首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cranial neural crest cells (CNCCs) give rise to cranial mesenchyme (CM) that differentiates into the forebrain meningeal progenitors in the basolateral and apical regions of the head. This occurs in close proximity to the other CNCC‐CM‐derivatives, such as calvarial bone and dermal progenitors. We found active Wnt signaling transduction in the forebrain meningeal progenitors in basolateral and apical populations and in the non‐meningeal CM preceding meningeal differentiation. Here, we dissect the source of Wnt ligand secretion and requirement of Wnt/β‐catenin signaling for the lineage selection and early differentiation of the forebrain meninges. We find persistent canonical Wnt/β‐catenin signal transduction in the meningeal progenitors in the absence of Wnt ligand secretion in the CM or surface ectoderm, suggesting additional sources of Wnts. Conditional mutants for Wntless and β‐catenin in the CM showed that Wnt ligand secretion and Wnt/β‐catenin signaling were dispensable for specification and proliferation of early meningeal progenitors. In the absence of β‐catenin in the CM, we found diminished laminin matrix and meningeal hypoplasia, indicating a structural and trophic role of mesenchymal β‐catenin signaling. This study shows that β‐catenin signaling is required in the CM for maintenance and organization of the differentiated meningeal layers in the basolateral and apical populations of embryonic meninges.  相似文献   

2.
Epidermal stratification of the mammalian skin requires proliferative basal progenitors to generate intermediate cells that separate from the basal layer and are replaced by post-mitotic cells. Although Wnt signaling has been implicated in this developmental process, the mechanism underlying Wnt-mediated regulation of basal progenitors remains elusive. Here we show that Wnt secreted from proliferative basal cells is not required for their differentiation. However, epidermal production of Wnts is essential for the formation of the spinous layer through modulation of a BMP-FGF signaling cascade in the dermis. The spinous layer defects caused by disruption of Wnt secretion can be restored by transgenically expressed Bmp4. Non-cell autonomous BMP4 promotes activation of FGF7 and FGF10 signaling, leading to an increase in proliferative basal cell population. Our findings identify an essential BMP-FGF signaling axis in the dermis that responds to the epidermal Wnts and feedbacks to regulate basal progenitors during epidermal stratification.  相似文献   

3.
4.

Background

Focal Dermal Hypoplasia (FDH) is a genetic disorder characterized by developmental defects in skin, skeleton and ectodermal appendages. FDH is caused by dominant loss-of-function mutations in X-linked PORCN. PORCN orthologues in Drosophila and mice encode endoplasmic reticulum proteins required for secretion and function of Wnt proteins. Wnt proteins play important roles in embryo development, tissue homeostasis and stem cell maintenance. Since features of FDH overlap with those seen in mouse Wnt pathway mutants, FDH likely results from defective Wnt signaling but molecular mechanisms by which inactivation of PORCN affects Wnt signaling and manifestations of FDH remain to be elucidated.

Results

We introduced intronic loxP sites and a neomycin gene in the mouse Porcn locus for conditional inactivation. Porcn-ex3-7flox mice have no apparent developmental defects, but chimeric mice retaining the neomycin gene (Porcn-ex3-7Neo-flox) have limb, skin, and urogenital abnormalities. Conditional Porcn inactivation by EIIa-driven or Hprt-driven Cre recombinase results in increased early embryonic lethality. Mesenchyme-specific Prx-Cre-driven inactivation of Porcn produces FDH-like limb defects, while ectodermal Krt14-Cre-driven inactivation produces thin skin, alopecia, and abnormal dentition. Furthermore, cell-based assays confirm that human PORCN mutations reduce WNT3A secretion.

Conclusions

These data indicate that Porcn inactivation in the mouse produces a model for human FDH and that phenotypic features result from defective WNT signaling in ectodermal- and mesenchymal-derived structures.  相似文献   

