain, containing all the endotoxin-encoding genes found in its parasporal crystal, including cry4A, cry4B, cry10A, cry11A, and cyt1A, was recently sequenced (1). Among many other interesting aspects of this serotype, the occurrence of this mosquitocidal arsenal in one strain and their synergistic interaction make this bacterium scientifically and technologically attractive.The parasporal crystal of B. thuringiensis subsp. israelensis contains large amounts of Cry4A, Cry4B, Cry11A, and Cyt1A toxins (14), and consequently, most of the knowledge about the toxicity of this strain has been focused on these proteins, acting either as a complex (31) or tested separately (6). Although the cry10Aa gene was originally cloned in 1986 (known then as cryIVC) (30), to date, little is known about cry10Aa and the protein it encodes, mostly due to its very low levels of expression (10) in B. thuringiensis subsp. israelensis. Interestingly, cry10Aa is an operon as it includes two open reading frames (ORFs), previously reported as pBt047 and pBt048 (hereafter referred to only as ORF1 and ORF2, respectively), separated by a 48-bp untranslated gap (1). ORF1 contains the complete δ-endotoxin sequence (active toxin), with a coding capacity for a 78-kDa protein. Interestingly, ORF2 shows high identity with the coding sequence of the C-terminal half of Cry4-type proteins, with a coding capacity for a 56-kDa protein. Therefore, it is believed that a putative ancestral cry10Aa gene is similar in size to the cry4-type genes (ca. 4 kbp), but either a small sequence had been inserted in the middle of the coding sequence or site mutations produced end codons (two end codons flank the gap) in this region (1).Previous attempts to clone and express the cry10Aa gene included ORF1 and only part of ORF2 (7, 10, 30). This was a reasonable strategy, as most of the so-called “complete” protoxins are partially digested to become active toxins (δ-endotoxins) (28), and ORF1 included the complete sequence to code the Cry10Aa δ-endotoxin. However, in all these cases, the expression levels were very low, and no parasporal body was formed. Similar results were obtained when the promoter was changed and a stabilizing sequence was added to the construction (13). The low expression levels achieved in these cases led to conclusions that assumed low toxic levels of Cry10Aa when tested against mosquito larvae (30). In spite of the low toxicity of Cry10Aa found against mosquito larvae, a synergistic effect was reported between Cry10Aa and Cry4Ba toxins in Culex (7). Obtaining high levels of expression and crystallization of Cry10Aa are required to properly characterize and understand the toxic spectrum of this protein.In this report, we show the formation of parasporal bodies of Cry10Aa, achieved by cloning the whole Cry10Aa operon under the control of the cyt1A promoter and the STAB-SD sequence. We also show that Cry10Aa is as toxic as most of the other B. thuringiensis subsp. israelensis toxins acting separately, and in synergism with the Cyt1A toxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号