5.
Palmer L  Vincent JP  Beckett K 《EMBO reports》2011,12(12):1207-1208
Wnts are secreted through a dedicated exocytic pathway, which has been only partly characterized. Here, Palmer and colleagues comment on two recent reports by the groups of K. Basler and M. Boutros, respectively, in which they show that p24 proteins take part in this exocytic route and are required for Wnt exit from the ER to the Golgi.EMBO Rep (2011) advance online publication. doi:10.1038/embor.2011.212Wnt signalling proteins regulate diverse cellular processes during development and homeostasis. Since misregulation of Wnt signalling is associated with cancer, most research has been aimed at characterizing the signal transduction pathway. Recently, attention has focused on Wnt production due to the identification of factors required specifically for Wnt secretion. For instance, the specific requirement of Evi, also known as Wntless or Sprinter, suggested that Wnts might follow a specialized secretory route (Banziger et al, 2006; Bartscherer et al, 2006). Two recent papers published in EMBO reports by the groups of Konrad Basler in last month''s issue, and Michael Boutros in this issue, show that Wnt secretion requires the activity of p24 family members (Buechling et al, 2011; Port et al, 2011). Therefore, the specialized route might begin at endoplasmic reticulum (ER) exit sites.Wnts are secreted glycoproteins that can act many cell diameters from their source of production. Most, but not all Wnt proteins, are acylated and thus associate tightly with cellular membranes. Despite this association, acylated Wnts can be released from secreting cells and spread in the extracellular space (Bartscherer & Boutros, 2008; Port & Basler, 2010). Acylation of Wnts, which occurs in the ER, is thought to be mediated by the N-acetyl transferase encoded by porcupine (porc; van den Heuvel et al, 1993). After acylation, Wnt proteins associate with Evi, a multipass transmembrane protein found mostly at the Golgi and the plasma membrane (Fig 1A). This association is essential for the secretion of the Wnts that are acylated since, in the absence of Evi, they accumulate on internal membranes (Banziger et al, 2006; Bartscherer et al, 2006). It is therefore thought that acylated Wnts require Evi to exit the Golgi and progress to the cell surface (Port et al, 2008). This does not seem to be a requirement for non-lipidated Wnts, such as Drosophila WntD, which are secreted in the absence of Evi (Ching et al, 2008). Similarly, secretion of other signalling proteins proceeds normally without Evi. After reaching the cell surface, Evi is likely to have a choice between various routes. One such route, which involves the retromer complex, takes it back to the Golgi where it can participate in another round of Wnt secretion (Fig 1A). Alternatively, Evi can be targeted to lysosomes (Bartscherer & Boutros, 2008; Port & Basler, 2010). The factors that determine Evi transport remain poorly understood. Nevertheless, these studies highlight the essential and specific role of Evi for the secretion of lipidated Wnts.Open in a separate windowFigure 1Model summarizing the suggested roles of p24 proteins in endoplasmic reticulum to Golgi transport of Wg. (A) Schematic of a cell showing the current model of the Wg secretory pathway. Wg is produced in the ER where it is lipid-modified by Porc, and moved to the Golgi with the assistance of p24 proteins. In the Golgi, Wg joins Evi, which facilitates Wg transport to the cell surface. Evi is then recycled back to the Golgi in a path mediated by the retromer complex. (B)(i) In the absence of p24 proteins, there is no recruitment of Wg to COPII-coated vesicles and therefore a block of secretion in the ER. (ii) Port et al (2011) propose a similar model in which CHOp24/Emp24 and Éclair are involved in Wg recruitment, although only CHOp24/Emp24 binds to Wg. (iii) According to Buechling et al (2011), Opm recruits Wg to COPII-coated vesicles for movement to the Golgi. CHOp24 and p24-1 are also required for this process. ER, endoplasmic reticulum.Two groups have now reported the use of cell-based RNA interference (RNAi) screens to identify further proteins required for the secretion of Wingless (Wg), the main Drosophila Wnt (Buechling et al, 2011; Port et al, 2011). They found that p24 family members, a group of proteins previously implicated in both retrograde and anterograde transport between the ER and Golgi (Strating & Martens, 2009), are required for Wg secretion by S2 cells. Similarly, knockdown by transgenic RNAi shows that p24 proteins are required for normal levels of Wg secretion in Drosophila wing imaginal discs (Buechling et al, 2011; Port et al, 2011). As with Evi, this requirement seems to be relatively specific, since general secretion and the secretion of other signalling proteins, including the lipid-modified morphogen Hedgehog, are unaffected by p24 knockdown. Buechling et al also assessed the role of p24 proteins in WntD secretion. They found that RNAi against opossum (opm), one of the p24 members, prevents WntD secretion in cultured cells. They also show that the phenotypes of opm mutants and WntD mutant embryos resemble each other (Buechling et al, 2011). Therefore, while Evi is specifically required for the secretion of acylated Wnts, p24 proteins could contribute to the secretion of all Wnts. This function is likely to be conserved since the mammalian homologue of Opm, TMED5, is required for Wnt1 signalling, at least in a mammalian cell culture assay (Buechling et al, 2011).To gain understanding of the role of p24 proteins in Wnt secretion, both groups analysed the subcellular localization of Wg following p24 knockdown. They found accumulation in the ER and concomitant depletion in the Golgi, as indicated by reduced co-localization with Golgi markers (Fig 1Bi). They also found that p24 knockdown prevents Wg from stabilizing Evi in producing cells, suggesting that the stabilizing influence of Wg requires its exit from the ER (Buechling et al, 2011; Port et al, 2011). These results lead the authors to propose that the loss of p24 prevents the transport of Wg from the ER to the Golgi. Importantly, immunoprecipitation experiments suggest that Wg might interact physically with Opm and Emp24 (also known as CHOp24). This led both sets of authors to postulate a model whereby p24 proteins act as cargo receptors to escort Wnt proteins from the ER to the Golgi, whereupon they can bind to Evi, which will escort them to the plasma membrane. Thus, in this context, p24 proteins seem to have an anterograde function.Although both studies highlight the role of p24 proteins in Wnt secretion, they disagree on the relative importance of the various family members. Among the nine predicted p24 proteins encoded by the Drosophila genome, only Éclair and Emp24/CHOp24 were found to be required for Wg secretion by Port et al (2011; Fig 1Bii). By contrast, Buechling et al found that Opm, Emp24/CHOp24 and p24-1 all play a role in Wg secretion (fig 1Biii). Thus, only Emp24/CHOp24 is found by both groups to be essential for Wg secretion. Although functional redundancy among p24 proteins could explain why the removal of a single p24 protein has a relatively weak phenotype, there is no simple explanation as to why the very similar assays used by the two groups do not lead to identical conclusions. These differences could be worked out by the exchange of reagents and protocols.Regardless of the discrepancies, the two studies provide an important step in our understanding of Wnt secretion by demonstrating that Wnts engage with specialized components of the secretory machinery as early as in the ER. It might be relevant that the anterograde function of p24 proteins is directed at glycophosphatidylinositol (GPI)-anchored proteins, which have been shown to partition in raft-like microdomains (Strating & Martens, 2009). It is conceivable that GPI-anchored proteins, as well as Wnts, gather in a subdomain of the ER where they could both interact with p24 proteins and set off along their specialized secretory pathways. Wnt targeting to specialized membrane domains could in principle be mediated by their lipid moieties (Bartscherer & Boutros, 2008; Port & Basler, 2010). However, the process might turn out to be more complex if it is confirmed that p24 proteins are also required for the secretion of non-acylated Wnts (for example, WntD), as suggested by Buechling et al. In any case, it will be interesting to determine the precise molecular mechanism underlying the functional interaction between Wnts and p24 proteins as it is likely to explain how Wnts are allowed to exit the ER and start their journey out of the cell.  相似文献   

6.
7.
Wnt/β-catenin signaling is initiated at the cell surface by association of secreted Wnt with its receptors Frizzled (Fz) and low density lipoprotein receptor-related protein 5/6 (LRP5/6). The study of these molecular interactions has been a significant technical challenge because the proteins have been inaccessible in sufficient purity and quantity. In this report we describe insect cell expression and purification of soluble mouse Fz8 cysteine-rich domain and human LRP6 extracellular domain and show that they inhibit Wnt/β-catenin signaling in cellular assays. We determine the binding affinities of Wnts and Dickkopf 1 (Dkk1) to the relevant co-receptors and reconstitute in vitro the Fz8 CRD·Wnt3a·LRP6 signaling complex. Using purified fragments of LRP6, we further show that Wnt3a binds to a region including only the third and fourth β-propeller domains of LRP6 (E3E4). Surprisingly, we find that Wnt9b binds to a different part of the LRP6 extracellular domain, E1E2, and we demonstrate that Wnt3a and Wnt9b can bind to LRP6 simultaneously. Dkk1 binds to both E1E2 and E3E4 fragments and competes with both Wnt3a and Wnt9b for binding to LRP6. The existence of multiple, independent Wnt binding sites on the LRP6 co-receptor suggests new possibilities for the architecture of Wnt signaling complexes and a model for broad-spectrum inhibition of Wnt/β-catenin signaling by Dkk1.  相似文献   

8.
Skeletal muscle regeneration is mediated by satellite cells (SCs). Upon injury, SCs undergo self-renewal, proliferation, and differentiation into myoblasts followed by myoblast fusion to form new myofibers. We previously showed that the heparan sulfate (HS) 6-O-endosulfatases (Sulf1 and -2) repress FGF signaling to induce SC differentiation during muscle regeneration. Here, we identify a novel role of Sulfs in myoblast fusion using a skeletal muscle-specific Sulf double null (SulfSK-DN) mouse. Regenerating SulfSK-DN muscles exhibit reduced canonical Wnt signaling and elevated non-canonical Wnt signaling. In addition, we show that Sulfs are required to repress non-canonical Wnt signaling to promote myoblast fusion. Notably, skeletal muscle-relevant non-canonical Wnt ligands lack HS binding capacity, suggesting that Sulfs indirectly repress this pathway. Mechanistically, we show that Sulfs reduce the canonical Wnt-HS binding and regulate colocalization of the co-receptor LRP5 with caveolin3. Therefore, Sulfs may increase the bioavailability of canonical Wnts for Frizzled receptor and LRP5/6 interaction in lipid raft, which may in turn antagonize non-canonical Wnt signaling. Furthermore, changes in subcellular distribution of active focal adhesion kinase (FAK) are associated with the fusion defect of Sulf-deficient myoblasts and upon non-canonical Wnt treatment. Together, our findings uncover a critical role of Sulfs in myoblast fusion by promoting antagonizing canonical Wnt signaling activities against the noncanonical Wnt pathway during skeletal muscle regeneration.  相似文献   

9.
The role of persistent activation of pancreatic stellate cells (PSCs) in the fibrosis associated with chronic pancreatitis (CP) is increasingly being recognized. Recent studies have shown that Wnt signaling is involved in the development of fibrosis in multiple organs, however, the role of specific Wnts in pancreatic fibrosis remains unknown. We investigated the role of Wnt signaling during PSC activation in CP and the effect of β-catenin inhibition and Dickkopf-related protein 1 (Dkk1) restoration on the phenotype of PSCs. CP was induced in mice by repetitive caerulein injection and mouse PSCs were isolated and activated in vitro. The expression of Wnts, β-catenin, secreted frizzled-related proteins (sFRPs) and Dkks was analyzed by quantitative RT-PCR and western blotting. The canonical Wnt signaling pathway was examined by immunofluorescence and western blot detection of nuclear β-catenin expression. The effect of recombinant mouse Dkk-1 (rmDkk-1) on cell proliferation and apoptosis was assessed by flow cytometry, immunofluorescence, immunocytochemistry and Cell Counting Kit-8 (CCK-8) analysis. The expression of β-catenin, collagen1α1, TGFβRII, PDGFRβ and α-SMA in PSCs treated with different concentrations of rmDkk-1 or siRNA against β-catenin was determined by quantitative RT-PCR and western blotting. Wnt2 was the only Wnt whose expression was significantly upregulated in response to PSC activation, and Wnt2 and β-catenin protein levels were significantly increased in the pancreas of CP mice, whereas Dkk-1 expression was evidently decreased. Nuclear β-catenin levels were markedly increased in activated PSCs, and rmDkk-1 suppressed the nuclear translocation of β-catenin and the proliferation and extracellular matrix production of PSCs through the downregulation of PDGFRβ and TGFβRII. Upregulation of Dkk-1 expression increased apoptosis in cultured PSCs. These results indicate that Wnt signaling may mediate the profibrotic effect of PSC activation, and Wnt2/Dkk-1 could be potential therapeutic targets for CP.  相似文献   

10.
Components of the Wnt signaling pathway are expressed in a tightly regulated and spatially specific manner during development of the forebrain, and Wnts are key regulators of regional forebrain identity. Wnt signaling from the cortical hem regulates the expansion and cell-type specification of the adjacent neuroepithelium and, in conjunction with Bmp, Fgf, and Shh signaling, controls dorsal-ventral forebrain patterning. Subsequently, Wnt signaling dynamically regulates the behavior of cortical progenitor cells, initially promoting the expansion of radial glia progenitor cells and later inducing neurogenesis by promoting terminal differentiation of intermediate progenitor cells. A role for Wnt signaling in cell-type specification has also been proposed.  相似文献   

11.
Proteins of the Wnt family are secreted signaling molecules that regulate multiple processes in animal development and control tissue homeostasis in the adult. Wnts spread over considerable distances to regulate gene expression in cells located at distant sites. Paradoxically, Wnts are poorly mobile because of their posttranslational modification with lipids. Recent evidence suggests that several pathways exist that are capable of transforming hydrophobic, insoluble Wnts into long‐range signaling molecules. Furthermore, the discovery of Wntless as a protein specifically required for the secretion of Wnt suggests that Wnt trafficking through the secretory pathway is already under special scrutiny. Here, we review recent data on the molecular machinery that controls Wnt secretion and discuss how Wnts can be mobilized for long‐range signaling.  相似文献   

12.
The secretion of Wnt signaling proteins is dependent upon the transmembrane sorting receptor, Wntless (Wls), which recycles between the trans-Golgi network and the cell surface. Loss of Wls results in impairment of Wnt secretion and defects in development and homeostasis in Drosophila, Caenorhabditis elegans, and the mouse. The sorting signals for the internalization and trafficking of Wls have not been defined. Here, we demonstrate that Wls internalization requires clathrin and dynamin I, components of the clathrin-mediated endocytosis pathway. Moreover, we have identified a conserved YXXφ endocytosis motif in the third intracellular loop of the multipass membrane protein Wls. Mutation of the tyrosine-based motif YEGL to AEGL (Y425A) resulted in the accumulation of human mutant Wls on the cell surface of transfected HeLa cells. The cell surface accumulation of WlsAEGL was rescued by the insertion of a classical YXXφ motif in the cytoplasmic tail. Significantly, a Drosophila WlsAEGL mutant displayed a wing notch phenotype, with reduced Wnt secretion and signaling. These findings demonstrate that YXXφ endocytosis motifs can occur in the intracellular loops of multipass membrane proteins and, moreover, provide direct evidence that the trafficking of Wls is required for efficient secretion of Wnt signaling proteins.  相似文献   

13.
The Wnts can be considered as candidates for the Congenital Anomaly of Kidney and Urinary Tract, CAKUT diseases since they take part in the control of kidney organogenesis. Of them Wnt5a is expressed in ureteric bud (UB) and its deficiency leads to duplex collecting system (13/90) uni- or bilateral kidney agenesis (10/90), hypoplasia with altered pattern of ureteric tree organization (42/90) and lobularization defects with partly fused ureter trunks (25/90) unlike in controls. The UB had also notably less tips due to Wnt5a deficiency being at E15.5 306 and at E16.5 765 corresponding to 428 and 1022 in control (p<0.02; p<0.03) respectively. These changes due to Wnt5a knock out associated with anomalies in the ultrastructure of the UB daughter epithelial cells. The basement membrane (BM) was malformed so that the BM thickness increased from 46.3 nm to 71.2 nm (p<0.01) at E16.5 in the Wnt5a knock out when compared to control. Expression of a panel of BM components such as laminin and of type IV collagen was also reduced due to the Wnt5a knock out. The P4ha1 gene that encodes a catalytic subunit of collagen prolyl 4-hydroxylase I (C-P4H-I) in collagen synthesis expression and the overall C-P4H enzyme activity were elevated by around 26% due to impairment in Wnt5a function from control. The compound Wnt5a+/-;P4ha1+/- embryos demonstrated Wnt5a-/- related defects, for example local hyperplasia in the UB tree. A R260H WNT5A variant was identified from renal human disease cohort. Functional studies of the consequence of the corresponding mouse variant in comparison to normal ligand reduced Wnt5a-signalling in vitro. Together Wnt5a has a novel function in kidney organogenesis by contributing to patterning of UB derived collecting duct development contributing putatively to congenital disease.  相似文献   

14.
One of the earliest manifestations of anteroposterior pattering in the developing brain is the restricted expression of Six3 and Irx3 in the anterior and posterior forebrain, respectively. Consistent with the role of Wnts as posteriorizing agents in neural tissue, we found that Wnt signaling was sufficient to induce Irx3 and repress Six3 expression in forebrain explants. The position of the zona limitans intrathalamica (zli), a boundary-cell population that develops between the ventral (vT) and dorsal thalamus (dT), is predicted by the apposition of Six3 and Irx3 expression domains. The expression patterns of several inductive molecules are limited by the zli, including Wnt3, which is expressed posterior to the zli in the dT. Wnt3 and Wnt3a were sufficient to induce the dT marker Gbx2 exclusively in explants isolated posterior to the presumptive zli. Blocking the Wnt response allowed the induction of the vT-specific marker Dlx2 in prospective dT tissue. Misexpression of Six3 in the dT induced Dlx2 expression and inhibited the expression of both Gbx2 and Wnt3. These results demonstrate a dual role for Wnt signaling in forebrain development. First, Wnts directed the initial expression of Irx3 and repression of Six3 in the forebrain, delineating posterior and anterior forebrain domains. Later, continued Wnt signaling resulted in the induction of dT specific markers, but only in tissues that expressed Irx3.  相似文献   

15.
Although Wnt signaling plays an important role in body patterning during early vertebrate embryogenesis, the mechanisms by which Wnts control the individual processes of body patterning are largely unknown. In zebrafish, wnt3a and wnt8 are expressed in overlapping domains in the blastoderm margin and later in the tailbud. The combined inhibition of Wnt3a and Wnt8 by antisense morpholino oligonucleotides led to anteriorization of the neuroectoderm, expansion of the dorsal organizer, and loss of the posterior body structure-a more severe phenotype than with inhibition of each Wnt alone-indicating a redundant role for Wnt3a and Wnt8. The ventrally expressed homeobox genes vox, vent, and ved mediated Wnt3a/Wnt8 signaling to restrict the organizer domain. Of posterior body-formation genes, expression of the caudal-related cdx1a and cdx4/kugelig, but not bmps or cyclops, was strongly reduced in the wnt3a/wnt8 morphant embryos. Like the wnt3a/wnt8 morphant embryos, cdx1a/cdx4 morphant embryos displayed complete loss of the tail structure, suggesting that Cdx1a and Cdx4 mediate Wnt-dependent posterior body formation. We also found that cdx1a and cdx4 expression is dependent on Fgf signaling. hoxa9a and hoxb7a expression was down-regulated in the wnt3a/wnt8 and cdx1a/cdx4 morphant embryos, and in embryos with defects in Fgf signaling. Fgf signaling was required for Cdx-mediated hoxa9a expression. Both the wnt3a/wnt8 and cdx1a/cdx4 morphant embryos failed to promote somitogenesis during mid-segmentation. These data indicate that the cdx genes mediate Wnt signaling and play essential roles in the morphogenesis of the posterior body in zebrafish.  相似文献   

16.
β-catenin-dependent Wnt signaling is initiated as Wnt binds to both the receptor FZD and coreceptor LRP5/6, which then assembles a multimeric complex at the cytoplasmic membrane face to recruit and inactivate the kinase GSK3. The large number and sequence diversity of Wnt isoforms suggest the possibility of domain-specific ligand-coreceptor interactions, and distinct binding sites on LRP6 for Wnt3a and Wnt9b have recently been identified in vitro. Whether mechanistically different interactions between Wnts and coreceptors might mediate signaling remains to be determined. It is also not clear whether coreceptor homodimerization induced extracellularly can activate Wnt signaling, as is the case for receptor tyrosine kinases. We generated monoclonal antibodies against LRP6 with the unexpected ability to inhibit signaling by some Wnt isoforms and potentiate signaling by other isoforms. In cell culture, two antibodies characterized further show reciprocal activities on most Wnts, with one antibody antagonizing and the other potentiating. We demonstrate that these antibodies bind to different regions of LRP6 protein, and inhibition of signaling results from blocking Wnt binding. Antibody-mediated dimerization of LRP6 can potentiate signaling only when a Wnt isoform is also able to bind the complex, presumably recruiting FZD. Endogenous autocrine Wnt signaling in different tumor cell lines can be either antagonized or enhanced by the LRP6 antibodies, indicating expression of different Wnt isoforms. As anticipated from the roles of Wnt signaling in cancer and bone development, antibody activities can also be observed in mice for inhibition of tumor growth and in organ culture for enhancement of bone mineral density. Collectively, our results indicate that separate binding sites for different subsets of Wnt isoforms determine the inhibition or potentiation of signaling conferred by LRP6 antibodies. This complexity of coreceptor-ligand interactions may allow for differential regulation of signaling by Wnt isoforms during development, and can be exploited with antibodies to differentially manipulate Wnt signaling in specific tissues or disease states.  相似文献   

17.
During normal forebrain development in vertebrates, rostral neural tissue must be protected from Wnt signals via the actions of locally expressed Wnt antagonistic factors. In zebrafish zygotic oep (Zoep) mutants, forebrain structure is severely disrupted with reduced expression of the Wnt antagonists secreted frizzled related protein1 and dickkopf1. To analyze the temporal effects of Wnt antagonism on forebrain development, we generated transgenic zebrafish that overexpressed the dominant negative form of frizzled8a (DNfz8a) in wild-type and Zoep mutants under the control of a heat-inducible promoter. This model allowed for assessment of the dynamics of Wnt antagonistic signaling during forebrain development. Our results demonstrated that overexpression of DNfz8a in Zoep embryos between 7 and 16 hpf increased putative forebrain region demarcated by anf and distal-less2 expressions. These results suggest that normal forebrain development requires continual Wnt antagonism from the early gastrula to the mid-somitogenesis stage.  相似文献   

18.
19.
Guided migrations of cells and developing axons along the dorso-ventral (D/V) and antero-posterior (A/P) body axes govern tissue patterning and neuronal connections. In C. elegans, as in vertebrates, D/V and A/P graded distributions of UNC-6/Netrin and Wnts, respectively, provide instructive polarity information to guide cells and axons migrating along these axes. By means of a comprehensive genetic analysis, we found that simultaneous loss of Wnt and Netrin signaling components reveals previously unknown and unexpected redundant roles for Wnt and Netrin signaling pathways in both D/V and A/P guidance of migrating cells and axons in C. elegans, as well as in processes essential for organ function and viability. Thus, in addition to providing polarity information for migration along the axis of their gradation, Wnts and Netrin are each able to guide migrations orthogonal to the axis of their gradation. Netrin signaling not only functions redundantly with some Wnts, but also counterbalances the effects of others to guide A/P migrations, while the involvement of Wnt signaling in D/V guidance identifies Wnt signaling as one of the long sought mechanisms that functions in parallel to Netrin signaling to promote D/V guidance of cells and axons. These findings provide new avenues for deciphering how A/P and D/V guidance signals are integrated within the cell to establish polarity in multiple biological processes, and implicate broader roles for Netrin and Wnt signaling - roles that are currently masked due to prevalent redundancy.  相似文献   

20.
The Wnt signaling pathways control many critical developmental and adult physiological processes. In vertebrates, one fundamentally important function of Wnts is to provide directional information by regulating the evolutionarily conserved planar cell polarity (PCP) pathway during embryonic morphogenesis. However, despite the critical roles of Wnts and PCP in vertebrate development and disease, little is known about the molecular mechanisms underlying Wnt regulation of PCP. Here, we have found that the receptor-like tyrosine kinase (Ryk), a Wnt5a-binding protein required in axon guidance, regulates PCP signaling. We show that Ryk interacts with Vangl2 genetically and biochemically, and such interaction is potentiated by Wnt5a. Loss of Ryk in a Vangl2+/− background results in classic PCP defects, including open neural tube, misalignment of sensory hair cells in the inner ear, and shortened long bones in the limbs. Complete loss of both Ryk and Vangl2 results in more severe phenotypes that resemble the Wnt5a−/− mutant in many aspects such as shortened anterior-posterior body axis, limb, and frontonasal process. Our data identify the Wnt5a-binding protein Ryk as a general regulator of the mammalian Wnt/PCP signaling pathway. We show that Ryk transduces Wnt5a signaling by forming a complex with Vangl2 and that Ryk regulates PCP by at least in part promoting Vangl2 stability. As human mutations in WNT5A and VANGL2 are found to cause Robinow syndrome and neural tube defects, respectively, our results further suggest that human mutations in RYK may also be involved in these diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号